AUTHOR=Martens Eimo , Haase Hans-Ulrich , Mastella Giulio , Henkel Andreas , Spinner Christoph , Hahn Franziska , Zou Congyu , Fava Sanches Augusto , Allescher Julia , Heid Daniel , Strauss Elena , Maier Melanie-Maria , Lachmann Mark , Schmidt Georg , Westphal Dominik , Haufe Tobias , Federle David , Rueckert Daniel , Boeker Martin , Becker Matthias , Laugwitz Karl-Ludwig , Steger Alexander , Müller Alexander TITLE=Smart hospital: achieving interoperability and raw data collection from medical devices in clinical routine JOURNAL=Frontiers in Digital Health VOLUME=6 YEAR=2024 URL=https://www.frontiersin.org/journals/digital-health/articles/10.3389/fdgth.2024.1341475 DOI=10.3389/fdgth.2024.1341475 ISSN=2673-253X ABSTRACT=Introduction

Today, modern technology is used to diagnose and treat cardiovascular disease. These medical devices provide exact measures and raw data such as imaging data or biosignals. So far, the Broad Integration of These Health Data into Hospital Information Technology Structures—Especially in Germany—is Lacking, and if data integration takes place, only non-Evaluable Findings are Usually Integrated into the Hospital Information Technology Structures. A Comprehensive Integration of raw Data and Structured Medical Information has not yet Been Established. The aim of this project was to design and implement an interoperable database (cardio-vascular-information-system, CVIS) for the automated integration of al medical device data (parameters and raw data) in cardio-vascular medicine.

Methods

The CVIS serves as a data integration and preparation system at the interface between the various devices and the hospital IT infrastructure. In our project, we were able to establish a database with integration of proprietary device interfaces, which could be integrated into the electronic health record (EHR) with various HL7 and web interfaces.

Results

In the period between 1.7.2020 and 30.6.2022, the data integrated into this database were evaluated. During this time, 114,858 patients were automatically included in the database and medical data of 50,295 of them were entered. For technical examinations, more than 4.5 million readings (an average of 28.5 per examination) and 684,696 image data and raw signals (28,935 ECG files, 655,761 structured reports, 91,113 x-ray objects, 559,648 ultrasound objects in 54 different examination types, 5,000 endoscopy objects) were integrated into the database. Over 10.2 million bidirectional HL7 messages (approximately 14,000/day) were successfully processed. 98,458 documents were transferred to the central document management system, 55,154 materials (average 7.77 per order) were recorded and stored in the database, 21,196 diagnoses and 50,353 services/OPS were recorded and transferred. On average, 3.3 examinations per patient were recorded; in addition, there are an average of 13 laboratory examinations.

Discussion

Fully automated data integration from medical devices including the raw data is feasible and already creates a comprehensive database for multimodal modern analysis approaches in a short time. This is the basis for national and international projects by extracting research data using FHIR.