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Introduction: Machine learning (ML) algorithms have been heralded as promising
solutions to the realization of assistive systems in digital healthcare, due to their
ability to detect fine-grain patterns that are not easily perceived by humans. Yet,
ML algorithms have also been critiqued for treating individuals differently based
on their demography, thus propagating existing disparities. This paper explores
gender and race bias in speech-based ML algorithms that detect behavioral and
mental health outcomes.
Methods: This paper examines potential sources of bias in the data used to train
the ML, encompassing acoustic features extracted from speech signals and
associated labels, as well as in the ML decisions. The paper further examines
approaches to reduce existing bias via using the features that are the least
informative of one’s demographic information as the ML input, and
transforming the feature space in an adversarial manner to diminish the
evidence of the demographic information while retaining information about
the focal behavioral and mental health state.
Results: Results are presented in two domains, the first pertaining to gender and
race bias when estimating levels of anxiety, and the second pertaining to gender
bias in detecting depression. Findings indicate the presence of statistically
significant differences in both acoustic features and labels among demographic
groups, as well as differential ML performance among groups. The statistically
significant differences present in the label space are partially preserved in the
ML decisions. Although variations in ML performance across demographic
groups were noted, results are mixed regarding the models’ ability to accurately
estimate healthcare outcomes for the sensitive groups.
Discussion: These findings underscore the necessity for careful and thoughtful
design in developing ML models that are capable of maintaining crucial
aspects of the data and perform effectively across all populations in digital
healthcare applications.
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1 Introduction

In recent years, the field of digital healthcare has witnessed remarkable advancements,

driven by the prolific collection of vast and diverse datasets and the application of cutting-

edge machine learning (ML) algorithms (1). These advancements offer the promise of

achieving improved healthcare outcomes through detailed data analysis and the

generation of novel insights. However, within this landscape of opportunity lies a

pressing concern related to the potential bias inherent in the data and the fairness of

the algorithms employed. Data collected for digital healthcare applications often suffer

from non-representativeness, which can lead to skewed and biased decision-making
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processes (2). Furthermore, machine learning algorithms, if not

carefully designed and monitored, have the propensity to

perpetuate existing biases present in the data, thereby

exacerbating existing disparities in healthcare (3, 4). Given these

inherent risks associated with ML in digital healthcare, recent

administrative and regulatory efforts, including the European

Union’s (EU) AI Act (AIA) (5) and the “Blueprint for an AI Bill

of Rights” by the U.S. White House (6), have taken the initiative

to lay out core principles that should guide the design, use, and

deployment of AI to ensure an inclusive progress that does not

come at the expense of traditionally underserved groups.

Speech-based ML technologies have observed an increased

focus by digital healthcare due to the fact that speech can be

unobtrusively collected via smartphones and wearable devices on

a continuous basis, and carries valuable information about the

human behavior and mental state. Speech is a result of the

complex interplay between cognitive planning and articulation

(7). The cognitive component of speech production involves

cognitive planning via the formation of the message that a

speaker intents to communicate. The motor component of

speech production, also referred to as “articulation,” relies on the

coordination of the lungs, glottis (i.e., including the vocal cords),

and vocal tract (i.e., mouth, nasal cavity) (8). Both the motor

and cognitive components of speech can be affected by the

speaker’s traits and states, the first reflecting one’s permanent

characteristics (e.g., race/ethnicity, gender) and the latter varying

over time (e.g., emotion, stress, health condition) (9). Due to this

richness of information, acoustic measures derived from speech,

such as prosody or spectrotemporal characteristics, can reflect

information that is critical for mental healthcare applications

(e.g., stress, emotion, depression), while at the same time they

can be confounded by demographic factors. The effect of state

and trait characteristics on acoustic measures has been explored

for each variable of interest separately. For example, previous

studies support that acoustic measures vary between female and

male speakers (10), and demonstrate the dependence of acoustic

measures on race and ethnicity (11–13). At the same time, the

effect of behavioral and mental health states on acoustic

measures has been investigated in prior work in affective

computing (14). Yet, limited work has examined whether ML

systems for state recognition based on speech can yield

differential results among demographic groups (15, 16).

Here, we examine demographic bias in speech-based ML

systems that detect outcomes relevant to digital healthcare. We

investigate potential differences in acoustic measures and labels

between groups defined via gender, race/ethnicity, and their

intersection. We further investigate the extent to which ML

systems trained on these acoustic measures can preserve

significant differences among groups in terms of labels (when

applicable), and whether they depict differential performance

among the considered groups. Finally, we study de-biasing

methods that rely on removing features indicative of demography

from the feature space, and transforming the feature space via

adversarial learning to reduce evidence of the demographic

information while preserving information about the focal

behavioral and mental health state. We present our analysis via
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two case studies; Study 1 focuses on estimating anxiety levels and

Study 2 on detecting depression from acoustic measures. Results

indicate a significant dependence of the considered acoustic

measures on gender and race/ethnicity. Despite the significant

difference among groups in terms of the considered anxiety and

depression labels, the ML systems were partially able to preserve

those differences. Finally, we observe differences in ML

performance among groups, which are partially mitigated via the

de-biasing methods. Implications of these are discussed in the

context of accelerating equitable ML decision-support algorithms

for digital healthcare.

The contributions of this paper, in comparison to previous

research, can be summarized as follows: (1) Prior studies (10–12)

have explored demographic differences in acoustic features

independently of ML algorithms. However, in Studies 1 and 2,

we delve into the examination of acoustic feature differences

among demographic groups as a potential source of algorithmic

bias in speech-based ML decision-making; (2) Diverging from

earlier research that primarily focused on disparities in ML

performance among different groups (17–20), Studies 1 and 2

underscore the significance of preserving potentially meaningful

distinctions among populations. Our findings reveal that, despite

meaningful observed differences among groups in terms of

anxiety and depression labels, these differences are not

maintained in the ML decisions; and (3) There has been limited

exploration of the effectiveness of de-biasing methods in the

domain of behavior and mental health analytics (16). Hence,

Study 2 contributes to expanding our understanding on how

these methods perform when applied to speech analytics.

The remainder of this paper is structured as follows. Section 2.

discusses the relationship between speech on demographic factors,

the impact of anxiety and depression on acoustic features, and

reviews prior work on algorithmic bias in healthcare and other

high-risk applications. Section 3. presents Study 1 focusing on

the examination of algorithmic bias when estimating anxiety

levels using acoustic measures. Section 4. delves into Study 2,

which explores the analysis and mitigation of algorithmic bias for

depression detection. Section 5. provides an overview of the

findings from both studies and discusses those findings in

relation to prior work, delineating implications of these findings

for fostering equitable digital healthcare. Finally, Section 6.

summarizes the conclusions drawn from this work.
2 Prior work

2.1 The dependence of speech on
demography

Differences in anatomical structure between male and female

speakers, such as vocal fold size and vocal tract length, have been

widely investigated (21) and serve as a main contributing factor

to the observed significant differences between the two in terms

of acoustic measures, such as fundamental frequency (F0) and

formant frequencies (22). Beyond the differences in anatomy,

behavioral factors might further result in acoustic differences
frontiersin.org

https://doi.org/10.3389/fdgth.2024.1351637
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


Yang et al. 10.3389/fdgth.2024.1351637
between female and male speakers. For example, Sachs et al. found

that in an effort to comfort with stereotypes, male speakers will

sometimes speak with unnaturally low F0 and female speakers

with an unnaturally high F0 (10). Other work has examined

potential differences of acoustic measures based on race and

ethnicity with somewhat conflicting results. Xue & Hao found

differences in vocal tract diameters among White American,

African American, and Chinese male and female speakers, which

could serve as a factor of variation in acoustic measures (23).

Lass et al. demonstrated that naive listeners can distinguish

between 10 African American and 10 White speakers, balanced

in terms of gender, with approximately 75% accuracy when

listening to full sentences (24). Perceptual differences in speech

between African American and White speakers have been

observed (25), a finding with important social implications such

as racial or ethnic profiling (26). In terms of acoustic analysis,

Sapienza analyzed F0 values of 20 African American and 20

White adult speakers (balanced for gender) and did not find any

significant differences between the two (13). Li et al.

demonstrated no difference between African American and

White men in F0 mean and range, but African American women

produced consistently lower mean F0 than White women (12).

Hispanic female speakers further showed the highest values of

jitter in a sustained vowel task (27). Cantor-Cutiva et al.

examined differences in vocal measures between English speakers

and bilingual English-Spanish speakers (11). Results indicate that

monolingual speakers depicted higher F0 mode compared to

bilingual English-Spanish speakers. Bilingual male speakers had

higher jitter than monolingual speakers, while bilingual female

speakers had lower jitter and shimmer than monolingual speakers.
2.2 The impact of anxiety on speech

Evidence from prior work indicates that the sympathetic

activation caused by high state anxiety can produce an increase in

lung pressure, subglottal pressure, irregular palpitation of the vocal

folds, and vocal tremor, that can cause voicing irregularities and

discontinuities in frequency contours (28). These can be quantified

via changes in acoustic measures, such as F0, jitter, shimmer, and

vocal intensity (29, 30). For instance, Van Lierde et al. examined

the voice of female speakers in a stress-inducing task (i.e., reading

a passage before an audience of 70 people) and found that it was

more breathy and strained (31). Özeven et al. found an increase in

F0 and marginal increase in jitter when participants suffering from

social anxiety were asked to read the Beck Anxiety Inventory (32).

In a similar context, Weeks et al. demonstrated that male patients

suffering from social anxiety disorder depict increased F0 during a

speaking task compared to participants of the non-socially anxious

control group (30). Prior work indicates that jitter and shimmer

are associated with increased emotional arousal (33, 34). Review

studies further support an increase in F0 during stressful tasks, but

these trends are not universal (29). For example, Van Lierde et al.

observed lower objective vocal quality in female speakers during

the stress inducing task, characterized by lower F0, lower

frequency, and intensity. Kappen et al. examined the associations
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between negative affect elicited from a stress inducing task and

acoustic measures of F0, ratio of the energy of the first formant

(F1) to the energy of the second formant (F2), and harmonics-to-

noise ratio (HNR) (35). Results via a network analysis indicated

that jitter was the only speech parameter that was directly

connected to change in negative affect with a positive association

between the two. Finally, Jiang et al. demonstrated that speakers

perceived to be confident speak with higher voice intensity

compared to the non-confident ones (36).
2.3 The impact of depression on speech

Mental health disorders, such as depression, can produce

noticeable changes in speech patterns and yield prosodic

abnormalities (see (37) for a review). Findings from prior work

suggest that patients with depression are characterized by decreased

speech loudness, slowed speech rate, and monotonous pitch (38).

Prosodic timing measures, such as pause time, speech pause ratio,

and speaking rate have been found important indicators of

depression (39). Glottal measures that capture the association

between volume and velocity in the airflow have been further

successfully used for classifying between healthy participants and

participants with depression (40). Other work has further examined

features that reflect changes in the coordination of the vocal tract

motion across different time scales and formant frequencies (41).

Beyond feature analysis, prior studies have combined the prosody,

source features, formants, and spectral features with ML models for

automatically identifying depression (40, 42–44).
2.4 Bias in human-centered machine
learning

Recently there has been an upsurge of attention on identifying

and correcting algorithmic bias. Early efforts focused on generic

tasks of image processing (45, 46), natural language processing (47),

and speech recognition (48, 49). Emerging work has started to

discuss algorithmic bias in specific domains, such as healthcare (50).

In healthcare, Obermeyer et al. investigated sources of racial bias

in commercially available ML algorithms that are used to

recommend preventive care to patients based on their health

biomarkers (e.g., cholesterol, hypertension, diabetes severity) (17).

Results indicate that when these algorithms were trained based on

healthcare costs as an outcome, they predicted significantly higher

risk scores for White patients compared to African American

patients, thus rendering White patients significantly higher chance

of getting recommended for preventive care. This bias was

mitigated when the number of active chronic conditions was used

as the outcome. Raza predicted re-hospitalization likelihood of

patients with diabetes based on their medical records, medication,

and biomarkers (19) and used various de-biasing techniques, such

as re-weighting the samples from the sensitive groups during

training (51), applying adversarial learning for reducing the

evidence of sensitive attributes in the data (52), and transforming

features to improve group fairness, as well as both individual and
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https://doi.org/10.3389/fdgth.2024.1351637
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


TABLE 1 Number of speakers per demographic group.

African American Hispanic White American Total
Female 3 2 9 14

Male 3 7 6 16

Total 6 9 15 30

Yang et al. 10.3389/fdgth.2024.1351637
group fairness (53). Results indicate that sample re-weighting yields

classification accuracy similar to the original ML model, while also

improving upon the disparate impact metric compared to all the

considered algorithms (53). Park et al. used ML to predict

postpartum depression (PDD) based on demographics, pregnancy

outcomes, psychiatric comorbidities, medication use, and

healthcare utilization (18). Results on approximately 300,000

White and 200,000 African American participants with matching

age and insurance enrollment indicated that the first group was

twice as likely to be evaluated for and diagnosed with PPD. The

authors attempted to remove bias via re-weighting the samples

between the two groups and regularizing the dependency between

race and PDD outcome during training. Both methods yielded

improved disparate impact compared to the original ML

algorithm, even when removing race from the input. The re-

weighting method further yielded equivalent positive PDD rates

between groups. Zanna et al. explored demographic bias in anxiety

prediction using 10-week long electrocardiogram (ECG) data from

200 hospital workers (20). Algorithmic bias was found in terms of

age, income, ethnicity, and whether a participant was born in the

U.S. or not. The authors further proposed a multitask learning

approach to predict anxiety and one of the demographic labels.

They introduced a Bayesian approach that chose the trained

model whose weights depicted the highest uncertainty about the

sensitive demographic label, thus, yielding low predictive power of

that outcome and reduced demographic bias.
3 Study 1: bias related to gender and
race/ethnicity when estimating anxiety
levels from speech

The goal of this case study is to identify demographic bias in

terms of gender, race/ethnicity, and their intersection when using

acoustic measures to estimate anxiety. We explore different

sources of bias that can potentially be present in different stages

from the data origins to the model outcomes. In order to reduce

the complexity in the learning stage, we explore a simple ML

model, namely a linear regression model that estimates public

speaking outcomes based on acoustic measures, which allowed us

to constrain the effect of confounding factors related to ML

training (e.g., hyper-parameter tuning).
TABLE 2 Number of audio samples per demographic group.

African American Hispanic White American Total
Female 21 11 75 107

Male 30 47 45 122

Total 51 58 120 229
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3.1 Data description

The data for this case study come from the VerBIo dataset, a

multimodal bio-behavioral dataset of individuals’ affective and

stressor responses in real-life and virtual public speaking settings

(54). The VerBIO dataset contains data from both Native and

non-Native English speakers. Due to the inherent differences in

accent between the two groups that can bias the acoustic

descriptors and introduce significant confounding factors in the

analysis, the data for this case study include the 30 Native

English speakers (14 female, 16 male). The decomposition of the

considered participants in terms of gender, race, and ethnicity is

shown in Table 1. While the distribution of participants is well-

balanced in terms of gender, our data has a larger number of

White Americans compared to African Americans and

participants of Hispanic origin. Since each speaker conducted

more than one public speaking sessions, the total number of

audio files per group is reported in Table 2.
3.2 Methods

The considered outcome in our analysis is the self-reported

anxiety that was captured via the State-Anxiety and Enthusiasm

(SAE) scale. The input features of the model include the F0 on a

semitone frequency scale, loudness, jitter, and shimmer, since

these are commonly used indicators of state anxiety and fear of

the public speaking encounter (54–56). Choosing a small number

of indicative and interpretable features allows us to focus the

analysis on the factors that have the most significant impact on

the problem at hand, in this case, the effect of anxiety on

acoustic features. Voice activity detection was conducted before

extracting the acoustic measures. Acoustic measures were

extracted using the openSMILE toolkit within each utterance.

The average measure over all utterances of an audio file was

subsequently considered in the analysis.

First, we explore bias in the input data. We report the mean

and standard deviation of the acoustic features and the anxiety

outcome per demographic group. Due to the physiological

differences between female and male voices (57), the two groups

are considered separately within each race/ethnicity when

examining the acoustic features. In order to determine the extent

to which the considered groups are different in terms of input

and output data, we conduct a two-way analysis of variance

(ANOVA) with gender and race/ethnicity as independent

variables. The dependent variables in the ANOVA include the

acoustic measures and the self-reported anxiety outcome.

Following that, we conduct a post-hoc analysis with t-tests to

identify significant differences between specific pairs of groups.

Second, we explore bias in the outcome of the ML model. We

train a linear regression model that estimates the anxiety outcome

based on the four acoustic measures. We opted for this shallow

model because of its low data requirements and since similar

models are widely used in healthcare and edge computing

applications (18, 19). We obtained similar results using decision
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TABLE 3 Mean and standard deviation of acoustic features per demographic group.

Group F0 Loudness Jitter Shimmer
African American female 34.968 ± 1.636 0.645 ± 0.293 1.094 ± 0.137 0.025 ± 0.005

Hispanic female 35.800 ± 1.307 0.335 ± 0.066 1.104 ± 0.106 0.025 ± 0.004

White female 36.603 ± 1.837 0.766 ± 0.283 1.080 ± 0.115 0.022 ± 0.004

African American male 23.776 ± 2.339 0.689 ± 0.289 1.317 ± 0.141 0.024 ± 0.004

Hispanic male 26.771 ± 3.217 0.689 ± 0.240 1.242 ± 0.138 0.022 ± 0.005

White male 26.188 ± 1.757 0.726 ± 0.248 1.178 ± 0.128 0.020 ± 0.002

Yang et al. 10.3389/fdgth.2024.1351637
tree regression and random forest regression, thus, we will focus on

the linear regression in the rest of the paper. A leave-one-speaker-

out cross-validation is conducted, according to which samples

from each speaker serve as the test data in each fold and the rest of

the speakers are included in the training data. This process is

repeated as many times as the total number of speakers. The

estimated anxiety outcome from each fold is collected and used in

the subsequent analysis. We report the mean and standard

deviation of the anxiety outcome that was estimated by the linear

regression model. We further conduct a similar statistical analysis

that includes a two-way ANOVA and post-hoc tests, with the

anxiety outcome serving as the dependent variables, and

gender and race/ethnicity as the independent variables. We

computed the absolute relative error (RE) between self-reported

anxiety and anxiety estimated by the ML model, as a measure of

the overall performance of the ML system. In addition, we

computed the equality of opportunity (EO) between each of

the sensitive and the corresponding non-sensitive groups as

EO ¼ 1� kRE(sensitive)� RE(non� sensitive)k. Values of EO

close to 1 indicate that outcomes for the sensitive and non-sensitive

groups are estimated with similar accuracy. When examining the

intersection between race and gender, we considered the White

female or White male speakers as the non-sensitive group and the

other groups as the sensitive group. When looking at gender alone,

we considered the male speakers as the non-sensitive group and

compared them with the female speakers. When looking at race

along, we considered the White speakers as the non-sensitive

group and the African American and Hispanic speakers as the

sensitive group.
3.3 Results

The statistics of each feature per demographic group are provided

in Table 3, and the statistics of the actual and estimated anxiety per
TABLE 4 Mean and standard deviation of anxiety labels and predictions
per demographic group.

Group Actual Estimated
African American female 41.62 + 6.95 50.06 + 2.66

Hispanic female 54.73 + 6.54 51.78 + 1.98

White female 49.75 + 9.98 49.96 + 2.56

African American male 44.33 + 9.28 51.25 + 2.82

Hispanic male 56.77 + 7.79 51.77 + 2.19

White male 51.84 + 6.39 51.89 + 2.69
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demographic group are in Table 4. Results from the ANOVA and

post-hoc analysis are presented in Tables 5, 6, respectively.

Results indicate significant differences with respect to F0, jitter,

and shimmer for gender, race/ethnicity, and their interaction

(Tables 5). Based on the post-hoc analysis (Table 6), loudness

depicts significant differences for race/ethnicity, but not for

gender. White female speakers depicted significantly higher F0

compared to African American female speakers. Similarly, White

male speakers depicted a significantly higher F0 compared to

African American speakers. The loudness exhibited by white

female speakers was significantly higher than that observed in

Hispanic female speakers. Moreover, white female speakers also

demonstrated higher loudness levels in comparison to African

American female speakers, although this difference was not

statistically significant (p ¼ 0:09). Hispanic and African

American female speakers displayed significantly higher values of

jitter compared to White female speakers. Hispanic and African

American male speakers exhibited significantly higher values of

jitter and shimmer compared to White male speakers.

The ANOVA revealed the presence of significant differences

concerning gender, race/ethnicity, and their interaction in

relation to self-reported anxiety (Table 5). Subsequent post-hoc

analyses (Table 6) indicated that Hispanic female speakers

reported the highest levels of anxiety, although the difference in

this measure between Hispanic female speakers and White

female speakers was not statistically significant (p ¼ 0:11).

Conversely, African American female speakers reported the

lowest levels of anxiety, a difference that achieved statistical

significance when contrasted with White female speakers.

Additionally, African American male speakers reported

significantly lower anxiety levels compared to their White male

counterparts. In parallel, Hispanic male speakers reported the

highest levels of anxiety, a difference that was statistically

significant when compared to White male speakers.

Results finally indicate that the anxiety estimates provided by

the ML model do not necessarily follow the patterns of the

actual values (Table 4). For example, Hispanic speakers depicted

the highest levels of state anxiety, but this ordering is not

reflected in the ML estimates (Table 4). The significant

differences among groups with respect to self-reports are further

not maintained in the estimated anxiety values (Tables 5, 6).

This might suggest that the ML system is not able to maintain

potentially meaningful differences between demographic groups.

Regarding variations in ML performance across demographic

groups (Table 7), the ML system exhibits the greatest level of

error, RE, in anxiety estimation when analyzing African
frontiersin.org
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TABLE 5 2 × 3 Analysis of variance (ANOVA) analysis examining significant differences among demographic groups.

Measure Race/ethnicity Gender Interaction
F0 F(2, 223) = 19.96, p , 0:01 F(1, 223) = 1083.710, p , 0:01 F(2, 223) = 2.496, p , 0:01

Loudness F(2, 223) = 6.055, p , 0:01 F(1, 223) = 1.948, p ¼ 0:16 F(2, 223) = 7.592, p , 0:01

Shimmer F(2, 223) = 15.024, p , 0:01 F(1, 223) = 5.868, p , 0:01 F(2, 223) = 0.523, p , 0:01

Jitter F(2.0, 223) = 6.800, p , 0:01 F(1.0, 223) = 56.210, p , 0:01 F(2, 223) = 4.120, p , 0:01

Self-reported anxiety F(2, 223) = 30.673, p , 0:01 F(1.0, 223) = 3.489, p , 0:01 F(2, 223) = 0.026, p , 0:01

Estimated anxiety F(2, 223) = 1.076, p ¼ 0:34 F(1.0, 223) = 14.928, p , 0:01 F(2, 223) = 2.040, p ¼ 0:13

Yang et al. 10.3389/fdgth.2024.1351637
American female speakers, African American male speakers, and

their combination, in comparison to their respective

demographic counterparts. Consequently, the EO is lower for the

African American group, indicating the ML system does not

estimate the anxiety labels equally well for the African American

group compared to the White American group. When

segregating by gender alone, the ML system yields higher RE in

anxiety estimation and lower EO for female speakers when

contrasted with male speakers.
4 Case study 2: gender bias in
detecting depression

The goal of Case Study 2 is to explore gender bias in a speech-

based ML algorithm used to detect depression. We explore

potential gender bias using a set of acoustic features that

represent time-based, frequency-based, and spectral balance

parameters of speech that are commonly used for mental health

tasks. We further investigate the effect of feature selection and

transformation algorithms in reducing evidence of bias in the

decisions of the ML models and their performance based on the

aforementioned features. Finally, we investigate differences

between depression labels and depression outputs estimated by

the ML models for female and male speakers, in an attempt to

understand to what extent the estimated rates of depression are

different compared to the actual rates of depression for each group.
4.1 Data description

The data for this case study came from the Distress Analysis

Interview Corpus Wizard of Oz (DAIC-WoZ) dataset, which

consists of audio interviews from 107 participants (63 males and

44 females) (58). A participant was assigned to the depression

class if their score in the Patient Health Questionnaire (PHQ-8)
TABLE 6 Post-Hoc analysis examining significant pairwise differences betwee

Measure AF-WF HF-WF
F0 t(94) = 3.69, p ¼ 0:00 t(84) = 1.40, p ¼
Loudness t(94) = 1.72, p ¼ 0:09 t(84) = 5.00, p ¼
Jitter t(94) = �0.46, p ¼ 0:64 t(84) = �0.65, p

Shimmer t(94) = �3.25, p ¼ 0:00 t(84) = �2.41, p

Self-reported anxiety t(94) = 3.50, p ¼ 0:00 t(84) = �1.60, p

Estimated anxiety t(94) = �0.15, p ¼ 0:88 t(84) = �2.26, p

AF, African American female; HF, Hispanic female; WF, White female; AM, African Ame
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was greater than 9; otherwise they were assigned to the healthy

class. Thirty one participants were classified as having depression

(14 males and 17 females), and the remaining as healthy. Each

audio was split into individual utterances based on the

transcripts, resulting in 16,906 utterances from all participants.
4.2 Methods

Acoustic measures were extracted at the utterance-level and

included the 88 features of the extended Geneva Minimalistic

Acoustic Parameter Set (eGeMAPS) that include parameters

related to frequency, energy/amplitude, spectral balance, and

timing (59). Our analysis focused on classifying between

depression and no depression. Due to the binary nature of this

classification task, prior work on the same task has achieved

good performance with accuracies of around 70%–80% (60). In

contrast, the automatic estimation of the degree of depression

severity is a more challenging task with prior work indicating a

root mean square error of 5–7 and the PHQ-8 scale ranging

between 0–27 (61). Considering that the study of algorithmic

bias for automatically detecting depression from speech is at its

infancy, we decided to focus on the binary classification task.

We implemented two debiasing methods. The first is a feature

selection method in which we remove from the input of the ML

model the features that depict the highest discriminative ability

of gender. We conducted a t-test analysis for each of the

aforementioned features and measured the extent to which they

are significantly different between female and male speakers. We

ranked those features in increasing order of p-value and removed

the M features with the lowest p-value, where

M ¼ 5, 10, 15, 20, 30, 60, to include as an input in the ML

model. The second de-biasing method is a feature transformation

approach that modifies the original input space so that it

becomes less predictive of gender, while still preserving its

discriminative ability of depression. Grounded in prior work on
n demographic groups.

AM-WM HM-WM
0:17 t(73) = 5.09, p ¼ 0:00 t(90) = �1.07, p ¼ 0:29

0:00 t(73) = 0.58, p ¼ 0:56 t(90) = 0.72, p ¼ 0:47

¼ 0:52 t(73) = �4.43, p ¼ 0:00 t(90) = �2.28, p ¼ 0:02

¼ 0:02 t(73) = �5.17, p ¼ 0:00 t(90) = �2.25, p ¼ 0:03

¼ 0:11 t(73) = 4.16, p ¼ 0:00 t(90) = �3.30, p ¼ 0:00

¼ 0:03 t(73) = 0.99, p ¼ 0:32 t(90)=0.24, p ¼ 0:81

rican male; HM, Hispanic male; WM, White male.
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TABLE 7 Absolute relative error (RE) and equality of opportunity (EO) per
group.

Groups RE EO
AA females 0.093 0.984

Hispanic females 0.055 0.977

White females 0.077 –

AA males 0.089 0.956

Hispanic males 0.078 0.967

White males 0.045 –

African American 0.090 0.975

Hispanic 0.074 0.991

White 0.065 –

Females 0.075 0.976

Males 0.051 –
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adversarial learning that depicts promising results for this purpose

(62, 63), we leverage an auto-encoder architecture that takes as an

input the original feature vector and yields an output feature vector

via a non-linear transformation implemented through an

autoencoder. The autoencoder conducts an identity mapping to

minimize the difference between the input and the output. At

the same time, the bottleneck layer goes through two additional

transformations. The first one outputs the gender of the speaker

and the second one yields the depression outcome. The

autoencoder is trained to minimize the cross-entropy function

that corresponds to the depression outcome and maximize the

cross-entropy function that corresponds to the gender. It

comprises of 2 hidden layers, with 256 and 128 nodes in the

encoding and decoding layers, respectively. We used the Rectified

Linear Unit (ReLU) activation function and the Adam optimizer

with a learning rate of 0.0001 to train the autoencoder for 50

epochs. Mean squared error served as the loss function.

In order to further improve depression classification

performance, the Pearson’s correlation between the PHQ scores

and the aforementioned features (i.e., the original features and

the features resulting from the adversarial learning debiasing

method) was computed. The top K features, where

K ¼ 5, 10, 15, 20, 30, 60, 88, with the highest correlation were

further selected to serve as an input to the ML model that

conducted depression classification. The ML model comprised of

a feedforward neural network that had 2 hidden layers with 32

nodes each and ReLU activation function, and an output layer

with 2 nodes that corresponded to the depression classification

outcome with softmax activation. Binary cross entropy was used

as the optimization loss. We trained the network using the Adam

optimizer with a learning rate of 0.001 for 100 epochs and a

mini batch size of 32. Early stopping was incorporated to

optimize training performance. The final depression decision was

taken at the participant-level by aggregating the individual

decisions of the network from all utterances and taking their

maximum. A leave-one-participant-fold-out cross-validation was

conducted, in which samples from each participant fold (i.e.,

each fold consisted of samples from 10 participants) serve as the

test data and the rest of the folds are included in the training

data. This process was repeated as many times as the total

number of participant folds.
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Evaluation of the results was conducted via three metrics: (1)

balanced accuracy (BA) that computes the average of true

positive rate (TPR), corresponding to the depression class, and

true negative rate (TNR), corresponding to the healthy class; (2)

equality of opportunity (EO) that computes the difference in

TPR between female and male participants, i.e.,

EO ¼ 1� kTPR(male)� TPR(female)k, quantifying to what

extent the same proportion of female and male participants

receive a true positive outcome (53); and (3) predicted positive

rate (PPR) for female speakers, computed as the percentage of

female speakers from the whole population of female speakers

that were assigned to the depression class by the ML, and the

PPR for male speakers, computed as the percentage of male

speakers from the whole population of male speakers that were

assigned to the depression class by the ML. The PPR for female

and male speakers contributes to better understanding potential

differences in which the two groups receive a positive ML

outcome. The PPR for each group of speakers based on the ML

estimations was compared with the corresponding base PPR

based on the data labels using a two-proportion Z-test.

Significant results from this test would indicate that the PPR

derived from the ML estimations is significantly different from

the base PPR obtained using the data labels.
4.3 Results

Here we present the results from Case Study 2. First, we discuss

differences in labels between female and male speakers and the

results of the machine learning models using the original acoustic

features (Section 4.3.1). Following that, we describe the acoustic

features that are the most indicative of depression, as well as the

acoustic features that the most indicative of gender, and their

potential overlap. We further discuss these in association to the

results of the machine learning models that are trained using the

features resulting from feature selection (i.e., selecting the most

relevant features to depression, removing the most relevant

features to gender) (Section 4.3.3). Finally, we present the results

of the machine learning models yielding from further

transforming the feature space with adversarial learning

(Section 4.3.3). Evaluation metrics include the depression

classification performance via BA and fairness metrics via EO

and PPR.

4.3.1 Results using the original features
The average PHQ-8 score for female and male speakers were 7.43

(+6.12) and 5.59 (+4.72), respectively. The t-test results between the

two groups indicate evidence against the null hypothesis

(t(105) ¼ �1:723, p ¼ 0:087) without reaching statistical

significance. When binarizing the PHQ scores, the depression base

rates among female speakers in the dataset under consideration is

38.6% (i.e., 17 out of 44), while among male speakers, it stands at

22.2% (i.e., 14 out of 63). Similarly to the continuous PHQ-8

scores, the difference in actual depression rates between the two

groups indicates evidence against the null hypothesis (z ¼ �1:842,

p ¼ 0:066), but without depicting statistical significance. This
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finding potentially aligns with empirical evidence suggesting higher

depression rates among women, possibly attributed to psychological

or biological factors (64–66).
FIGURE 1

Balanced accuracy (BA), equality of opportunity (EO), and predictive positi
relevant to depression (D) (sub-figures A, C, E; blue lines), or after removin
D, F; blue lines), and their transformation via adversarial learning (all sub
Feature transformation via adversarial learning improves performance. The
most relevant features to depression after applying the adversarial learning
overestimate depression outcomes for male speakers (sub-figures E, F; g
majority of model configurations overestimated depression for female part
E, F; green/black dashed lines) with these results not being statistically sig
speakers is higher compared to female speakers.
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The original acoustic features depict BA of 52.79% for female

speakers and BA of 49.90% for male speakers (Figure 1A, blue

lines, last point corresponding to K ¼ 88). While these two BA
ve rate (PPR) of depression when using the K acoustic measures most
g the M acoustic measures most relevant to gender (G) (sub-figures B,
-figures green lines). Same legend applies to subfigures (A) and (B).
optimal tradeoff between balanced accuracy and EO yields from the 10
transformation (sub-figures A, B; green line). All model configurations

reen/black dotted lines), a finding which is statistically significant. The
icipants, but also underestimated depression in three cases (sub-figures
nificant. The difference between PPR and depression base rate in male
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metrics do not depict a statistically significant difference between the

two groups (z ¼ 0:961, p ¼ 0:337), they are both close to chance

accuracy indicating that the original set of features might not be

effective in the considered depression classification system. Finally,

based on the original features, the ML systems tend to

underestimate depression for both female and male speakers

(Table 8) depicting very low rates of depression estimation (i.e., 1

out of 44 for female speakers, 1 out of 63 for male speakers). These

predicted depression rates are statistically different compared to the

actual base depression rates for each group (z ¼ �4:228, p ¼ 0 for

female speakers; z ¼ �3:969, p ¼ 0 for male speakers).
4.3.2 Results using the selected features
Out of the twenty most discriminative features of depression, we

got 6 frequency-based, 9 spectral, 4 energy-based, and 1 temporal

(see Supplementary Table S1 for a detailed list). In addition, 11 of

these features were also significantly different between female and

male speakers. It is worth noting that the five most discriminative

feature of depression, including the bandwidth of the third

formant (“F3bandwidth_sma3nz_amean”), as well as the mean

and 20th=50th=80th percentile of the semitone F0 frequency

(“F0semitoneFrom27.5Hz_sma3nz_amean,” “F0semitoneFrom

27.5Hz_ sma3nz_percentile20.0,” “F0semitoneFrom27.5Hz_sma3

nz_percenti le50.0,” “F0semitoneFrom27.5Hz_sma3nz_

percentile80.0”) are also included in the list of the 20 most

discriminative features of gender (see Supplementary Table S2).

These indicate the dependency of features used to classify

depression on gender.

When using the K features most relevant to depression as an

input to the ML model, BA tends to increase above 50% and

depicts differences between male and female speakers (Figure 1A,
TABLE 8 Z-test results comparing the true depression rate and the
estimated depression rate by machine learning based on the original
features, the K transformed features most relevant to depression, and
the M transformed features least relevant to gender for female and male
speakers separately.

Outcome Female speakers Male speakers

Original features z ¼ �4:228, p ¼ 0:000 z ¼ �3:576, p ¼ 0:000

Most relevant to depression
(K ¼ 5)

z ¼ 0:434, p ¼ 0:665 z ¼ 3:331, p ¼ 0:001

Most relevant to depression
(K ¼ 10)

z ¼ �0:669, p ¼ 0:503 z ¼ 1:204, p ¼ 0:229

Most relevant to depression
(K ¼ 15)

z ¼ �0:220, p ¼ 0:826 z ¼ 1:392, p ¼ 0:164

Most relevant to depression
(K ¼ 20)

z ¼ 0:648, p ¼ 0:517 z ¼ 1:204, p ¼ 0:229

Most relevant to depression
(K ¼ 30)

z ¼ 0:434, p ¼ 0:665 z ¼ 2:990, p ¼ 0:003

Most relevant to depression
(K ¼ 60)

z ¼ 1:496, p ¼ 0:135 z ¼ 3:669, p ¼ 0

Most relevant to depression
(K ¼ 88)

z ¼ 0:861, p ¼ 0:389 z ¼ 4:006, p ¼ 0

Least relevant to gender (M ¼ 5) z ¼ 0:861, p ¼ 0:389 z ¼ 2:818, p ¼ 0:005

Least relevant to gender (M ¼ 10) z ¼ 1:707, p ¼ 0:088 z ¼ 6:236, p ¼ 0

Least relevant to gender (M ¼ 15) z ¼ 1:919, p ¼ 0:055 z ¼ 4:174, p ¼ 0

Least relevant to gender (M ¼ 20) z ¼ 0:434, p ¼ 0:665 z ¼ 3:500, p ¼ 0

Least relevant to gender
(M ¼ 30)

z ¼ 0:861, p ¼ 0:389 z ¼ 3:331, p ¼ 0:001

Least relevant to gender
(M ¼ 60)

z ¼ �0:220, p ¼ 0:826 z ¼ 2:472, p ¼ 0:013
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blue lines). Specifically, BA is higher for male speakers when

choosing the K ¼ 20, 60 features most indicative of depression,

suggesting the presence of algorithmic bias against female

participants. On the contrary, when using the K ¼ 30, 88

features most indicative of depression, BA is higher for female

speakers compared to male speakers, suggesting the presence of

bias on the opposite direction (i.e., against male participants).

However, we observe that EO measures tend to decrease below 1

as more acoustic features are incorporated into the model

(Figure 1C, blue line). As we increase the number K of features

that are the most relevant to depression, there is a risk of adding

features to the model that could be influenced by gender. This

might introduce bias in the decision of the model, which is

evidenced by differential BA measures between male and female

speakers, as well as EO measures falling below 1.

Training the depression classification models after removing

the M features that are the most relevant to gender from the

feature space overall improves the BA (Figure 1B, blue lines),

surpassing the BA achieved when selecting the K features that

are most relevant to depression (Figure 1A, blue lines). In this

case, BA measures tend to be higher for female participants

compared to male participants, indicating that this technique can

potentially introduce bias in favor of female participants and

against male participants, as also demonstrated by the EO

measures which tend to be lower than 1 in the majority of cases

(Figure 1D, blue line).

Predicted depression rates for both feature selection strategies

are very low for both female and male speakers (i.e., ranging

between 0%–6.6% for female speakers and 0%–0.76% for male

speakers) and significantly different from the actual depression

base rates. Consequently, for the sake of clarity in visualization,

these rates are not depicted in Figures 1A, F. These suggest that

feature selection alone cannot preserve the base depression rates

exhibited in the original data.

4.3.3 Results using the transformed features
When the adversarial learning transformation is applied to the

K selected features, we observe a significant boost in BA. In this

case, BA is consistently higher for female speakers compared to

male speakers (Figure 1A, green lines). This suggests that de-

biasing via applying adversarial learning to the K most relevant

features to depression favors female participants who depict

higher BA for depression classification compared to male

participants. While the EO measure is much lower than 1 in

many cases, there seems to be an optimal tradeoff between

balanced accuracy and EO which occurs when we choose the

K ¼ 10 most relevant features to depression followed by applying

the adversarial learning transformation that reduces the evidence

of gender in the corresponding measures (Figures 1A, C). In this

case, BA is at similar levels for both genders (i.e., 65.44% and

62.96% for female and male speakers, respectively) and the EO is

close to 1 (i.e., EO ¼ 0:976), suggesting that the selection of the

most relevant features to the focal outcome followed by feature

transformation via adversarial learning can reduce algorithmic bias.

Adversarial learning on the feature space that does not contain

the M features most relevant to gender also improves the BA
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compared to using the same feature space without adversarial

learning (Figure 1B, green lines). The optimal tradeoff between

BA and EO metrics appears to be when we remove the M ¼ 5

features that are most relevant to gender followed by feature

transformation with adversarial learning, yielding 62.28% BA

(i.e., 65.7% for female speakers, 58.52% for male speakers) and

0.875 EO. However, these results are inferior compared to the

optimal tradeoff achieved by keeping the K features that are

most relevant to depression followed by feature transformation

with adversarial learning (i.e., 65.44% BA for female speakers,

62.96% BA for male speakers, 0.976 EO). For the majority of

cases, applying adversarial transformation to the feature space

that does not contain the M features that are most relevant to

gender seems to be less effective for mitigating bias yielding

lower EO metrics, compared to applying the same transformation

to the feature space with the K most relevant features to

depression (Figures 1B, D, green lines).

The machine learning models that use the transformed features

exhibit a tendency to overestimate depression among male speakers,

as indicated by a higher estimated depression rate compared to the

actual depression rate (see Table 8). The difference between actual

and estimated depression rates for male speakers is statistically

significant across all cases when utilizing the least relevant features

to gender (Table 8, Figure 1E, green line), and in four out of the

seven cases when employing the most relevant features to

depression (Table 8, Figure 1F, green line). The ML models tend

to underestimate the depression for female speakers when using

the 10 and 15 most relevant features to depression or removing

the 60 least relevant features to gender (Figures 1E, F). For the

remaining of the feature transformation cases, the depression for

female speakers is overestimated. These differences in the female

speaker group are not statistically significant (Table 8).
5 Discussion

Significant differences among demographic groups based on

commonly used acoustic measures were found in both Case

Study 1 (Table 5), Table 6 and Case Study 2 (Supplementary

Table S2), a finding which corroborates with prior work. In

Study 1, for example, White female speakers depicted the

highest F0 measures as in (10, 12), African American women

had the lowest F0 similar to (12), and Hispanic female speakers

depicted the highest jitter as in (11, 27) (Table 6). We also

found significant differences in F0, jitter, and shimmer between

African American and White male speakers (Table 6). These

differences might be a result of anatomical factors (21, 23). Yet,

part of these differences might be also attributed to the

corresponding state of the speaker. For example, Hispanic

speakers reported increased state anxiety during the public

speaking presentation. This finding might further explain the

high jitter values in this group that reflect increased speech

trembling. Similarly, the larger set of energy, frequency, and

spectral features in Study 2 depicted dependencies on both

gender and depression (Supplementary Tables S1, S2). In Study

2, differences in between female and male speakers were
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observed in terms of various features that are discriminative

of depression, and particularly frequency-based features

(Supplementary Table S2). However, those differences were not

statistically significant. This finding indicates that acoustic

information related mental health is confounded by the

speaker’s gender. This can potentially lead to unintended

consequences when utilizing these features for automated

depression detection, as a model that leverages frequency-based

features may inadvertently learn associations between depression

and gender that are not clinically relevant.

Case Study 1 demonstrates significant differences among

demographic groups (i.e., gender, race/ethnicity) in terms of the

ML labels (i.e., anxiety; Table 5). Case Study 2 further

demonstrates differences in terms of the PHQ-8 scores and the

ratio of patients with depression between female and male

speakers, but this difference is not statistically significant. These

differences have been found in prior psychological studies. For

example, the higher global prevalence of depression among women

compared to men is well-documented (65–67). In a study that

presents a systematic review of the epidemiological literature, the

global 12-month prevalence of major depressive disorder was 5.8%

in females and 3.5% in males (67). Similarly, in two meta-analyses

on gender differences in depression in nationally representative

U.S. samples, the odds ratio was 1:95 for gender differences in

diagnoses of major depression and the effect size for gender

differences in depression symptoms was d ¼ 0:27 (68). This

difference might be attributed to psychological factors (e.g.,

increased sensitivity to interpersonal relationships among women)

and biological factors (e.g., hormonal changes throughout the

lifespan) (64). Prior work further indicates that women report

higher anxiety patterns compared to men (69, 70), which might be

partially due to their nature and upbringing. This is consistent to

results in Case Study 1, in which female speakers demonstrated

higher anxiety scores than male speakers.

Despite these conceptually-grounded and potentially

meaningful differences in the considered outcomes among

demographic groups, the ML models were partially able to

preserve those differences in their predictions. In Case Study 1,

Hispanic male speakers depicted significantly higher levels of

self-reported anxiety compared to White male speakers, but this

difference between the two groups was not maintained in terms

of estimated anxiety (Tables 3, 5). In addition, African American

female and male speakers self-reported significantly lower anxiety

than White female and male speakers, respectively, with this

difference not being maintained in terms of estimated anxiety by

the ML models (Tables 3, 5). In Case Study 2, the ML models

that used the original acoustic features without any

transformation underestimated depression for both female and

male speakers (Table 8). When using the transformed features,

the ML models overestimated depression for the male

participants resulting in significantly higher ML-estimated PPR

compared to base depression rate (Table 8, Figures 1E, F). Mixed

findings were observed for female participants, where the ML

models both overestimated and underestimated depression

without yielding statistically significant differences between ML-

estimated and base depression rate (Table 8, Figures 1E, F).
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The ML models’ reduced ability to preserve significant

differences among demographic groups in the outcomes can be

attributed to several factors such as model design, data

representation, and feature interactions. The models used (i.e.,

linear regression in Case Study 1, feedforward neural network with

two hidden layers in Case Study 2) might be too simplistic or lack

the capacity to capture subtle variations in the data, overlooking

important differences between demographic groups. The nature of

the data itself may further contribute to the difficulty in preserving

significant differences. For Case Study 2, for example samples

from the positive class were fewer compared to the ones from the

negative class (e.g., depression samples were only 28.9% of the

data). This can potentially be a reason why the ML models were

not able learn robust representations that generalize well across

different populations. As part of our future work, we will explore

re-weighting methods that increase the importance of samples

from the sensitive groups during training, thus might be able to

reduce discrepancies between actual and estimated outcomes of

these groups (20, 51, 53). Finally, the small sample size might

have resulted in the ML models not being able to adequately

capture the potentially complex and non-linear associations

between features and demographic variables. Leveraging data

augmentation methods, such as using contrastive learning to

compare samples from underrepresented demographic groups with

the rest of the population (71), could potentially mitigate this issue.

Overall, our results indicate that while the identification of

variations in mental health labels across different demographics is

well-documented in psychological studies, the ML models used in

this paper only partially preserved the conceptually-grounded and

potentially meaningful differences in their predictions. Designing

and implementing a ML system involves many crucial decisions

that can affect its effectiveness and efficiency and potentially lead to

inaccuracies and misinterpretations in automated health

assessments, particularly when dealing with conditions influenced

by factors specific to gender or race/ethnicity. Findings of this

paper raise awareness on the importance of thoughtful design of

ML algorithms with a focus on preserving conceptually meaningful

differences among demographic groups and practicing ongoing

vigilance in the development and deployment of these ML systems.

In terms of differences in ML performance among groups,

results for Case Study 1 were mixed. There were experimental

configurations in which the sensitive groups, such as African

Americans and Hispanics, depicted the lowest performance, but

this was not always the case. A potential reason for that might be

the small sample size of the sensitive groups. Results for Case

Study 2 were a bit more clear and depression was more correctly

identified for female speakers compared to male speakers. Prior

work in emotion recognition has observed performance differences

between female and male speakers (15, 16), but results as to which

demographic group depicts highest ML accuracy were not

conclusive. For instance, Sagha et al. showed that face-based

emotion recognition was better for female speakers (16), while

Gorrostieta et al. found that speech-based emotion recognition

had better performance for male speakers (15).

Results from Case Study 2 indicate that there is no ML bias

when using the original features, but these features yield
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accuracies close to chance, so they cannot be used in a

meaningful manner for the purpose of depression classification.

Depression classification accuracies improve above chance when

we conduct feature selection followed by feature transformation,

yet this introduces bias in favor of female and against male

speakers. Certain configurations of the ML systems are able to

mitigate this bias and result in improved depression classification

accuracies (e.g., the K ¼ 10 most relevant features to depression

followed by feature transformation yield BA of 65.44% and

62.96% for female and male speakers, respectively and

EO ¼ 0:976). Bias mitigation is slightly more effective when we

select the K most relevant features to depression followed by

feature transformation, as opposed to removing the M features

that are most relevant to gender followed by feature

transformation. Nonetheless, it remains uncertain whether the

above would translate effectively to similar types of speech

datasets. Further exploration and testing across would be

essential to validate the broader utility and effectiveness of these

feature selection and transformation methods in mitigating bias.

The findings of this paper should be considered in the light of

the following limitations. Data from both case studies had a small

sample size (i.e., N ¼ 30 for Case Study 1; N ¼ 107 for Case Study

2). While it might be easier to obtain larger sample size for studies

that examine non-continuous variables (e.g., electronic health

records), it is not always easy to collect continuous speech and

multimodal data from thousands of participants, since this

usually requires the physical presence of participants in the lab.

Online studies conducted via teleconferencing systems can

potentially overcome this challenge and yield richer datasets. The

majority of publicly available speech datasets on emotion and

mental health contain limited meta-information, either in order

to protect the participants’ identities or because the retention of

detailed demographic information was not a common practice at

the time when these datasets were developed. It would be

important to seek information pertaining to detailed

demographics as part of the future work and examine

algorithmic bias at the intersection of age, gender, ethnicity,

gender, and race. Finally, this study only investigated acoustic

features from speech. Prior work demonstrates demographic

leakage in human-centered ML models that are based on

linguistic markers (62), thus it would be important to examine

demographic bias in both linguistic and paralinguistic information.
6 Conclusion

We examined sources of algorithmic bias in speech-based models

of health outcomes via two different studies, which allude to

converging conclusions. Results from both studies indicate

significant differences in terms of gender, race/ethnicity, and their

intersection) for acoustic measures of frequency, spectral balance,

and energy, which might be a reason contributing to the

differential ML performance among the groups. Differences in ML

performance were observed, but patterns were not consistent across

all configurations. Finally, ML models do not preserve meaningful

differences in estimated outcomes among groups; the considered
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health labels depicted significant differences across groups and while

these differences are conceptually meaningful based on prior work,

they were partially preserved in the ML decisions.
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