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A marker-less human motion
analysis system for motion-based
biomarker identification and
quantification in knee disorders
Kai Armstrong1*, Lei Zhang1, Yan Wen1, Alexander P. Willmott2,
Paul Lee2,3 and Xujiong Ye1*
1Laboratory of Vision Engineering, School of Computer Science, University of Lincoln, Lincoln,
United Kingdom, 2School of Sport and Exercise Science, University of Lincoln, Lincoln, United Kingdom,
3MSK Doctors, Sleaford, United Kingdom
In recent years the healthcare industry has had increased difficulty seeing all
low-risk patients, including but not limited to suspected osteoarthritis (OA)
patients. To help address the increased waiting lists and shortages of staff, we
propose a novel method of automated biomarker identification and
quantification for the monitoring of treatment or disease progression through
the analysis of clinical motion data captured from a standard RGB video camera.
The proposed method allows for the measurement of biomechanics
information and analysis of their clinical significance, in both a cheap and
sensitive alternative to the traditional motion capture techniques. These
methods and results validate the capabilities of standard RGB cameras in clinical
environments to capture clinically relevant motion data. Our method focuses on
generating 3D human shape and pose from 2D video data via adversarial
training in a deep neural network with a self-attention mechanism to encode
both spatial and temporal information. Biomarker identification using Principal
Component Analysis (PCA) allows the production of representative features from
motion data and uses these to generate a clinical report automatically. These
new biomarkers can then be used to assess the success of treatment and track
the progress of rehabilitation or to monitor the progression of the disease.
These methods have been validated with a small clinical study, by administering
a local anaesthetic to a small population with knee pain, this allows these new
representative biomarkers to be validated as statistically significant (p-value
, 0.05). These significant biomarkers include the cumulative acceleration of
elbow flexion/extension in a sit-to-stand, as well as the smoothness of the knee
and elbow flexion/extension in both a squat and sit-to-stand.

KEYWORDS

biomarkers, biomechanics, machine learning, human pose estimation, human mesh
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1 Introduction

The knee, a remarkable yet vulnerable joint, stands as one of the most frequently

afflicted areas in the human body. Amid its susceptibility to injuries, knee osteoarthritis

(OA) emerges as the most prevalent joint disorder in the United States, affecting a

substantial portion of the population (1). This widespread prevalence underscores the

critical need for effective diagnostic and intervention strategies in the realm of knee

health. Factors such as age, weight, and occupation contribute to the risk of developing
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knee OA (2). In the United Kingdom, the burden of knee OA is

evidenced by over 90,000 total knee replacements annually, a

testament to the impact on individuals’ daily lives and the strain

on healthcare systems (3, 4). As these interventions come at a

considerable cost, surpassing £7,000 on average per procedure or

a cost per Quality-adjusted Life Year (QALY) gained exceeding

£1,300, the economic implications are significant, with the UK’s

National Health Service (NHS) expending over £600 million

annually on knee-related procedures (5). Traditionally,

osteoarthritis has been diagnosed with magnetic resonance

imaging as shown in Figure 1. This brings economic and

healthcare burdens and necessitates innovative approaches to

both diagnosis and treatment, paving the way for advancements

in medical imaging and motion analysis techniques.

Expanding on the diagnostic landscape, recent developments in

marker-based motion capture (MoCap) have provided valuable

insights into the biomechanics of the knee and its relationship to

osteoarthritis. Utilising retroreflective markers, marker-based

MoCap enables precise tracking of joint movements, allowing for

a detailed analysis of gait patterns, joint kinematics, and overall

knee function (6–8). Studies by Sparkes et al. and Duffell et al.

have demonstrated the efficacy of gait analysis in distinguishing

individuals with knee osteoarthritis from healthy counterparts,

highlighting the potential of MoCap as a diagnostic tool (6, 7).

Moreover, Robbins et al. delved into risk factors associated with

both non-traumatic and post-traumatic knee osteoarthritis,

showcasing the versatility of marker-based MoCap in

understanding disease progression (8).

While marker-based MoCap provides valuable data, its

adoption in clinical settings presents challenges, including the

need for highly trained experts, time-consuming data collection,

and the demand for dedicated laboratory spaces (9–11). Despite

these limitations, marker-based MoCap remains a cornerstone in

biomechanics research, offering unparalleled insights into knee
FIGURE 1

Two examples of knee MRIs in the sagittal view from this study’s patients to
around the knee joint.
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function and pathology. Recent strides in technology have

furthered the field with a promising era of marker-less motion

capture. Fueled by advancements in human pose estimation

techniques, this innovative approach provides a compelling

alternative for the analysis of human movement, particularly in

clinical settings (12). Unlike marker-based methods that rely on

the placement and tracking of retroreflective markers, marker-

less motion capture extracts intricate details of human pose

directly from standard RGB images and videos (13). This

transition from marker-based to marker-less motion capture

introduces new possibilities while addressing some of the

challenges associated with traditional marker-based approaches.

Marker-less motion capture, while helping alleviate some of

these problems, serves as an effective tool in the analysis of

human pose, particularly in uncontrolled environments (12).

However, applying these techniques in a clinical setting requires

a reproducible result in any setting. The primary challenge lies in

the difficulty of controlling the clinical environment. Many

clinical locations have natural lighting whose directions vary

throughout the day, potentially leading to incorrect human

motion sequences (14). Additionally, variations in patient attire

and potential occlusion of body parts due to clothing further

complicate marker-less motion capture and biomechanics

analysis (15–17). These conditions must be meticulously

controlled to minimise data variation. Moreover, each patient has

different functional capabilities, necessitating careful selection of

actions to develop a series of tests that everyone can perform.

In response to these challenges, this study aims to introduce an

automated system designed for the analysis of clinical motion data

captured from a standard 2D RGB video camera. This system aims

not only to quantify, identify, and measure objective diagnostic

biomarkers but also to present a faster and more cost-effective

alternative to the current gold standard of marker-based MoCap.

To address the complexities and variabilities inherent in clinical
highlight the severity of osteoarthritis, as shown by the lack of cartilage
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data capture environments, our approach involves the development

of a fully end-to-end marker-less biomechanics solution. We

acknowledge the intricate nature of clinical tests, the variability

in data capture environments, and the complexity of result

analysis. To tackle these hurdles, we propose a simple yet robust

protocol and framework designed to function in any

environment. By adhering to a standardised protocol endorsed

by medical professionals, our approach not only reduces

variability in data but also ensures clinical relevance throughout

the biomechanics analysis process

This approach utilises human pose estimation, a process of

locating the positions of human joints from images and videos

(18). The technique, owing to its portability, low cost, and

accessibility, has gained prominence in the fields of sports science

and clinical biomechanics analysis (19). Recent advancements in

human pose estimation have facilitated rapid and accurate marker-

less MoCap using standard RGB images and videos (13). These

innovations include extracting a 3D mesh of a person from the

2D RGB image, enhancing anatomical detail for face, body, and

hand features. Notably, the current standards for the 3D mesh

model, such as SMPL (Skinned Multi Person Linear) and SMPL-

X, undergo continuous improvement and iterations depending on

the desired use (20). When applied to videos, these SMPL models

utilise a motion discriminator generative adversarial network

(GAN), enabling a model that accurately represents human

motion with assistance from the temporal domain (21, 22).

While the aforementioned advancements in human pose

estimation and marker-less motion capture have significantly

enhanced our ability to capture intricate details of human

motion, their application extends beyond sports science and

general biomechanics. In particular, these technologies lay the

foundation for a transformative approach in clinical settings,

where the need for precise motion analysis holds significant

implications. However, despite the strides made in accurately

capturing human pose data, the clinical significance of such data

for specific conditions, such as knee disorders, has been an

under-explored territory (23, 24).

Building on this gap in research, our methodology takes a

crucial step in addressing the need for a comprehensive analysis

of clinical motion data. By specifically tailoring our approach to

assess motion data before and after treatment, we not only

contribute to the development of effective intervention strategies

but also provide a means for tracking rehabilitation progress and

evaluating the progression of knee disorders. The integration of

advanced human pose estimation and marker-less motion

capture techniques, as demonstrated in the preceding paragraph,

forms the cornerstone of our sophisticated and clinically relevant

approach to capturing and interpreting human motion data.

In pursuit of these objectives, this study seeks to assuage

concerns surrounding current methods employed in clinical

environments. Our proposed approach leverages state-of-the-art

marker-less motion capture systems combined with kinematics

analysis, aiming to identify biomarkers and establish a robust

framework for tracking disease progression or rehabilitation

progress. Crafted to meet the unique demands of clinical settings

—fast, accessible, cost-effective, and portable—our method
Frontiers in Digital Health 03
incorporates manual feature calculation to provide explainable

results to both patients and clinicians. Further enhancing

interpretability, we employ Principal Component Analysis (PCA)

to extract those features that have greatest power to discriminate

between different conditions. The output from our proposed

pipeline culminates in a medical report tailored for presentation

to both clinicians and patients. To demonstrate the efficacy of

our approach, we conclude with a small clinical case study,

administering a local anaesthetic to a population with knee pain,

resulting in the identification of novel motion-based biomarkers

that are not only generalisable but also action-specific.
2 Materials and method

The flow of data from collection to the extraction of clinically

relevant and statistically significant biomechanics features is

outlined in Figure 2. The process begins with 1080p standard

videos being recorded on an Azure Kinect RGB-D camera at 30

frames per second. The camera height was 1.2m and was placed

at a distance of 3m away from the subject. Each video was

recorded with the participant facing the camera, this reduces the

effects of occluded joints on the motion capture technique. The

participants performed at least 3 repeats each of a sit-to-stand and

squat action, this protocol has been designed by clinicians to use

simple actions that all participants can perform. Simultaneously,

the diagnostic efficacy of the sit-to-stand and squat actions are

substantiated by existing literature, thereby fortifying its diagnostic

power (25–27). For the squat, the participants were asked to squat

as low as they could and then immediately return to a standing

position. For the sit-to-stand; the participants were asked to stand

up from a chair, use of arms was permitted out of safety concerns,

then returned to a seated position.

Inference of videos was performed using an Nvidia GTX 1080ti

using a pre-trained checkpoint, where the average inference time is

40 seconds per 10 seconds of video.
2.1 Clinical case study

To show the sensitivity of these methods in a clinical

environment these techniques were performed on a small case

study of 20 participants. The demographic for the study was kept

broad to account for a variety of situations, the selection criteria

were men and women over the age of 55 and a diagnosis of knee

pain. It is important to note that it is almost impossible to

isolate this to pain in a single limb, therefore, patients with

bilateral knee pain were also recruited to the study as long as

one side was found to be worse than the other. As age is a well-

known risk factor for OA this increases the chance that their

diagnosis is due to knee OA rather than an injury (28).

Each participant received a local anaesthetic injected into the

knee with the diagnosed pain. This removes the psychological

change to movement caused by pain, providing the biomechanics

analysis with a clear before and after treatment and allowing us

to assess the sensitivity of each capture method.
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FIGURE 2

This represents the flow of the data from the source of the videos to the output of the statistical tests which allow the extraction of any significant data,
this application has been applied to a clinical case study to examine the effectiveness of each technique when applied to intervention success.
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The study protocol was approved by the University of Lincoln

Ethics, Governance & Regulatory Compliance Committee, the

study was performed following relevant institutional guidelines

and regulations. All participants provided written informed

consent before any data collection.
2.2 Human mesh recovery

The SMPL-Xmodel used in this study consists of a total of 10,475

mesh vertices surrounding a skeleton of 54 joint locations. The

model is defined by the function M(u, b, c) :Rjuj�jbj�jcj ! R3N ,

where u represents the body pose, c represents the facial

parameters, b represents the face and hand shape parameters, and

N represents the denotes the number of frames in the video (20).

This body model allows for inferences to be made from standard

RGB images or image sequences, accounting for not only the pose

of a subject but also the shape, providing more detail than a

standard human pose estimation technique such as OpenPose

or BlazePose (13, 29).

The standard RGB videos were fed into a mesh reconstruction

pipeline based on the Video Inference for the Human Body Pose

and Shape Estimation (VIBE) model, which predicts the SMPL

parameters of a given participant based on monocular RGB
Frontiers in Digital Health 04
video. The adoption of the VIBE model in our experiment was

due to its ability to encode both spatial and temporal cues into

the data using adversarial training in a deep neural network with

a self-attention mechanism (21). To ensure reproducibility and

optimal accuracy, the training and implementation details were

implemented using the parameters described by Kocabas et al.

(21), including sequence length=16, temporal encoder=2-layer

GRU with a hidden size of 1,024 and learning rate of 5� 10�5

and an Adam optimiser, SMPL regressor=2 fully connected

layers of size 1,024, motion discriminator=2-layer GRU with a

hidden size of 1,024 and a learning rate of 1� 10�4, and the self

attention=2 MLP layers of size 1,024 with tanh activation. The

model was trained using InstaVariety (30) as the 2D ground-

truth dataset, MPI-INF-3D (31) as the ground-truth 3D dataset,

and 3DPW as the 3D ground-truth dataset for evaluation

purposes; this training consisted of 30 epochs with 500 iterations

per epoch and a batch size of 32 (32).
2.3 Whole body kinematic feature
extraction

A visual representation of the joint angles used can be seen in

Figure 3, this shows the joint angles selected in both the sagittal and
frontiersin.org
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FIGURE 3

Visual representation of the joint angles used in this study, showing both the sagittal and coronal joint angles and the location of the joint centres used
in the calculations for each angle.
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coronal planes. Each of the joint angles, θ, was calculated using a

base formula as shown in Equation 1, where k, h, and a

represent the joint centres in a given plane of motion. These

joint angles were then calculated at every frame in the video to

produce joint angle sequences. This was then performed for each

of the participant’s repeats, this allows the extrapolation of a

mean, minimum, and maximum curve by comparing the

kinematics at the same frame in each repeat. The decision was

also made not to time normalise the data under the assumption

that any extreme changes to the length of an action could be

caused by the participant’s clinical pathology.

For vectors:

m ¼ h� k , n ¼ a� k, and p ¼ h� a

u ¼ cos�1 jmj2 þ jnj2 � jpj2
2jmjjnj

� �
(1)

where k, h, and a, are the positions of the joint centres of any three

given joints for example knee, hip, and ankle respectively can be

used to calculate the knee angle and j.j denotes the Euclidean

distance between two points.

sm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 (mi � �m)2

n� 1

s
(2)

The smoothness of the mean, maximum, and minimum curves can

then be calculated from the standard deviation of the gradient of a

curve, as shown in Equation 2 where n is the number of data

points, mi is the gradient of a slope at the ith point calculated as

mi ¼ Dyi
Dxi

and �m is the mean of the gradients. This smoothness

value shows how much the slope of a curve varies from point to

point, whereby a smoothness closer to 1 identifies a smoother

curve. The rotational velocity and acceleration of the knee were
Frontiers in Digital Health 05
calculated from the changes in knee angle over time (Equation 3)

A simplified measure to represent the kinematics of the

movement was defined as follows: the cumulative absolute

rotational acceleration, J, was calculated as a representative

measure of the explosiveness of the movement or the overall

abruptness of the changes in angular velocity (Equation 4).

The rotational velocity v and acceleration a were calculated

from the changes in the knee angle over time, t:

v ¼ Du
Dt

a ¼ Dv
Dt

(3)

J is the cumulative absolute rotational acceleration of an action at

a single joint, j a j is the absolute instantaneous rotational

acceleration and dt is the change in time.

J ¼
ð
j a j �dt (4)

After the mean, maximum, and minimum joint angles had been

prepared for each participant’s squat and sit-to-stand actions,

this was fed into the PCA feature extraction component. This

method of dimensionality reduction is used to rank the feature

importance for each action, allowing only the most important

features to be used in the subsequent methods (33). This method

used a two-component PCA with single value decomposition,

thus creating a linear dimensionality reduction and accounting

for both the actions used. As this was performed on each

participant, this allows the identification of features that are

representative of all participants in the trial. To achieve this the

features are ranked by importance in each action, then we

analyse the frequency of these features appearing in the ten

highest feature importance scores. This allows us to create a

histogram to identify which features will be most representative
frontiersin.org
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of the whole participant group, as a higher frequency is due to this

feature being ranked highly across most participants.
2.4 Statistical testing

Two-tailed paired t-tests were performed between the pre- and

post-injection values for the cumulative acceleration and

smoothness values at the joints identified by PCA as being most

important in discriminating between the two conditions. A

significance level of 0.05 was used. The pre- and post-injection

conditions were compared for both the squat and sit-to-stand

movements. In addition to the paired t-tests, Bland-Altman plots,

with a range of limits of agreement of 1.96 and approximate

confidence intervals as described by Bland and Altman (34), were

created to assess the agreement between the pre- and post-

injection cumulative acceleration and smoothness for the same

selection of joints. For each pair of pre/post-injection observations,

the difference between the scores was plotted against the mean of

the two scores; the overall plot provides information about the

level of variation and whether or not there was any systematic bias.
3 Results

3.1 Feature engineering and biomarker
identification

Initially, the data created consisted solely of positions and

orientations of joints in a 3D Cartesian coordinate system for
FIGURE 4

The most common features among the most representative biomarkers du
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both a squat and a sit-to-stand action, which first needs to be

transformed and engineered into clinically relevant features, such

as the knee flexion/extension, hip abduction/adduction, and the

ankle flexion/extension. The dimensionality of this data was then

reduced and separated into the squat and sit-to-stand actions

using the PCA. Performing this PCA for each subject’s actions

finds the most representative features as a histogram shown in

Figures 4, 5, this was derived from the total counts of each of the

top five most represented features of each participant and in each

action performed. Figure 4 for example, shows the most

represented features among all patients in the squat action to be

the mean and maximum knee flexion for both the left and right

side. On the other hand, the sit-to-stand feature histogram as

shown in Figure 5 shows the most representative features

including both arm abduction and elbow flexion.
3.2 Statistical testing

Tables 1, 2 show the results of the paired t-test run on the

cumulative acceleration and smoothness for the five most

representative features, as provided by the PCA histograms.

These tables highlight the t- and p-values for both biomarkers

performed on each of the extracted kinematics. Table 1

highlights that the smoothness of the maximum of both the left

and right knee flexion during a squat has a statistically

significant difference between the pre- and post-treatment

measurements. However, Table 2 highlights considerably more

biomarkers with a statistically significant difference in the sit-to-

stand; these include the smoothness of the maximum knee
ring the squat action.

frontiersin.org
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FIGURE 5

The most common features among the most representative biomarkers during the sit-to-stand action.

TABLE 1 Paired t-test results showing the t and p values, with the values in
bold representing p < 0.05, for each of the most representative squat
biomarkers.

Biomarker
(Squat)

Cumulative
acceleration t(p)

Smoothness
t(p)

Right Knee Flexion (mean) 1.786 (0.090) 1.203 (0.244)

Right Knee Flexion (max) 0.126 (0.901) 2.324 (0.031)

Left Knee Flexion (mean) 1.907 (0.072) 1.196 (0.246)

Left Knee Flexion (max) 0.483 (0.635) 2.528 (0.021)

Right Knee Flexion (min) 0.203 (0.841) 1.385 (0.182)

The bold values highlight the statistically significant values (p < 0.05).

TABLE 2 Paired t-test results showing the t and p values, with the values in
bold representing p < 0.05, for each of the most representative sit-to-
stand biomarkers.

Biomarker
(Sit-to-Stand)

Cumulative
acceleration t(p)

Smoothness
t(p)

Left Knee Flexion (max) 0.772 (0.450) 2.976 (0.008)

Right Knee Flexion (max) 0.558 (0.584) 2.401 (0.027)

Left Arm Abduction (mean) 0.675 (0.508) 3.586 (0.002)

Right Elbow Flexion (max) 2.451 (0.024) 3.592 (0.002)

Left Elbow Flexion (max) 2.364 (0.029) 2.604 (0.017)

The bold values highlight the statistically significant values (p < 0.05).

Armstrong et al. 10.3389/fdgth.2024.1324511
flexion on both sides, smoothness of the left arm abduction, and

both the smoothness and cumulative acceleration of the

maximum elbow flexion on both sides.

Additionally, the subsequent Bland-Altman plots shown in

Figures 7, 6 show that both the squat and sit-to-stand

actions have a reasonable variability with most of the points

falling within the two confidence intervals. The sit-to-stand
Frontiers in Digital Health 07
action in Figure 6 shows a reduced variability with a

consistent spread in the mean of differences as the mean of

the methods increases. However, the squat action as shown

in Figure 7 has an increase in the variability which can be

seen by the larger increase in the mean of the differences as

the mean of the methods increases.
3.3 Clinical trial results

The individual results from the clinical trial can be seen in

Figures 8, 9, showing the change between the pre-and post-

injection data for each of the statistically significant biomarkers

identified in Tables 1, 2 for both the squat and sit-to-stand

actions. These two figures show both the box and whisker plots

to show the change for the entire group, as well as the scattered

points to show the exact change for each individual. These

results show that each of the biomarkers saw a median increase

between the pre-and post-injection, however, there were some

outliers in the data where the change was greater than expected

or the value decreased after the treatment.
4 Discussion

In examining the PCA results depicted in Figures 4, 5, a pivotal

revelation surfaces regarding the extraction of biomarkers from

motion data. These histograms serve as a visual representation of the

most significant features associated with each action. Notably, these

identified features stand out as crucial candidates for biomarkers,
frontiersin.org
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FIGURE 7

Bland Altman plot showing the difference against the mean for each
patient (for the smoothness of the maximum right knee flexion)
during the squat action. The variation around the mean shows the
apparent differences before and after the injection.

FIGURE 6

Bland Altman plot showing the difference against the mean for each
patient (for the smoothness of the maximum right knee flexion)
during the sit-to-stand action. The variation around the mean
shows the apparent differences before and after the injection.

FIGURE 8

Box plot showing the median as well as the first and third quartile for perc
injection for the squat action projected on a logarithmic scale, showing the

Armstrong et al. 10.3389/fdgth.2024.1324511

Frontiers in Digital Health 08
showcasing their importancewithin the specific actions analysed. This

finding holds profound implications, suggesting the potential utility of

these biomarkers in diagnosing knee disorders and tracking disease or

rehabilitation progression (35).

Paired statistical tests, differentiating pre-treatment and post-

treatment, offer valuable insights into outcomes and methodological

significance. Figures 6, 7 highlight crucial observations on the

efficacy of the data collection technique. Results suggest the method

establishes a sensitive coordinate system, detecting changes induced

by treatment. Supported by participants receiving local anaesthetic,

post-injection movements, devoid of knee pain, align more closely

with physiological capabilities (36, 37). This nuanced understanding

underscores the method’s importance in robustly assessing

biomechanical changes post-treatment. However, Bland-Altman

plots in Figures 6, 7 reveal areas for methodology improvement.

While most participants show limited point spread, particularly in

the squat action, outliers suggest selected biomarkers, though

effective for many, may lack universal applicability. Consideration

must be given to potential measurement error tied to treatment

effectiveness variability rather than data collection or biomarker

efficacy issues. Further investigation is crucial to pinpoint the source

of this error, aligning with our overarching goal of precision in

clinical biomechanics assessments. Furthermore, the effectiveness of

these techniques in identifying biomarkers for knee disorders is

evident in Figures 8, 9. Each biomarker displays a median

percentage change increase, suggesting potential for monitoring

movement capabilities. However, addressing anomalies in results,

stemming from individualistic data, is crucial. Variations arise from

the assumption of consistent movement patterns, not always holding

true due to external factors like footwear, as demonstrated in prior

research (38). Acknowledging and dissecting these intricacies are

crucial steps in refining the application of these techniques for

clinical biomechanics assessments, aligning with our overarching

goals. An essential consideration in evaluating a technique’s

diagnostic capabilities is the impact of measurement error. Nakano

et al. report a mean absolute error in joint center location ranging

from 20mm to 40mm, emphasising the challenge (39). Comparing

with marker-based motion capture, a 50mm marker registration

uncertainty results in a 7� peak joint angle variability (40). In

contrast, inertial measurement units (IMUs) have up to 11.4�
entage change for the entire clinical trial population from pre- to post-
biomarkers identified to be statistically significant from the paired t-tests.
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FIGURE 9

Box plot showing the median as well as the first and third quartile for percentage change for the entire clinical trial population from pre- to post-injection
for the sit-to-stand action projected on a logarithmic scale, showing the biomarkers identified to be statistically significant from the paired t-tests.
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measurement error (41). This comparative analysis underscores the

nuanced landscape of measurement errors, emphasising the need for

a meticulous approach to enhance precision in clinical biomechanics

assessments, a central objective of our study.

In addressing the challenge of measurement error, our approach

is grounded in the assumption of non-differential measurement

error. This decision is guided by our meticulous standardisation of

variables for participants’ pre- and post-measurements. Every

aspect, including the timing of measurements spaced 15-30

minutes apart on the same day, attire, lighting conditions, and the

recording device utilising the same camera, is held consistent.

Through this comprehensive standardisation, we maintain a

uniform measurement error between both sets of measurements.

While acknowledging potential effects on diagnostic accuracy,

especially in comparisons between distinct groups, our primary

focus centers on comparing the same individual before and after a

specific treatment (42). This deliberate approach aligns seamlessly

with our overarching goals, emphasising the crucial need for

precision in clinical biomechanics assessments and contributing to

the ongoing discourse on measurement error considerations.

The significance of these findings lies in the adaptability of the

proposed methods for feature engineering across diverse

applications. These techniques, showcased in a relatively small

knee-based case study, carry implications that extend beyond the

specific context. Their versatility allows seamless adaptation to

various applications, addressing disorders not only in different

body parts but also encompassing broader movement issues such

as those associated with neurological disorders. It’s noteworthy

that the actions performed in our study, though centered on the

knee, can be tailored to suit the requirements of different

applications. This adaptability underscores the broader potential
Frontiers in Digital Health 09
of our techniques, aligning with our overarching goal of

establishing a flexible and widely applicable framework for

clinical biomechanics assessments.

A significant observation stems from the success of our feature

extraction methodology, where each tested feature underwent initial

extraction using PCA. Though further reduced for the paired t-test

due to time series data constraints, these features provided

descriptions based on both smoothness and cumulative acceleration

from joint kinematics. Transforming these biomarker descriptions,

as presented in Tables 1, 2, underscores their statistical significance.

Beyond distinguishing actions from movement, these PCA-

extracted biomarkers prove valuable in gauging treatment success

(43, 44). This aligns with our broader goals, enhancing the

potential for using motion-based biomarkers in clinical assessments

and advancing our approach to clinical biomechanics. By

synthesising the presented results, the described methods emerge as

promising tools for clinical applications. These techniques

successfully fulfill their objectives, providing a cost-effective solution

for clinical biomechanics assessments. Importantly, their versatility

extends beyond the confines of lower limb assessments, offering a

wide range of potential applications. Beyond their diagnostic

capabilities, this solution holds the potential to identify novel

biomarkers associated with a diverse array of movement-

debilitating conditions, including injuries, illnesses, and disorders.

This multi-faceted approach aligns with our overarching goals of

revolutionising clinical biomechanics, creating a scalable and

adaptable framework with far-reaching implications for the field.

This study has played a crucial role in identifying the current

limitations inherent in the described techniques. Notably, the

absence of a controlled environment can introduce challenges,

leading to occlusion and jitter problems, which necessitate attention
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in future research endeavors. Moreover, the limitations associated with

the design of clinical trials come to the forefront. Establishing a truly

representative sample proves challenging, and in this case,

determining the prevalence of right-sided biomechanics raises

intricate questions. It remains uncertain whether this prevalence is a

result of the sample population being right-dominant or if patients

experienced bilateral pain, thereby challenging the assumption of an

equal distribution of pain in each knee. Recognising and addressing

these limitations are vital steps in refining our methodologies,

ensuring more accurate and comprehensive clinical biomechanics

assessments aligned with our overarching goals.

In light of our current findings, we have identified promising

avenues for future research and comparative studies, aimed at

delving deeper into the capabilities of the proposed techniques. One

such initiative involves a direct comparison between SMPL-based

single RGB camera methods, MoCap, and IMUs. This comparative

analysis seeks to elucidate the variability inherent in these different

methods, providing valuable insights into their respective strengths

and limitations. Additionally, we aim to extend the applicability of

our motion-based biomarkers by introducing new disease

pathologies to the dataset. This strategic expansion aims to assess

the effectiveness of these biomarkers in distinguishing not only

between diseases but also in discerning normal knee conditions.

These future investigations align with our overarching goal of

refining and broadening the scope of clinical biomechanics

assessments, paving the way for advancements in remote

monitoring and intervention strategies.

In conclusion, this study has not only demonstrated the

effectiveness of utilising motion-based biomarkers for quantifying

movement but has also established a robust foundation for

conducting objective MSK analyses. The techniques presented

offer a promising avenue for implementing a standardised method

of MSK analysis, achievable with any standard camera, even a

mobile phone. This accessibility opens doors for remote disease

monitoring, enabling the early identification of pre-disease stages.

By facilitating timely interventions, these methods have the

potential to significantly alleviate the burden on the healthcare

industry. In essence, our study contributes to the broader goal of

revolutionising clinical biomechanics assessments, providing a low-

cost solution with far-reaching applications beyond lower limb

assessments, and paving the way for advancements in remote

healthcare monitoring and intervention strategies.
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