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Introduction: Non-attendance (NA) causes additional burden on the outpatient
services due to clinician time and other resources being wasted, and it lengthens
wait lists for patients. Telehealth, the delivery of health services remotely using
digital technologies, is one promising approach to accommodate patient
needs while offering more flexibility in outpatient services. However, there is
limited evidence about whether offering telehealth consults as an option can
change NA rates, or about the preferences of hospital outpatients for
telehealth compared to in-person consults. We model patient preferences
with a Maximum Entropy Inverse Reinforcement Learning (IRL) behaviour
model, allowing for the calculation of general population- and demographic-
specific relative preferences for consult modality. The aim of this research is to
use real-world data to model patient preferences for consult modality using
Maximum Entropy IRL behaviour model.
Methods: Retrospective data were collected from an immunology outpatient
clinic associated with a large metropolitan hospital in Brisbane, Australia. We
used IRL with the Maximum Entropy behaviour model to learn outpatient
preferences for appointment modality (telehealth or in-person) and to derive
demographic predictors of attendance or NA. IRL models patients as decision
making agents interacting sequentially over multiple time-steps, allowing for
present actions to impact future outcomes, unlike previous models applied in
this domain.
Results: We found statistically significant (α=0.05) within-group preferences for
telehealth consult modality in privately paying patients, patients who both
identify as First Nations individuals and those who do not, patients aged 50–
60, who did not require an interpreter, for the general population, and for the
female population. We also found significant within-group preferences for in-
person consult modality for patients who require an interpreter and for
patients younger than 30.
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Discussion: Using the Maximum Entropy IRL sequential behaviour model, our
results agree with previous evidence that non-attendance can be reduced when
telehealth is offered in outpatient clinics. Our results complement previous
studies using non-sequential modelling methodologies. Our preference and NA
prediction results may be useful to outpatient clinic administrators to tailor
services to specific patient groups, such as scheduling text message consult
reminders if a given patient is predicted to be more likely to NA.

KEYWORDS

Inverse Reinforcement Learning, machine learning, stated preference modelling,
telehealth, telemedicine, behaviour modelling
1 Introduction

Hospital outpatient clinics serve an important role in the

Australian healthcare system by diverting patients with

regular ongoing health needs away from centralised hospital

inpatient resources. However, these clinics can experience a

high rate of patients missing scheduled consults, referred to

as non-attendance (NA), with one study finding NA rates

between a 5% and 39% (1). Non-attendance causes additional

burden on the outpatient services due to clinician time and

other resources being wasted, and it lengthens wait lists for

patients (1). Telehealth, the delivery of health services

remotely using digital technologies, is one promising

approach to accommodate patient needs while offering more

flexibility in outpatient services (1, 2). However, there is

limited evidence about whether or not offering telehealth

consults as an option can change NA rates, or about the

preferences of hospital outpatients for telehealth compared to

in-person consults (1, 3–5).

Previous studies looking at this effect have used descriptive

statistics and health economic methodologies including logistic

regression and Discrete Choice Experiments (DCEs) (1, 6).

Here, we investigate the use of the machine learning

technique called Inverse Reinforcement Learning (IRL) to

analyse the same problem. IRL is a behaviour modelling

technique that attempts to rationalize observed sequential

decision making behaviour by assuming the decision making

agent is acting near-optimally, and finding a reward function

that explains the observed behaviour (7). Unlike DCEs or

logistic regression, IRL models decision-making behaviour as

sequential reward optimization, allowing for agents that are

forward thinking and anticipate future events, rather than

acting myopically. Using a dataset of patient demographics

and time-series attendance behaviour at an outpatient clinic

located in a large metropolitan hospital in Brisbane,

Australia, we model patient demographics as predictors of

NA; or, that is, the demographic features of patients

correspond to specific IRL behaviour models that in turn

predict non-attendance likelihoods—and patient preferences

for consult modality (telehealth or in-person)—that is, the

IRL reward function parameters are interpreted as relative

observed preferences.

We model patient preferences with the popular Maximum

Entropy behaviour model (one version of the IRL technique),
02
allowing for the calculation of general population- and

demographic-specific relative preferences for consult modality.

To allow comparison of our results with other health

economic methodologies, we derive expressions to convert the

Maximum Entropy IRL behaviour model to odds ratios for

patient attendance or non-attendance. Because our IRL models

can be queried for demographic- and/or modality-specific NA

likelihoods, our preference and NA prediction results may be

useful to outpatient clinic administrators to tailor services to

specific patient groups, such as scheduling text message

consult reminders if a given patient is predicted to be more

likely to NA.
2 Methods

2.1 Ethics approval

Ethics approval for this research was granted by the Queensland

Government Metro South Health District Human Research Ethics

Committee, approval number HREC/2018/QMS/48636.
2.2 Data collection and processing

Activity data from October 2015 to September 2018 along with

non-identifiable population characteristics for patients at a mixed

in-person/telehealth immunology outpatient clinic associated

with the Princess Alexandra Hospital (PAH) in Brisbane,

Australia were obtained. The data were extracted from the PAH

scheduling database and provided as a long-form password

protected Microsoft Excel file, with associated codebook

describing the columns and data types. For each scheduled

consult, the data included non-identifiable patient demographic

information, as well as if the patient attended or failed to attend,

and the consult outcome which could include one of the

following options:

(a) Re-booking the patient for a follow-up consult in either

telehealth or in-person modality,

(b) Discharging the patient or referring them to another

management service, indicating that the patient’s health needs

were adequately resolved from the perspective of the clinic,
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TABLE 1 Patient demographic characteristics (N = 1026).

Characteristic n (%) [missing n]
Male 369 (35.96%)

Consultation is privately funded 8 (0.78%)

Patient requires interpreter 30 (3.08%) [53]

Patient identifies as First Nations individuals 30 (3.13%) [67]

Patient age when entering clinic treatment
<30 years old 190 (18.52%)

30–39 years old 211 (20.56%)

40–49 years old 185 (18.03%)

50–59 years old 179 (17.45%)

60–69 years old 143 (13.94%)

≥70 years old 118 (11.50%)
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(c) Admitting the patient as an inpatient at the hospital,

indicating an increase in the severity of the patient’s

condition and the need for closer health management, or

(d) Removal of the patient from the clinic roster due to non-

attendance one or more consults.

The dataset demographic characteristics were explored prior to

analysis (Table 1).

The raw data contained 6,131 consult lines corresponding to

1,790 unique patient interactions within the clinic during the

collection time. From the raw data, we excluded 764 partially

captured patient interactions that begun before the data capture

window, leaving a total of 1,026 patient interactions for IRL

modelling. Each patient interaction with the clinic consisted of

between 1 and 13 scheduled consults, with the interaction

lengths right-skewed (median patient interaction duration of two

scheduled consults and a mean of 2.55 scheduled consults).

Telehealth in this article refers specifically to videoconference

calls and does not include any other technology modalities.
2.3 Maximum entropy Inverse
Reinforcement Learning

We used IRL to model outpatient preferences with the

Maximum Entropy (MaxEnt) behaviour model whose validation

has been published elsewhere (8–10). IRL elicits observed

preferences from a decision-making agent in an environment by

finding a reward function which makes the observed behaviour

appear optimal.

This is typically done in the context of a discrete-time Markov

Decision Process (MDP), in which an agent observes the present

state, takes an action, receives a scalar reward, then transitions to

the next state. Specifically, we define a set of states s [ S that

characterize the environment (a subset of which may terminate

the MDP episode), and a set of actions that the agent can take

a [ A. The MDP reward function (which is unknown but

discovered using an IRL algorithm) provides a scalar reward

signal when an action a is taken at state s r(s, a):S� A ! R. A
transition function describes the dynamics of the MDP as a

probability distribution T(s, a, s0) ¼ p(s0j s, a), and a probabilistic

mapping from states to action distributions is referred to as a
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policy p(s, a) ¼ p(aj s). We assume the observed agent is acting

optimally, that is, they execute a policy p� (Equation 1) which

maximizes their time-discounted expected reward,

p�¼argmaxp E
X1
t¼0

gt rt

����p0(s), T
" #

, (1)

where p0(s) is a distribution over agent-starting states, and g is a

model hyper-parameter called the discount factor, which trades-

off between near-term and future potential reward.

IRL elicits observed behaviour preferences from demonstration

data D ¼ {ti}
N
i¼1, where ti ¼ (s0, a0, s1, a1, . . . , sL) denotes a

length L state-action trajectory through the MDP (note that the

scalar reward values received by the agent are not observed). To

do this, IRL assumes a behaviour model, that is, a class of

potential policies p [ P and reward functions r(s, a) [ R. A

popular choice is the maximum entropy (MaxEnt) behaviour

model with a linear reward function, which assumes the policy

takes the form

pu(t)/ T(t)eru(t), (2)

where T(t) ¼ Q
t
T(st , at , stþ1) and ru(t) ¼

P
t
ru(st , at), and the

reward takes the parametric from

ru(s, a) ¼ u`f(s, a), (3)

and f(s, a) is a feature function. The normalizing constant for the

MaxEnt trajectory distribution (Equation 2) is known as the

partition function and can be efficiently computed with various

inference algorithms (8, 9, 11), which is one reason for the

popularity of the MaxEnt IRL framework.

The process of eliciting preferences using (Equation 3) MaxEnt

IRL consists of defining the terms of the MDP (apart from the

reward function), collecting a dataset of demonstration

trajectories, then using optimization to search for the Maximum

Likelihood Estimate (MLE) of the linear reward function

parameter u given the demonstration data. The reward function

parameter can then be interpreted as a set of weights for the

features in the feature function. Assuming a fixed feature

function, the weights can also be interpreted as relative

preferences for different state-action features in the environment.
2.4 Clinic MDP specification

We modelled the patient interactions with the outpatient clinic

as an MDP containing five states and two actions (Figure 1).

The states are: sIP—the patient has a scheduled upcoming in-

person consultation, sTH—the patient has a scheduled upcoming

telehealth consultation, sDIS—(terminal state) the patient has been

discharged from the clinic roster (e.g., due to an improvement in

their health condition), sREM—(terminal state) the patient has

been removed from the clinic roster (e.g., due to repeated non-
frontiersin.org
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TABLE 2 Estimated parameters for the MDP transition dynamics.

Parameter Description Estimated value
pIP Probability a patient starts with an in-person consult 0.95

pN Probability of exiting the service after not attending a consult. 0.55

pA Probability of exiting the service after attending a consult. 0.15

d Proportion of patients that attend a consult and leave the service by discharge rather than hospitalisation. 65%

sA Odds of switching service modality after attending a consult. 1 in 1,000

sN Odds of switching service modality after not attending a consult. 1 in 10,000

FIGURE 1

The MDP structure for the immunology outpatient clinic. Terminal states are shown as red boxes, regular states as blue circles. Black nodes indicate
that the subsequent state is selected stochastically by the environment.

Snoswell et al. 10.3389/fdgth.2024.1384248
attendance), and sADM—(terminal state) the patient has been

removed from the clinic roster due to admission as a hospital in-

patient (e.g., due to declining health condition). The actions

available to the agent are: aATT—the patient attends the

upcoming telehealth or in-person appointment, and aNA—the

patient does not attend the upcoming telehealth or in-person

appointment. This MDP specification aligned with the data we

collected—that is, patients experience a sequence of scheduled

appointments with the clinic, and have control over weather or

not they attend or do not attend each appointment. On the other

hand, the clinic (the MDP “environment”) is responsible for

determining if a patient is initially or subsequently (re-)booked

for a telehealth or in-person appointment, discharged from the

service, or admitted to the hospital.

The transition dynamics was estimated by clinic subject-matter

experts, and the resulting model is shown in Table 2.

As a feature function, we opted for a state indicator vector—

that is, a vector of zeros, with a single 1 entry corresponding

to the most recently selected state and action,

f(s, a) ¼ (1s¼s1 , . . . , 1s¼sn ), where n is the number of states, and

1s¼si is an indicator function returning 1 if and only if s ¼ si, or

returning 0 otherwise. We model our patients as far-sighted (the

opposite of myopic) by selecting a discount factor close to one

(g ¼ 0:999).
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2.5 Eliciting outpatient appointment
preferences

The MaxEnt IRL reward function parameters u for the

target population were estimated by maximizing the likelihood

of the demonstration data using full-batch gradient descent

with the L-BFGS optimizer, constraining the parameter values

to lie in the set u [ [�1, þ 1]jSj to make interpretation of the

weights simpler. The gradient and objective terms were

computed using the exact MaxEnt IRL inference algorithm

previously published by Snoswell, Singh, and Ye (8). Python

3.6.9 and the scipy library (12) were used for all numerical

calculations. To estimate demographic group specific

preferences, the data were partitioned by demographic groups,

and group-specific reward parameters calculated in the same

manner as just described. After optimization, the learned

reward parameters were interpreted as relative observed

preferences for different states within the MDP, allowing

comparison with the relative stated preferences elicited in

parallel work using a tailored Discrete Choice Experiment in a

patient survey (6).

To measure the uncertainty for the reward parameters, we

compute the 95% boostrap confidence intervals centered around

the reward parameter estimates (13).
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2.6 Predicting outpatient non-attendance

After learning the reward function parameters for each patient

demographic group, the learned reward function values were used

to predict outpatient attendance or non-attendance. Such a

problem can be readily solved by treating the maximum entropy

distribution induced by the learned reward parameters (Equation

2) as a stochastic policy which encodes a preference over

alternate futures through the MDP, and querying this policy for

the relative probability of a patient attending or failing to attend.

The standard health-economic tool for reporting such

predictions, such as clinic attendance or non-attendance, is the

“Odds Ratio” (OR), defined as the odds of an outcome occurring

in the presence of some intervention divided by the odds of that

outcome in the absence of the intervention. For instance, the OR

for non-attendance if a consult is via telehealth (instead of in-

person) can be computed as

ORNA j Telehealth ¼ p(NA j Telehealth)
p(NA j In-Person) (4)

We compute the odds ratio in (Equation 4) as

ORNA j Telehealth ¼
PL�1

t¼1 pu,t(sTH, aNA)= pu,t(sTH)PL�1
t¼1 pu,t(sIP, aNA)= pu,t(sIP)

, (5)

where L is an upper time-horizon (the maximum number of steps

into the future the simulated agent plans when making decisions),

and where pu,t(s, a) ¼ p(st ¼ s, at ¼ ajt � pu(t)) and

pu,t(s) ¼ p(st ¼ sjt � pu(t)) are the state-action and state

marginal counts induced by the reward parameter u, which can

be exactly and efficiently computed using the inference algorithm

described in Snoswell, Singh, and Ye (8).

On the other hand, if p(aNA j uB) is the probability of non-

attendance in the presence of a demographic trait B, and
TABLE 3 Computed reward parameters (mean and 95% CI over 100 bootstra

Group uIP uTH
All −0.76 ± 0.01 −0.71 ± 0.01

Male −0.80 ± 0.01 −0.77 ± 0.03

Female −0.74 ± 0.01 −0.69 ± 0.02

Public −0.76 ± 0.01 −0.75 ± 0.02

Private −1.00 ± 0.00 −0.29 ± 0.04

Interpreter required −0.77 ± 0.03 −1.00 ± 0.00

No interpreter required −0.75 ± 0.01 −0.69 ± 0.02

First Nations individuals −0.86 ± 0.03 −0.63 ± 0.06

Non- First Nations individuals −0.74 ± 0.01 −0.72 ± 0.02

Age <30 −0.76 ± 0.01 −0.83 ± 0.03

Age 30s −0.78 ± 0.01 −0.78 ± 0.04

Age 40s −0.74 ± 0.02 −0.72 ± 0.05

Age 50s −0.78 ± 0.01 −0.70 ± 0.03

Age 60s −0.74 ± 0.02 −0.66 ± 0.04

Age ≥70 −0.80 ± 0.02 −0.75 ± 0.04

Where a statistically significant (a ¼ 0:05) within-group preference for in-person or telehealth c
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p(aNA j u:B) is the probability of non-attendance in the absence

of that trait, then we can compute the trait-dependent OR of

non-attendance with the expression

ORNA j B ¼ p(aNA j uB)
p(aNA j u:B)

¼
P

s[S

PL�1
t¼1 puB ,t(s, aNA)= puB ,t(s)P

s0[S

PL�1
t¼1 pu:B ,t(s

0, aNA)= pu:B ,t(s0)
(6)

We computed ORs from the MaxEnt model for consult modality

(using Equation 5) and for the categorical patient demographic

variables (using Equation 6). To measure the uncertainty of these

estimates, we used bootstrap re-sampling with replacement on

each data set/subset to compute a mean ORs and symmetric 95%

confidence intervals.
3 Results

3.1 Modelling outpatient appointment
preferences

The computed patient reward parameters with 95% confidence

intervals are shown in (Table 3). The primary terms of interest are

the relative strength of the preferences for in-person consults uIP vs.

telehealth consults uTH. To investigate these terms, we selected a

null hypothesis that the difference between telehealth and in-

person preference was equal to zero:

H0:uTH � uIP ¼ 0

H1:juTH � uIPj . 0

Performing bootstrap hypothesis testing with 100 re-samples (14),

we found statistically significant (a ¼ 0:05) within-group

preferences for telehealth in the following groups (ranked from

weakest to strongest effect): for privately paying patients
p re-samples) for patient demographic groups.

uDIS uADM uREM
0.95 ± 0.02 −0.63 ± 0.09 −0.98 ± 0.02

0.94 ± 0.04 −0.72 ± 0.10 −0.85 ± 0.05

0.96 ± 0.02 −0.55 ± 0.10 −1.00 ± 0.00

0.97 ± 0.02 −0.66 ± 0.08 −0.99 ± 0.01

0.10 ± 0.35 −1.00 ± 0.00 −0.73 ± 0.15

0.56 ± 0.20 −1.00 ± 0.00 −0.74 ± 0.12

0.98 ± 0.02 −0.53 ± 0.10 −1.00 ± 0.00

0.29 ± 0.25 −0.22 ± 0.26 −0.19 ± 0.15

0.98 ± 0.02 −0.58 ± 0.10 −1.00 ± 0.00

0.76 ± 0.07 −0.89 ± 0.09 −0.72 ± 0.06

0.42 ± 0.09 0.01 ± 0.14 −0.78 ± 0.06

0.97 ± 0.03 −0.70 ± 0.13 −0.92 ± 0.04

0.98 ± 0.02 −0.85 ± 0.09 −1.00 ± 0.01

1.00 ± 0.01 −0.69 ± 0.14 −1.00 ± 0.00

0.99 ± 0.02 −0.34 ± 0.18 −1.00 ± 0.00

onsult type exists, the preferred option is highlighted in bold.
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(uTH � uIP ¼ 0:71+ 0:04), for patients who identify as either First

Nations individuals (0:23+ 0:07) or those who do not

(0:03+ 0:02), for patients aged in their 50s (0:08+ 0:03) or 60s

(0:07+ 0:04), for those who indicated they did not require an

interpreter for their consult (0:06+ 0:01), for the general population

(0:05+ 0:01), and for the female population (0:05+ 0:02).

On the other hand, we found statistically significant

(a ¼ 0:05) within-group preferences for in-person consults for

patients who routinely require an interpreter for their consults

(uIP � uTH ¼ 0:23+ 0:03) and for patients younger than 30

(0:07+ 0:04).

As expected, in all cases, the telehealth and in person reward

weights were negative, which suggests that patients are motivated

to reach a terminal state (and cease interaction with the

outpatient clinic) promptly. That is, patients want to exit the

health system by either resolving their condition or ceasing

contact with the clinic through referral sooner rather than later.

Encouragingly, some of the learned preferences here match

intuitive expectations. For instance, a preference for in-person

consults for patients requiring an interpreter makes intuitive

sense due to the potential difficulties of establishing a remote

connection to the hospital telehealth system without an

interpreter physically present with the patient. Likewise, the fact

that patients identifying as First Nations individuals appear to

prefer telehealth, as demonstrated by their strong preference

difference between in-person and telehealth consults, is likely

due to the potential that such patients may be physically

located in remote rural communities, or may desire to have

family present. These factors may also drive the preferences for

those who do not identify as First Nations individuals, however

the difference between their preferences for in-person or

telehealth was smaller by a factor of ten (a difference in the in-

person and telehealth reward parameters of 0.23 for First

Nations individuals vs. 0.02 for those that do not identify as

First Nations). Encouragingly, the general trend of a baseline

preference for telehealth consult was also reflected in the DCE

results reported elsewhere (6).
3.2 Predicting outpatient non-attendance

We computed non-attendance odds ratios for telehealth vs. in-

person consultation modality and for patient demographic

characteristics (Table 4).
TABLE 4 Non-attendance odds ratios for consult and patient characteristics.

Characteristic Variables Odds
ratio

Appointment modality Telehealth/in person 1.0231

Sex Female/Male 0.9965

Source of funding Private/Public 1.1447

Interpreter required Interpreter required/No interpreter required 1.0616

First Nations individuals
identification

First Nations individuals/Non- First Nations
individuals

1.1927

Values are mean and 95% CI over 100 bootstrap re-samples.
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These results indicate that patients are marginally more

likely to NA if a consult is offered via telehealth or if a

patient requires an interpreter, and that patients are more

likely to NA if they pay privately for their consult, or

identify as First Nations individuals. The Odds ratio for

patient sex is non-conclusive (confidence interval ranges

both above and below 1.0).
4 Discussion

We have demonstrated the use of the MaxEnt behaviour model

for modelling the preferences of hospital outpatients (via reward

learning) as well as for predicting likely actions (via imitation

learning). Our results, when compared with related studies on

the same data (1), and on a similar population (6), suggest that

IRL may be a promising methodology for health economic

modelling, alongside logistic regression and DCEs. The directions

of our statistically significant trait-dependent ORs (Equation 6)

(<1 or >1) match those from a logistic regression on the same

data with the exception of the OR Equation (5) for the general

population, and for consult funding source (1). The general

population OR is marginally above 1.0, indicating a very small

increase in the odds of NA when a consult is offered over

telehealth, which does not match previous findings (1). The

consult funding source OR is positive, which is unexpected, given

that it would seem that patients have a vested interest in attending

a consult if they (or their health fund) are paying out-of-pocket

for an consult, however this is likely due to the small sample size

for the privately paying sub-population.

Some of the key results around non-attendance likelihood and

preference have been highlighted previously by other research,

providing external validity to the modelled results. For instance,

higher non-attendance rates among First Nations individuals has

been demonstrated for both general practice and medical imaging

appointments (15, 16). The finding that individuals under the age

of 30 prefer in-person consults compared to telehealth is unusual

and should be explored in future research. Our results around the

marginal preference for telehealth and its ability to affect non-

attendance rates aligns with literature published prior to the

COVID-19 pandemic, as the COVID-19 pandemic also saw a

instantaneous shift in how individuals access healthcare (1, 17–19).

Rerunning this model with post-pandemic data may be an

interesting exercise to further explore this relationship.
95% CI Interpretation

1.0200–1.0262 Marginal increased NA predicted for telehealth consults.

0.9907–1.0024 Inconclusive.

1.1310–1.1584 Increased NA predicted for patients that pay privately.

1.0469–1.0763 Marginal increased NA predicted for patients that require
an interpreter.

1.1720–1.2134 Increased NA predicted for patients that identify as First Nations
individuals

frontiersin.org

https://doi.org/10.3389/fdgth.2024.1384248
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


Snoswell et al. 10.3389/fdgth.2024.1384248
One limitation of our approach is that the MDP specification is in

discrete time—that is, there is no notion of “waiting time” or elapsed

duration between appointments—agents in the MDP simply move

from one appointment to the next. Prior research has studied the

effect of indirect waiting time on no-show probability (20), however

our formulation does not capture this variable. An alternate MDP

specification could either use a continuous-time framing, or

additional “waiting” states to capture the elapsed real-world time

between appointments, which might then allow studying this

variable with the IRL formulation.

A weakness of the approach to preference elicitation used here

is that the bootstrap estimates do not allow for testing the statistical

significance or non-significance of learned preferences between-

groups. This is especially important to keep in mind, given that

some of the demographic groups had very few available

demonstration trajectories (e.g., privately paying patients had

only n = 8 data points), recommending caution when interpreting

any apparent between-group differences. Future work can be

done to validate the model with additional real world data by

studying e.g., a larger population but for a similar outpatient

clinic model or treatment scenario, as well as looking a treatment

scenarios that involve longer trajectories (more patient-clinic

interactions over time). In the future, theoretical work is also

needed to complement IRL modelling approaches with a richer

set of statistical significance testing approaches.

For all variables, the ORs suggest a relatively small effect size

compared to the logistic regression results (e.g., MaxEnt OR’s

ranging from 0.9965–1.1927 vs. logistic regression OR’s ranging

from 0.32–4.66). This suggests an interesting possibility when we

consider that logistic regression is essentially a predictive model

that collapses the data to a single time-step, whereas IRL

considers the impact of sequential decisions over time. As such,

the results here suggest that our predictions of NA (or

attendance) become weaker (smaller effect size) as we generalise

our modelling approach from treating patients as making isolated

single time-step decisions to modelling patient behaviour as

rational goal directed decision making over time.

Another relevant factor to consider is the assumptions

implicit in the chosen behaviour model. For instance, a DCE

models patients as myopic (making a single-timestep decision

without any consideration of future possible outcomes) (21).

IRL methods, as a form of agent-based modelling, relax this

restrictive assumption but come with their own assumptions.

For instance, the maximum entropy behaviour model we have

used here assumes that decision making agents care about the

trajectory-level feature moments, however other behaviour

models (such as ML-IRL (22) or S-GIRL (24) could also be

used, and would bring their own modelling limitations and/or

hyper-parameters as well.

It remains an important IRL research problem how to estimate

dynamics models in a data-driven fashion without requiring

subject matter expert input (23–27), as well as the development

of more rigorous statistical significance tests for learned reward

and policy parameters. This poses a significant challenge due to

the non-trivial mathematical operations required (and

assumptions entailed) in learning rewards and policies. Here, we
Frontiers in Digital Health 07
have used the bootstrap re-sampling method (14) to provide one

measure of uncertainty, however this method has known

limitations (13, 28).

Our experiments modelling patient preferences and

behaviors from real-world medical data highlighted how IRL

methods can provide similar insights alongside more

traditional health economic analyses. This work pushes

forward the theory and practice of IRL on multiple fronts. By

developing theory and algorithms for efficient and exact

learning of MaxEnt IRL reward parameters, by extending

these algorithms to multiple new problem classes, and by

demonstrating the techniques required to apply these methods

to real-world problems, we hope that we can inspire new

interest in the MaxEnt IRL model, and also in IRL more

generally as a methodology for understanding behaviour

within medical research.
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