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Admission prioritization of heart
failure patients with multiple
comorbidities
Rahul Awasthy*, Meetu Malhotra, Michael L. Seavers and
Mark Newman

Data Science, Harrisburg University of Science and Technology, Harrisburg, PA, United States
The primary objective of this study was to enhance the operational efficiency of
the current healthcare system by proposing a quicker and more effective
approach for healthcare providers to deliver services to individuals facing
acute heart failure (HF) and concurrent medical conditions. The aim was to
support healthcare staff in providing urgent services more efficiently by
developing an automated decision-support Patient Prioritization (PP) Tool that
utilizes a tailored machine learning (ML) model to prioritize HF patients with
chronic heart conditions and concurrent comorbidities during Urgent Care
Unit admission. The study applies key ML models to the PhysioNet dataset,
encompassing hospital admissions and mortality records of heart failure
patients at Zigong Fourth People’s Hospital in Sichuan, China, between 2016
and 2019. In addition, the model outcomes for the PhysioNet dataset are
compared with the Healthcare Cost and Utilization Project (HCUP) Maryland
(MD) State Inpatient Data (SID) for 2014, a secondary dataset containing heart
failure patients, to assess the generalizability of results across diverse
healthcare settings and patient demographics. The ML models in this project
demonstrate efficiencies surpassing 97.8% and specificities exceeding 95% in
identifying HF patients at a higher risk and ranking them based on their
mortality risk level. Utilizing this machine learning for the PP approach
underscores risk assessment, supporting healthcare professionals in managing
HF patients more effectively and allocating resources to those in immediate
need, whether in hospital or telehealth settings.
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1 Introduction

1.1 Background

With the increase in heart patients worldwide and the limitations of care resources, it

has become imperative to take advantage of the patient prioritization (PP) method,

especially if it is machine learning (ML)-driven [or artificial intelligence (AI)] under the

supervision of experienced healthcare staff (1). Prioritizing heart failure (HF) patients

based on their mortality risk at admission to an Urgent Care Unit helps allocate limited

and focused resources, such as beds, ambulances, specialist doctors and nurses, and

diagnostic machines, effectively to HF patients. This process leads to improved

precision care, reduced response times, and increased chances of survival and recovery

for HF patients.
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1.2 Importance

Patient classification and prioritization (triage) (2) are essential

for providing quick and timely care services to virtual and in-

facility patients with HF (3). PP entails arranging patient cases or

referrals in a specific sequence, considering various criteria aimed

at reducing patient wait times (4), enhancing healthcare

accessibility, and optimizing operational efficiencies. Prioritization

is a crucial competency for healthcare personnel because it

ensures that patients are addressed in an order that maximizes

overall patient wellbeing, safety, and health (5). Notably, most of

the current machine learning models (6) for automated patient

prioritization in HF do not incorporate factors (both medical

condition at hand and chances of mortality), such as

comorbidities, age, patient prognosis factors, diagnostic/clinical

outcomes, readmission history, or medication data, to assess the

criticality of patients’ healthcare needs effectively (7).

The critical point to understand here is that heart failure or

cardiovascular disease (CVD) [impaired myocardial perfusion (8)

and inflammation] is not an isolated condition and gets severely

impacted by key comorbidities (9), i.e., chronic kidney disease

(CKD), liver disease, renal failure, chronic respiratory conditions,

depression, cancers, and diabetes (10). Another critical data item

missed in the current automated PP model is the usage of the

correct set of medicines (11) that can reduce the impact of

mortality and readmissions for patients with HF (12) and improve

adherence to medication and self-care (13). This research builds

on the current gaps and challenges to generate an automated PP

model that provides a robust HF patient prioritization decision

tool for patients with acute heart failure and morbidities.
1.3 Goals of investigation

Patient classification and prioritization ML models work on a

three-tier architecture: tier 1, collecting patient data; tier 2,

patient data storage (cloud/on-premises) for running ML models;

and tier 3, healthcare applications for implementing ML

outcomes. This research focuses on tier 3 for creating AI/ML

models with the success criteria below.

First, generate the ranking (in order of their high- to low-risk

levels) of patients with HF based on the fundamental health

parameters using a machine learning (or AI) model (14). Second,

identify key health assessment parameters (15) for HF patients to

be assessed by healthcare staff at the time of hospital/care unit

admission. Finally, assess how HF patient ranking and key

parameter outcomes improve current gestalt predictions by

nurses or doctors, either in isolation or in conjunction with

clinical evaluation.
TABLE 1 Dependent variable—admission.

Variable Description Data type
Death within 6 months HF patient death within 6 months Binary

The table shows the dependent variable used in the Admission Prioritization model.
2 Materials and methods

This initiative is associated with generating machine learning

models to predict patient mortality (worsening of future health
Frontiers in Digital Health 02
conditions) based on HF patients’ health conditions, readmission,

medicinal usage, and other diagnostic/clinical factors captured

during hospital/care facility admission (16). Overall, the model

uses available information, such as patient prognosis factor

(physical), diagnosis and clinical conditions, medicine history,

comorbidity details, age sensitivity (17), and chances of

mortality, to generate an effective classification and prioritization

of patients for immediate care. The Institutional Review Board

(IRB) of Harrisburg University of Science and Technology

institution exempted the research from ethical review (Waived

Ethical Review number: IRB 20231029).
2.1 Dataset

The primary dataset, PhysioNet, aims to facilitate

epidemiological studies of heart failure and is vital in providing

optimal care to reduce patient populations and healthcare

system differences between China and other countries (18, 19).

The dataset includes 168 variables for 2,008 patients with heart

failure (at first-time care admission), and close to 43 variables

(refer to Tables 1, 2) were identified for research on patient

admission. Data on subsequent hospital admissions and

mortality were obtained at a mandatory follow-up visit at

28 days, 3 months, and 6 months. Medications administered

during hospitalization are recorded in this database. This

dataset’s primary drug categories were diuretics, inotropes,

and vasodilators. The diuretics drug included furosemide,

torsemide, and spironolactone. The inotrope drugs included

deslanoside, dobutamine, digoxin, isoprenaline, and milrinone.

The vasodilator drug included isosorbide mononitrate and

nitroglycerin (20).

The research further verified the results of patient prioritization

outcomes from the PhysioNet dataset with the secondary dataset

Healthcare Cost and Utilization Project (HCUP) Maryland (MD)

State Inpatient Data (SID) for 2014 with heart failure patients to

identify the applicability of results in more comprehensive

healthcare settings across geographies and different patient

settings (21, 22). This database contains close to 48,000 records

for HF patients admitted to MD state hospitals in 2014.
2.2 Patient prioritization architecture

This research generates a real-time patient monitoring and

prioritization model (refer to Figure 1) that obtains inputs on

multiple heterogeneous clinical and non-clinical parameters for

HF patients entered manually or pulled through wearable

devices/user interface software.
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TABLE 2 Independent variables—admission.

Variables Description Data type
Inpatient number Unique patient ID Continuous

Admission way Possible ways of admission are
emergency vs. non-emergency

Binary

Gender Gender: Male, Female Binary

Body temperature Body temperature in °C Continuous

Pulse Pulse rate (beats/min) Continuous

Respiration Respiratory rate (breaths/min) Continuous

Systolic blood pressure Systolic blood pressure (mmHg) Continuous

Diastolic blood pressure Diastolic blood pressure (mmHg) Continuous

Mitral valve (EMS) Maximum velocity of the mitral valve
E wave (m/s)

Continuous

Mitral valve (AMS) Maximum velocity of the mitral valve
A wave (m/s)

Continuous

BMI BMI (kg/m2) Continuous

Type of heart failure Type of heart failure (left, right, both) Binary

Congestive heart failure Congestive heart failure (number for
first-time HF patients)

Binary

Dementia Dementia indicator Binary

Chronic obstructive
disease

Chronic obstructive pulmonary disease Binary

Peptic ulcer disease Peptic ulcer disease Binary

Diabetes Diabetes Binary

Moderate to severe
chronic kidney disease

Moderate to severe chronic kidney
disease with glomerular filtration rate
<60 ml/min

Binary

Solid tumor A solid tumor Binary

Liver disease Liver disease Binary

AIDS AIDS Binary

CCI score Charlson comorbidity index score Continuous

LVEF Left ventricular ejection fraction Continuous

Consciousness Consciousness Binary

Eye-opening Eye-opening Continuous

Verbal response Verbal response Continuous

Movement Movement Continuous

Respiratory support Use of either invasive or non-invasive
mechanical ventilation

Binary

Oxygen inhalation Oxygen inhalation Binary

Acute renal failure The presence of acute kidney injury is
defined as an increase in serum
creatinine

Binary

Readmission within
28 days

Readmission within 28 days Binary

Readmission within
3 months

Readmission within 3 months Binary

Readmission within
6 months

Readmission within 6 months Binary

Oxygen saturation Oxygen saturation (%) Continuous

Age category The age is categorized into decades Continuous

Diuretics A diuretic is any substance that promotes
diuresis, increases the production of
urine, and reduces blood pressure

Binary

Inotropic Inotropic agents are a group of
medicines that affect the contraction of
the heart muscle

Binary

Vasodilators Vasodilators are medicines that dilate
(widen) blood vessels, allowing blood to
flow more easily through

Binary

The table shows the set of independent variables used in the Admission

Prioritization model.
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2.2.1 Identification of clinical and observational
parameters (tier 1)

The user interface can capture clinical, non-clinical,

biochemical, physical, and observational parameters for HF
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patients in hospital emergencies (23), ambulances, telehealth

devices, or health monitoring devices/transmitters. This data-

capturing process applies to HF patients [or severe CVD patients]

with pre-existing relationships with the healthcare system/hospital

chain or to newer patients who have an intervention with the

healthcare system to provide/insert patient data.
2.2.2 Identification of online data collection
systems (tier 2)

Online data collection includes systems that send clinical data

to server-side machines to run real-time ML models. These data

collection systems could be mobile phones, laptops, clinical

data collection machines, or any other method to put the

captured data for the HF patients into a data store, server, or cloud.
2.2.3 Generation of real-time machine learning
models (tier 3)

This research focuses on tier 3 to create a machine learning

model for HF patient classification and prioritization. Below are

the steps followed in this tier:

• Data imputation techniques: K-nearest neighbor (KNN)

imputation is an analytics technique used to replace missing

data with a substitute value to retain most of the data/

information of the dataset as KNN impute provides a more

robust and sensitive method for missing value estimation.

• Classification and prioritization: support vector machine (SVM),

logistic regression, decision tree, random forest, and linear

regression ML models are used to classify (risk buckets) and

prioritize (ranking high to low risk) the HF patients and the one

with the best outcome is selected (shortlisted) for the final version.

• Causal inference model: the causal inference mathematical

model (linear regression/Bayesian/binomial) is created in this

research to incorporate the idea of multiple causalities. This

work helps understand the impact of various admission-

related independent variables on HF patient mortality and

explains which independent variable impacts mortality more/

less than other variables.

• Ranking of critical HF patients: based on the ranking created for

the urgent (high-risk) and immediate care of HF patients in

Urgent Care Admissions, telemedicine (24), ambulance, or

any other option for care scenarios, healthcare services,

resources, doctors, nurses, and infrastructure can be assigned

to a patient with the immediate needs.

• Verification: in this step, the functioning of the HF patient

prioritization model generated with the PhysioNet dataset is

verified by running the models on the heart failure dataset

from patient admission/hospitalization for HCUP Maryland

state 2014 to check the uniformity of model results (25).

• Validation: based on the outcome of the predictive model,

regression coefficients/weights are identified for all the

independent variables. These weights or risk factors are

compared to past research work for the Canadian Triage

and Acuity Scale (CTAS) to verify how the current

model performs concerning the past patient prioritization

models (26, 27).
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FIGURE 1

Three-tiered prioritization approach for HF patients during the admissions process.
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3 Results

3.1 Baseline characteristics (data
imputation)

The KNN data imputation technique is applied to impute the

missing data for columns electrocardiogram (ECG)-EMS (E

wave), ECG-AMS (A wave), oxygen saturation, peptic ulcer,

CKD, left ventricular ejection fraction (LVEF), Charlson

comorbidity index (CCI) score, return to emergency department

(ED) (28), and liver disease. HF patient health data are divided

into five key segments [classification/prognosis parameters,

diagnostic parameters (clinical and non-clinical), patient’s

medical history, patient’s readmission data, and comorbidities] to

compare the data for patients who died within 6 months and

those alive after 6 months of hospital admission.
3.2 Exploratory data analysis (classification)

3.2.1 First bucket/classification
Patient classification/prognosis factors include the following:

the Glasgow Coma Scale/Score (GCS), which determines the

patient’s condition through verbal, eye-opening, and motor

response (movements) (refer to Supplementary Figure S1);

New York Heart Association (NYHA) classification, which

divides the stages of heart failure into four stages based on

physical symptoms (refer to Supplementary Figure S2); Killip

classification, which is based on physical examination to identify

the development of heart failure to predict (29) and stratify their

mortality risk (30) from class 1 to class IV from no congestion
Frontiers in Digital Health 04
stage to cardiogenic shock (31) (refer to Supplementary

Figure S3); and CCI, which generates a score by summing the

assigned weights of all comorbid conditions (refer to

Supplementary Figure S4). Patients with lower GCS averaging 12

died within 6 months compared to GCS of 15. Similarly, NYHA

grades 4 and 3 died more often than NYHA grades 1 and 2. In

addition, 27% of patients with a Killip grade of 4 died within

6 months. Patients who died had a higher average CCI score of

1.96 compared to 1.85 for those who lived after 6 months (refer

to Supplementary Table S1).
3.2.2 Second bucket/classification
The diagnostic and clinical data of HF patients include the

requirement for respiratory support, blood pressure of the

patient, mitral valve opening values [ECG related (32)], LVEF

[echocardiogram (ECHO) output], and body mass index (BMI).

Key observations are that 9% of patients requiring respiratory

support died within 6 months; patients with an average mitral

valve opening value of 0.93 died compared to those with a mitral

opening average near 4.2–4.4 (refer to Supplementary Table S2).
3.2.3 Third bucket/classification
The medicine history covers the intake of three critical

medicines: diuretics (water pills), inotropics (change heart

contractions), and vasodilators (dilate vessels). Only 2%–3% of

patients taking these medications died within 6 months of

admission (97%–98% lived for 6 months while consuming the

drug), showing medicine intake as a significant independent

variable (refer to Supplementary Table S3).
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3.2.4 Fourth bucket/classification
Hospital readmission data of patients identify that patients who

were readmitted 6 months after their first admission did not die

within 6 months and continued living (refer to Supplementary

Table S4).
3.2.5 Fifth bucket/classification
The patient’s comorbidity conditions include liver disease,

CKD, renal failure, diabetes, dementia, and chronic obstructive

pulmonary disease (COPD). Of the patients who had liver

disease, 11% died within 6 months, 29% of patients with renal

failure died within 6 months, 5% of patients with CKD died

within 6 months (approximately 24% of the total population had

CKD), and 3% of patients with diabetes died within 6 months

(23% of the total population had diabetes) (refer to

Supplementary Table S5).
3.3 Feature selection (classification and
prioritization)

The ultimate choice of input variables for machine learning

models, comprising 39 variables, is determined through the

utilization of the chi-square test for categorical variables,

the analysis of variance (ANOVA) test for numerical data, and

the consideration of correlation factors (see Supplementary

Figures S5–S7). In addition, prominent ML classification models

such as logistic regression, SVM, and random forest were applied

to the entire PhysioNet research database using the initial set of

39 variables (cross-validated with the HCUP dataset) for patients

with HF. The aim of this process was to identify and narrow

down to 25 variables that demonstrated enhanced model

efficiencies, improved cross-validation scores, sensitivity,

specificity, and area under the curve (AUC).
3.4 Machine learning analysis (classification
and prioritization)

The ML models used in this research belong to two key

categories: interpretable models, such as logistic regression,

decision tree, and linear regression (Bayesian); and opaque

models, such as SVM and random forest. Initially, all the ML

models were run on a complete set of 39 variables. However,

based on the outcome of crucial machine learning models,

exploratory analysis, and basic statistical techniques, critical
TABLE 3 Comparison table for machine learning models—admissions.

Model Model accuracy (%) Cross-validation (%)
Logistic 98.18 84.20

Support vector 98 83

Random forest 98.34 83.60

Decision tree 98.01 71

Bayesian regression 80–94 NA

The table compares the performances of ML models applied in the research.
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variables were shortlisted (close to 25) for HF patient

prioritization at admission.

The outcome of five key machine learning techniques with 25

variables (refer to Table 3) used in the research are below:

• Logistic: model accuracy of 98.18%, cross-validation of 84.2%,

and receiver operating characteristic (ROC) score of 68%

(refer to Figures 2, 3 and Supplementary Figures S9, S10).

The logistic model identifies the following key health

parameters to be relevant at admission for patients with HF:

classification/prognosis factor (Killip/CCI/GCS), comorbidity

(liver disease, CKD, etc.), medicine intake (inotropic, vasodilator,

and diuretics),. readmission (at 3/6 months), and diagnostic/

demographic/clinical (blood pressure, pulse, mitral valve/ECG,

and respiratory support).

• Support vector: model accuracy of 98%, cross-validation of 83%,

and ROC score of 50% (refer to Figure 4 and Supplementary

Figures S11, S12).

The SVMmodel identifies the following key health parameters to

be relevant at admission for patients with HF: classification factor

(Killip, GCS, and CCI), comorbidity (liver disease, CKD, COPD,

dementia, renal failure, and diabetes), medicine intake (inotropic),

readmission (return to ED and readmission at 3 months), and

diagnostic (mitral valve/ECG and respiratory support).

• Random forest: the random forest classifier (refer to

Supplementary Figures S13, S14) is a supervised learning

algorithm that can be used for regression and classification

problems. It shows model accuracy of 98.34%, cross-validation

score of 83.60%, and ROC score of 64.29%.

The random forest model identifies the following key health

parameters to be relevant at admission for patients with HF:

classification factor (consciousness, Killip, GCS, and CCI),

comorbidity (renal failure, CKD, liver disease), medicine intake

(vasodilators and inotropic), readmission (return to ED), and

diagnostic (blood pressure, pulse, mitral valve/ECG, LVEF/

ECHO, and respiratory support).

• Decision tree: model accuracy of 98.01%, cross-validation

score of 71%, and ROC score of 64.12% (refer to

Supplementary Figure S8).

The decision tree model identifies the following key health

parameters to be relevant at admission for patients with HF: HF

patient’s condition parameter (such as GCS and CCI), diagnostic

variables [myocardial infraction (33), pulse, body temperature, sex,

and age], and comorbidity data (Killip and non-cardiac variables).
ROC score (%) Sensitivity (%) Specificity (%)
68 27 99.70

50 16.20 99.70

64.29 29 99.80

64.12 29 99.80

NA NA NA
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FIGURE 2

A logistic regression model with shortlisted critical variables for HF patients.

Awasthy et al. 10.3389/fdgth.2024.1379336
The outcome of exploratory, statistical, and ML analyses shows

that the classification, diagnostic, medicine intake, readmission,

and comorbidity buckets encompass all the essential health

parameters of HF patients to apply emergency/urgent

interventions (refer to Supplementary Tables S6–S8).

• Linear regression (causal inference/binomial/Bayesian

regression): five buckets identified in the exploratory analysis

to ML modeling were used in Bayesian regression models

(descriptive analytics) to check the importance of HF patients’

admission parameters and found to be aligned with earlier

analysis. Model accuracy is in the range of 80%–94% (based

on the variables in classification buckets).

The following are the key health parameters found through the

Bayesian analysis/model: classification parameters (GCS, NYHA),

diagnostic variables (blood pressure and ECG), medicinal

(diuretics), readmission variables (admission within 3 months), and

comorbidity (liver disease, CKD) (refer to Supplementary Table S9).

Refer to Table 4 for comparing seven essential health

parameters for HF patients (shortlisted by ML models) and a

visualization of the feature importance of the different variables

in the various models.
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3.5 ACC vs. sensitivity vs. specificity

Below are the critical parameters of the three best ML models

per their outcomes (with 25 shortlisted variables). These ML

models identify the key health parameters to be considered by

health staff for HF patient admission and generate a ranking of

higher-risk patients with HF based on chances of mortality. Refer

to Table 3 above for ACC, Sensitivity and Specificity details.

Model accuracy (ACC): the significance of model accuracy lies

in its capacity to assess a model’s proficiency in processing,

comprehending, and predicting the outcomes of patients with

HF. Logistic: 98.18%; SVM: 98%; random forest: 98.34%; decision

tree: 97.84%.

Sensitivity: the sensitivity value assessed the ability of the ML

model to detect positive instances. This study’s sensitivity value

applies to identifying correct patients at higher risk of HF.

Logistic: 27%; SVM: 16.2%; random forest: 29%; decision tree: 29%.

Specificity: the specificity value assessed the ability of the ML

model to detect true negative instances. This study’s specificity

value applies to identifying HF patients who are not at high

risk. Logistic: 99.7%; SVM: 99.7%; random forest: 99.8%;

decision tree: 99.8%.
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FIGURE 3

AUC curve of a logistic regression model with shortlisted variables for HF patients.

Awasthy et al. 10.3389/fdgth.2024.1379336
The machine learning models used in this research are

calibrated to prioritize higher specificity, aiming to minimize

the risk of classifying heart failure (HF) patients with lower

risk as having a higher risk of HF mortality. This outcome

encourages a targeted approach toward identifying and

addressing the needs of HF patients at higher risk. Refer to

(34) with similar type work focussed on higher specificity and

moderate sensitivity accepted by The National Institute of

Health (USA).
3.6 Verification with HCUP data

Common variable types/buckets from the PhysioNet (Asian

dataset) HF dataset are found to be in sync with HCUP (US

dataset) data (refer to Table 5). The similarity of HF patients’

health variables (at admission) shows that the results from the

primary research study can be applied across geographies and

healthcare settings. The key parameter buckets found from the

exploratory, statistical (refer to Supplementary Figure S15), and

ML modeling (refer to Supplementary Figures S16–S18) of the

HCUP dataset are comorbidities (such as diabetes), diagnostic

(such as ECG), patient classification (such as CCI), medicine/

drug intake, and readmission to hospital (refer to Supplementary

Table S10).
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3.7 Ranking of HF patients

Higher-risk patients were ranked using logistic regression,

SVM, and random forest models. Functions named Predict Proba

and Log Loss score were used to find the probability of HF

patients dead within 6 months, and based on the chances of HF

patients dying, the ranking of HF patients was generated with

high-risk patients on the top and medium- to lower-risk patients

at the bottom.

These rankings were based on the inpatient number (patient

ID), a unique value for the HF patient. Refer to Table 6 for the

top five ranking of HF patients using logistic regression. These

ranked patients were categorized into three categories of

importance: first, with <50% probability of mortality; second,

with 50%–75% probability of mortality; and last, with 75%–100%

probability of mortality. Healthcare organizations can use these

categories to provide the required resources, focus, and actions

for patients with higher chances of mortality.
3.8 Validation with CTAS triage model

The final step to add more credibility to research outcomes is to

validate the results of PhysioNet data with the CTAS triage model.

The first key CTAS triage variable takes a critical look at HF
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TABLE 4 Comparison table for key health parameters for patients with heart failure—admissions.

Model Feature 1 Feature 2 Feature 3 Feature 4 Feature 5 Feature 6 Feature 7
Logistic Killip grade Return to emergency Readmission CKD Liver disease Type of HF GCS

Support vector GCS Return to emergency Respiration support Readmission AIDS Liver disease CKD

Random forest GCS Killip grade BP Pulse Oxygen saturation CCI LVEF

Decision tree GCS Pulse BP CCI LVEF Gender Killip grade

Bayesian regression Return to emergency Diuretics intake Readmission Liver Disease CKD Vasodilator intake COPD

The table shows the seven key features identified by the ML models applied in the research.

FIGURE 4

SVM model with shortlisted critical variables for HF patients.

Awasthy et al. 10.3389/fdgth.2024.1379336
patients to check airways, breathing, circulation, and disability,

which connects with demographic variables for current research.

The second CTAS variable is a subjective assessment carried out

by speaking with the patient, which connects to this research’s

prognosis, comorbidity, and medicine intake parameters. The

third CTAS variable identifies key patient complaints, connected

to checking clinical variables for this research. The fourth CTAS

variable, objective assessment, connects to the HF patient’s

diagnostic and readmission history variables.
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4 Discussion

Current automated machine learning models for patient

prioritization/triage (35) are ineffective enough for the correct

selection/classification of HF patients as they miss comorbidity,

age, prior patient admission details, and CCI. Implementing

automated HF patient prioritization models along with

CVD will improve healthcare processes and reduce the cost

burden on healthcare.
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TABLE 5 Comparison table of key variables PhysioNet vs. HCUP datasets—
admissions.

PhysioNet dataset HCUP data (Maryland State,
USA)

Demographic variables (BMI, age,
gender)

Demographic (obesity)

Clinical (respiratory support, BP, pulse) Clinical (therapies, respiration/physical)

Comorbidities(liver disease, CKD, renal
failure, diabetes, dementia, COPD,
CHF)

Comorbidities, such as diabetes, tumor/
cancer, and depression (close to
dementia)

Classification factors (GCS, NYHA,
Killip, CCI)

Patient classification variables (chronic
illness, CCI)

Diagnostic (LVEF, mitral valve/ECG) Diagnostic variables, such as ECG/EEG

Medicine intake (diuretics, inotropics,
vasodilators)

Medicine/drug intake

Readmission details (time of
readmission, emergency readmissions)

Readmission to hospital

CHF, congestive heart failure; EEG, electroencephalogram.

The table compares variables generated by ML models PhysioNet and HCUP.

TABLE 6 Ranking of patients with heart failure—admissions.

Patient record Patient ID Chances of mortality
35 766383 74.06%

450 821102 68.42%

651 823579 67.59%

1,186 797195 63.66%

1,204 729580 62.94%

The table shows the ranking of high-risk HF patients generated by Logistic

Regression model.
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Prioritization offers healthcare services to the right set of

patients in a timely and effective manner, creates a fairness

mechanism, and decreases urgent waiting times. It also reduces

the unbalanced effects of the differences between patient areas

(hospital, ED, or telehealth patients) because it efficiently assigns

available resources within each region (36). Automated ML

models with patient prioritization logic are excellent decision-

support tools and can work for HF patients in emergency

settings (37), hospitalization, and remote patient prioritization

(38, 39). For HF patients, once hospitalized, comorbidities may

not receive the same attention as the primary admitting

diagnosis. Currently, most patient prioritization models and

wellness strategies for CVD or heart failure patients are based on

heart problems as the primary condition, leading to limited and

biased outcomes (40).

PP research aims to identify patients with a higher risk of HF

during hospital admissions [using the decision-support Patient

Prioritization Tool (PPT) tool for health staff]. The high-level

research objective includes ranking high- to low-risk patients and

understanding the parameters to be checked for HF patients

during admissions using exploratory/confirmatory, ML modeling,

descriptive analytics, and causal analysis. This research work has

brought three critical improvements mentioned below:

1. First improvement: current models used for prioritization

during patient admission contain fewer input variables for HF

patients. There have been several patient prioritization (triage)

models [such as Sakanushi et al. (41), Salman et al. (42, 43),
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Mohammed et al. (39), Kalid et al. (36), and CTAS (44)]

proposed for risk stratification, ranging from schemes based on a

few assessments (such as systolic blood pressure and oxygen

saturation on admission, blood pressure, and age) to complex

models involving multiple factors, such as the development of

heart failure, including high blood pressure, hyperlipidemia (high

levels of fat in the blood), atherosclerosis, diabetes, obesity,

physical inactivity, kidney disease, excessive alcohol intake, and

smoking. However, none of these is sufficiently well developed

for widespread adoption, mainly because of the variation in

presentation and underlying causes limited to acute heart failure

(45). This research works on the limitation of earlier studies by

increasing the number of critical variables that can be controlled

by the healthcare staff while prioritizing patients with HF during

hospital admissions.

2. Second improvement: one of the key achievements of this

research is the ability to be applied and used in various simple to

complex healthcare systems. Across the world, patients with HF

receive different services based on the availability of multiple

diagnostic tools, machines, hospitals, health facilities, and

knowledge of healthcare staff to care for HF patients at

admission. Five key buckets (key HF patient variables) identified

in this research using two datasets (PhysioNet and HCUP)

would provide health staff with a broad set of variables that can

be very easy to apply based on the type of healthcare system and

geography (villages, small towns, or big cities).

3. Third improvement: the research results went through

multiple checks and balances. The six-step process uses

exploratory analyses, statistical techniques, ML modeling,

Bayesian regression modeling, result validation with the US

healthcare system (48,000 records), and cross-checking the results

with the CTAS patient prioritization model. These six-step

processes were not rigorously followed in any of the past

research for HF patients, making the outcome of this research

more effective to apply in various healthcare systems and

geographies worldwide.
4.1 Limitations

The present study has some limitations. The first is that some

of the data variables for the PhysioNet dataset were unavailable,

which posed the limitation of getting similar types of data after

applying the imputation techniques. The second limitation is

specific to patients who can be recognized as HF cases at the

time of admission. If health staff cannot identify the HF cases,

there may be an overlap between heart failure, heart attack, and

other heart problems. The third limitation is that the highest risk

does not equal the highest benefit during intervention. In several

cases, intervention can result in higher benefits in a lower-risk

environment, while some patients with very high mortality risk

can resist any intervention. The fourth limitation of this study is

that the research data reflect the diagnosis of suspected HF

patients with high specificity but underestimate the disease

burden. The final limitation is applying HF patient prioritization

ranking during admission at urgent care units, as there would be
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a need to apply prioritization for non-HF patients separately to

deliver a complete triage process (46) for urgent patients. In

summary, the outcome generated from this research can be

leveraged for futuristic healthcare areas beyond health operations

applied by AI-based prioritizing and ranking critical HF patients

for triage (47) and emergency treatments (46). These areas could

be virtual patient care, centralized patient admissions for

multiple hospitals, centralized wellness engagements using

healthcare providers, population health management, and patient

self-management of care.
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