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Copenhagen, Denmark, 4Institute of Cognitive Neuroscience, University College London, London,
United Kingdom, 5Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
Introduction: Normative cognitive data can distinguish impairment from healthy
cognitive function and pathological decline from normal ageing. Traditional
methods for deriving normative data typically require extremely large samples
of healthy participants, stratifying test variation by pre-specified age groups
and key demographic features (age, sex, education). Linear regression
approaches can provide normative data from more sparsely sampled datasets,
but non-normal distributions of many cognitive test results may lead to
violation of model assumptions, limiting generalisability.
Method: The current study proposes a novel Bayesian framework for normative
data generation. Participants (n= 728; 368 male and 360 female, age 18–75
years), completed the Cambridge Neuropsychological Test Automated Battery
via the research crowdsourcing website Prolific.ac. Participants completed tests
of visuospatial recognition memory (Spatial Working Memory test), visual
episodic memory (Paired Associate Learning test) and sustained attention (Rapid
Visual Information Processing test). Test outcomes were modelled as a function
of age using Bayesian Generalised Linear Models, which were able to derive
posterior distributions of the authentic data, drawing from a wide family of
distributions. Markov Chain Monte Carlo algorithms generated a large synthetic
dataset from posterior distributions for each outcome measure, capturing
normative distributions of cognition as a function of age, sex and education.
Results: Comparison with stratified and linear regression methods showed
converging results, with the Bayesian approach producing similar age, sex and
education trends in the data, and similar categorisation of individual
performance levels.
Conclusion: This study documents a novel, reproducible and robust method for
describing normative cognitive performance with ageing using a large dataset.
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Introduction

Well-validated computerised neuropsychological tests such as

the Cambridge Neuropsychological Test Automated Battery

(CANTAB) are widely used but require in-person assessments

entailing significant costs and time. Granular data from the

web-based version of the CANTAB may pioneer the way

neuropsychological tests are conducted, becoming an integral

part of clinical care and large-scale research trials. Advantages of

web-based assessments include test standardization, precise

response measurements and have shown higher response rates

compared to supervised administration (1, 2). Additionally,

online assessments improve reach to specialised and typically

underrepresented populations, are cost and time-effective and

permit flexibility in timing and location (3, 4).

CANTAB performance indices are satisfactorily comparability

between web-based and in-person assessments (5). However, the

integration of remote, web-based adaptations of existing tests

require new statistical norms (6) which are valuable as reference

data for identifying impairments and age-related declines (7).

One approach to deriving normative data is through grouping

test performance for specific age-ranges often spanning multiple

years (8). However, this approach may not provide the required

detail to observe year-on-year changes, such as more rapid

declines in cognitive function seen in older age (9). Norms

derived through linear regression can generate a year-by-year

view of age-related change. However, this approach may prove

less sensitive to identifying higher levels of impairment,

particularly at age extremes in the population where data is

often sparser (10).

Bayesian approaches for establishing performance relative to

normative data are more accommodating to non-normal

distributions and can incorporate uncertainty introduced by ties

within the data, where the same test score is obtained by more

than one person (11). Non-normal test distributions are common

in cognitive assessments (12), where for error-count response

variables frequently include an excess of zeroes, and ties are

inevitable for tasks with a limited number of responses choices.

In case studies where individual performance is compared to a

normative group, point and interval estimates of percentile

norms typically show a good degree of convergence with classical

frequentist methods (11, 13).

The current study describes a novel methodological approach

for generating normative cognitive data from the CANTAB

administered via the internet. A large cognitive dataset is

analysed using Bayesian statistical methods to generate a large

synthetic normative dataset capturing the normative processes of

cognition as a function of age, sex and education. As such the

aims of the current study are to (1) describe this approach and

methodology for providing robust estimations of performance

percentiles taking into consideration age, sex and education;

(2) describe cognitive performance across age, sex and education

using these methods and (3) examine sensitivity of this novel

approach in comparison to other methods for deriving

normative data.
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Methods

Participants

Data was collected using a web-based cognitive assessment

application between September 2017 and April 2018. Participants

were recruited using Prolific, an online crowdsourcing platform

for advertising web-based studies (14). Previous research has

shown adequate data quality on this platform, and better than

other available platforms (15). To be included in the study,

participants had to meet the following eligibility criteria: aged

≥18 years, fluent English speaker, no history of head injury

resulting in a loss of consciousness, not diagnosed with a mental

health condition that is uncontrolled (by medication or

intervention) and which has a significant impact on daily life,

never diagnosed with mild cognitive impairment or dementia.
Procedure

After logging into Prolific, participants clicked on a link to the

study homepage, which provided a detailed explanation of the

study. Participants were asked to provide basic demographic

information including their age, sex and highest level of education.

Level of education was entered as follows: (1) left formal

education before age 16, (2) left formal education at age 16, (3)

left formal education at age 18, (4) undergraduate degree/higher

national diploma, (5) Master’s degree/postgraduate diploma, (6)

PhD. Information on country of origin and country of residence

was obtained from Prolific Academic participant databases.

Participants were instructed to turn on the sound on their

device and to complete the study on their own, in a quiet room

and to the best of their ability. They were instructed not to

participate under the influence of alcohol or other substances, or

if they were feeling unusually stressed, tired, or unwell. They

were then asked to complete three non-verbal cognitive tests,

taking approximately 30 min. Assessments were delivered via the

CANTAB web-based testing application, which displayed tests

visually on participants’ devices, and provided instructions via

voiceover (Figure 1).

Participants responded via touch screen or mouse/trackpad click

depending on the response modality of their own devices. The

CANTAB battery consists of a suite of nineteen language-

independent cognitive tests. Three tests were initially selected for

validating the Bayesian methodology for deriving normative data.

Cognitive tests and outcome measures are described below. Further

information on each test can be found on the Cambridge Cognition

website (http://www.cambridgecognition.com/cantab/cognitive-tests/).

All subjects provided informed consent prior to their participation

and were reimbursed £2.50 for their time on completion.
Measures

• Paired Associate Learning (16) (PAL) is a test of visual episodic

memory lasting eight minutes (Figure 1). During this task, a
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FIGURE 1

Stills of tests administered as would be displayed on an iPad.
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number of boxes are displayed around the device screen. The

interior of each box is revealed in a randomised order and

some boxes contain a pattern. After the interior of each box is

shown, the same patterns are displayed in the middle of the

screen one at a time and the participant must select the box

in which the pattern was originally located. If the participant

makes an error, the boxes are opened in sequence again to

remind them of the pattern locations. Initially the test

includes six boxes, in which there are two patterns. The task

increases in difficulty after each stage is completed

successfully, with trials including two, four, and six different

patterns in six boxes, and finally eight different patterns in

eight boxes, which the participant is then required to locate.

Where a participant fails to identify the location of patterns

successfully after four attempts the task terminates. Key

outcome measures include PAL Total Errors Adjusted

(PALTEA), the total number of errors adjusted for the stages

not completed due to early discontinuation (range = 0–70),

and PAL First Attempt Memory Score (PALFAMS), the

number of times a participant chooses the correct box on

their first attempt across each stage (score range 0–20).

• Spatial Working Memory (17) (SWM) is a four minute test of

retention and manipulation of visuospatial information.

Participants find tokens in coloured boxes presented on the

screen and move them to a collection area. The key task

instruction is that tokens will not be in the same box twice in

each trial. Outcome measures include SWM Between Errors

(SWMBE): the number of times the participant incorrectly

revisits a box, calculated across all assessed 4, 6 and 8 token

trials (range of possible scores 0–153); and SWM Strategy

(SWMS): the number of unique boxes from which a

participant starts a new search in the 6 and 8 box trials (range

of possible scores 2–14). More efficient searches are carried

out by searching boxes in a fixed order.

• Rapid Visual Information Processing (18) (RVP) is a test of

sustained attention lasting 7 min. Digits from 2 to 9 were

presented successively at the rate of 100 digits per minute in

pseudo-random order. Participants are asked to respond to

target sequences of digits (for example, 2–4–6, 3–5–7, 4–6–8) as

quickly as possible by clicking or pressing a button at the
Frontiers in Digital Health 03
bottom centre of the device screen. Level of difficulty varies with

either one- or three-target sequences that the participant must

watch for at the same time. Outcome measures included a signal

detection measure of response sensitivity to the target regardless

of response tendency (RVP A’: expected range is 0 to 1), and

probability of false alarm (RVPPFA: expected range 0 to 1)

Statistical analysis

Data preparation and cleaning

The six levels of education were collapsed into two categories,

“high” - leaving school after age≥ 16, and “low” - leaving school

age < 16. Potential influence of distraction during task

performance was examined by comparing individuals who

completed CANTAB tasks on full-screen mode and those who

did not. This was tested through graphical and distribution

comparisons separated by age bands, sex and educational level,

which showed no difference in test performance. Similarly, no

differences were found in the graphical and distribution

comparison of the Bayesian generalised linear models (GLM) in

those using full-screen mode and the entire sample. All

individuals were therefore included in the downstream analysis.
Bayesian normative data generation

Using principles described previously (19, 20), a method for

generating synthetic data was developed to preserve the statistical

properties of the dataset. Bayesian methods allow prior

knowledge about model parameters (e.g., sparsity, non-negativity)

to be explicitly incorporated into statistical models (21). The

models combine these priors with authentic data to create

posterior distributions of the data under investigation. Using

Markov Chain Monte Carlo (MCMC) algorithms it is possible to

draw random samples of the posterior distribution, providing a

synthetic dataset from which normative data can be derived.

With this approach, we use our authentic data to inform

generation of a synthetic dataset capturing normative process of
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cognition across age, sex and education, incorporating variability

but not including extreme outliers.

Outcome measures from CANTAB tasks capture processes that

do not follow a normal distribution. As a result, Bayesian GLMs

were used to model CANTAB test performance as a function of

age, as they incorporate a wide family of distributions

representing these measures. The parameterisation of the

response distribution allows the appropriate test structure to

considered. For example, when using a test with error-count type

responses, which often includes an excess of zeroes or ones in

outcome data, it is important to fit mixed continuous-discrete

distributions, such as zero- and one-inflated or hurdle models

(22, 23). All Bayesian GLMs were developed in Stan code using

the brms package (24) in a reproducible R environment (version

3.4.4) with version control using git (version 2.15) in a

standalone Docker container (version 18.03).

Keeping the default brms prior, a half Student-t prior with 3

degrees of freedom (24), a small sample of distributions were

selected for investigation by the GLM to model change in

cognitive test performance with age, based on prior data

distributions for these tasks in healthy populations (10, 25, 26).

These included the following likelihood functions: hurdle

negative binomial distribution, beta distributions and zero-one

inflated beta distributions. The following seven age-trend models

were generated: (1) all subjects, (2) all males, (3) all females, (4)

high educated males, (5) low educated males, (6) high educated

females, (7) low educated females.

The posterior predictive distribution from each GLM was

graphically compared to the observed sample distribution to

assess model adequacy (27). More fine-grained model evaluation

and model comparison was examined with Leave One Out

(LOO) cross-validation (28), and the best fitting model was

defined through examination of expected log posterior density.

When comparing between models, higher expected log posterior

density values indicate better fit.

From the best fitting model, posterior samples were derived

from Markov Chain Monte Carlo simulation using the brms No-

U-Turn Sampler (NUTS) to provide performance estimates by

age for each demographic group (24). Four chains were

completed (each run independently on a different central

processing unit), each with 5,000 warmup iterations to calibrate

the sampler, and 5,000 sampling iterations, yielding a total of

20,000 post-warmup posterior samples (29). Posterior samples

were smoothed to avoid local minima in performance estimates

with age. Recursive substitution was applied; in that if any

estimated value for a given age is lower or higher than the value

for the previous age (depending on the trend for the outcome

measure), the estimated performance was substituted for the

previous observation. Performance percentiles in 1% intervals

were derived straight from the 20,000 posterior samples for each

of the seven age-trend models.

Normative data are provided in the form of performance

percentiles, with 50% reflecting average performance, above 50%

reflecting above average performance, and lower percentiles

reflecting poorer performance. For the purpose of providing

normative comparison, percentiles for tied scores were calculated
Frontiers in Digital Health 04
as the middle of the percentile range for each performance level,

as previously recommended (13), rounded up to the nearest whole

number. For a single tied test score relating to performance, for

example, in the 88–99th percentile, 94th percentile was selected.
Comparison with traditional methods of
deriving normative data

Normative results from the Bayesian methodology described

above were compared to two other established methods for

deriving normative data: (A) the stratified method, and (B) the

linear regression method.

For the stratified method, test results were stratified by

educational level (high and low), sex (male and female), and as a

function of age (into six roughly evenly spaced age groups: 18–

24, 25–34, 35–44, 45–54, 55–64, 65–75). Following previously

described methods (30), normative statistics for each outcome

measure (Mean, SD) were determined based on the observed

data per relevant subgroup. All individual variables in the

cognition data were transformed into a scale with a mean of 0

and an SD of 1. Performance for each individual on each

outcome measure was therefore converted into a z-score using

the following equation [Zi = (observed score - mean score)/SD].

For the linear regression method (B), models were applied to

assess the mean effects of age, sex (0 =male, 1 = female), and

years in education (0 = low and 1 = high) on test performance.

All variables were entered simultaneously into the regression

model. Influential observations were identified by visual

inspection of Cook’s distance plots and values that were

unacceptably high were removed and model refitted. Z-scores

were calculated following methods described by Van der Elst

et al. (30), using regression coefficients for each outcome

variable. Each participant’s predicted score was calculated using

regression betas (predicted score = Intercept (0) + (Age*ßage) +

(Sex*ßsex) + (Education*ßeducation). Residuals of each score were

calculated (ei = observed score-predicted score), and standardized

[Zi = ei/SD (residual)].

For outcome measures where higher scores denote poorer

performance, the sign of the z-score was reversed (z-score = -Zi).

These z-scores were then converted into cumulative percentiles

using z-score look-up tables, with the 50th centile denoting

average performance, <50th centile denoting below average

performance, and >50th centile denoting above average performance.
Sensitivity analysis: cross-sectional

Cross-sectional analyses tested for distributional differences

between methods. A random subsample of 200 participants was

taken from the original dataset using the “sample” function from

the R base package. Normative percentile conversions for

different methods were plotted using scatterplots to examine

differences in distributions. Test performance in this subsample

was categorised according to the three groups for each method:

low to impaired range (<25th centile) average range (25th−75th
frontiersin.org
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centile) and in the high range (>75th centile). Frequency of these

categorisations within the randomly generated subsample was

then compared across the different normative data approaches

using Fisher exact tests to identify whether different

methodologies produced significantly different sensitivities for

high and low performance ranges.
Results

Participants

Data was obtained from 728 participants, primarily resident in

the United Kingdom (n = 524), or the United States of America

(USA, n = 110). The remainder resided in other countries in

Europe (n = 60), Canada (n = 9), Australia (n = 5), Mexico

(n = 2), Japan (n = 1) and Turkey (n = 1). All participants were

fluent in English, with 628 reporting it to be their native

language. The sample was sex-balanced with 368 male and 360

female participants. They were overall highly educated, with 65%

(n = 470) having at minimum an undergraduate education, and

only 15% (n = 102) completed their education at or before age

16. Mean age was 38.38 (median 36.0), ranging from 18 to 75

years. There was a high proportion of participants aged 40 and

under (n = 459, 63% of the sample) with a smaller representation

for those aged over 40 (Figure 2). Most participants completed

assessments in full-screen mode (83%, n = 606).
Bayesian analysis results

The best fitting likelihood distributions for all cognitive

outcome measures in the Bayesian GLM were non-normal.
FIGURE 2

Stacked bar graph of distribution of ages represented in the participant sam
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Results from Bayesian models examining age coefficients in the

different groups are presented in Table 1, alongside the

likelihood distributions providing best fit for each outcome

measure. These show a decline in performance with age for PAL

and SWM, reflected in odds ratios (ORs) and Incidence Risk

Ratios (IRRs) for age coefficients greater than one for error

measures (PALTEA, SMBE) and efficiency of search strategy

(SWMS). Age coefficient ORs and IRRs of less than one are seen

for correct responses on PAL (PALFAMS), similarly reflecting a

decline in performance with age. No significant effect of age is

seen for RVP outcome measures (RVPA’ and RVPPFA).

Posterior distributions generated by age are shown in Figure 3,

showing age-related shifts in posterior distributions. For some

measures these shifts are visually more apparent (e.g., PALTEA,

PALFAMS and SWMBE), for other measures these are more

subtle (SWMS) or not present (RVPA’, RVPPFA), in keeping

with the strength of age coefficients shown in Table 1. The

posterior distributions also highlight the non-normal

distributions obtained for the cognitive test data.

Test performance differs by sex and education for several

outcome measures. A visual overview of posterior distributions

by sex and education categories is provided for PALTEA in

Figures 4, 5, all others are provided in Supplementary Materials.

Figure 4 shows a notable skew towards the zero errors for this

task, particularly for younger participants, showing that many

participants are performing at or around test ceiling. This skew

towards zero errors remains present at older ages, albeit with a

less extreme probability peak around zero, and a more breadth in

response probability. Age effects are modestly more elevated for

women on PALTEA, albeit not significantly so as shown by the

overlapping confidence intervals for male and female groups

(Table 1). Comparing PALTEA performance between women

and men shows overall better performance of men than women
ple by sex.
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TABLE 1 Age coefficients for Bayesian models in different sample groups.

Outcome measure Bayesian models parameters and age coefficients within each sample [95% confidence intervals]

Model likelihood
distribution

Coefficient All
subjects

Modelled by sex Modelled by sex and education
level

Male Female Male education Female
education

High Low High Low
PAL First attempt memory
score (PALFAMS)

Zero one inflated beta Odds ratio 0.989
[0.986–1.000]

0.993
[0.986–
1.000]

0.986
[0.979–
0.992]

0.989
[0.981–
0.998]

1.004
[0.992–
1.016]

0.985
[0.976–
0.994]

0.988
[0.978–
0.997]

PAL total errors adjusted
(PALTEA)

Zero one inflated beta Odds ratio 1.015
[1.004–1.019]

1.011
[1.004–
1.019]

1.019
[1.011–
1.027]

1.013
[1.004–
1.023]

1.004
[0.989–
1.020]

1.023
[1.012–
1.034]

1.016
[1.004–
1.028]

RVP probability of false
alarm (RVPPFA)

Zero one inflated beta Odds ratio 0.999
[0.994–1.005]

1.003
[0.994–
1.011]

0.996
[0.987–
1.004]

1.002
[0.992–
1.012]

1.005
[0.988–
1.020]

0.996
[0.984–
1.007]

0.995
[0.983–
1.007]

RVPA A prime Beta Odds Ratio 0.999
[0.995–1.003]

1.000
[0.993–
1.006]

1.000
[0.994–
1.005]

1.000
[0.992–
1.007]

1.002
[0.991–
1.013]

0.999
[0.991–
1.007]

1.001
[0.994–
1.008]

SWM strategy (SWMS) Hurdle negative binomial Incidence Risk
Ratio

1.005
[1.002–1.007]

1.005
[1.002–
1.009]

1.003
[1.000–
1.007]

1.007
[1.002–
1.011]

1.002
[0.995–
1.008]

1.002
[0.997–
1.007]

1.005
[1.000–
1.009]

SWM between errors
(SWMBE)

Hurdle negative binomial Incidence Risk
Ratio

1.011
[1.005–1.016]

1.011
[1.003–
1.020]

1.010
[1.003–
1.017]

1.010
[0.999–
1.020]

1.015
[1.000–
1.030]

1.013
[1.002–
1.024]

1.010
[1.000–
1.019]

Odds ratios and incidence risk ratios presented alongside 95% confidence intervals. In bold are values where 95% confidence intervals do not straddle 1, indicating a significant age coefficient.
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across the lifespan, and with differences becoming more

pronounced with older age, and with larger drops in

performance with increasing age in women (Figure 3). Higher

education is associated better PALTEA performance across all

age ranges in both men and women (Figure 5), as indicated by

modestly higher (albeit not statistically different) age coefficients

within higher education groups. Reduced age differentiation is seen

in men with a lower education, reflected in the non-significant

coefficients for this model as seen in Table 1 (OR = 1.004, 95%

confidence intervals: 0.989–1.020).
Comparison with more traditional methods

Linear regression results are provided in Table 2. The direction

of effect for linear models is complementary to those generated

from the Bayesian approach. Linear regression identifies a

significant effect of age for PAL and SWM outcome measures,

but not for RVP. Measures show an increase in errors and a

reduction in accurate responding with age. Educational level

contributes to episodic memory test performance on PAL. No

education effects are seen for the test of spatial working memory

(SWM); however, this was the only test in which linear models

identified sex differences, with strategy scores being significantly

lower in males than females, showing better performance.

Complementary results are generated in Bayesian analysis, where

age coefficients are significantly elevated for men (and highly

educated men in particular), but not for women. A discrepancy

in results dependent on methodology is seen for results from the

RVP. Using linear regression methods, educational level is
Frontiers in Digital Health 06
associated with increased response sensitivity using the linear

regression method. However, women and men with high

education level are not found to perform better on the RVPA’

outcome measure using Bayesian analysis.

However, for all model residuals were non-normally distributed,

showing either skewed distributions (floor: SWM Between errors,

PAL total errors adjusted; ceiling: PAL first attempt memory score,

RVP A’), or bimodal distributions (SWM strategy).

Stratified methods of deriving normative data provide similar

overall results (see Supplementary Tables 1–6 for means, standard

deviations and percentile ranges using age-, sex- and education-

stratified groups). Results also indicate incremental deterioration in

performance with increasing age. However, the results also show

limits to the range of normative percentiles due to skew in the

underlying datasets. The performance percentiles attainable by

individuals with perfect scores vary significantly with age, with

showing low percentile estimates (as low as <75th centile) for

perfect test performance, particularly for younger participants.
Sensitivity analysis: cross sectional
comparison

Scatter plots comparing Bayesian vs. stratified and linear

regression methods for deriving performance percentiles show

positive relationship between methods. However, a curvilinear

relationship between percentiles derived in these different ways is

seen for certain outcome measures when comparing Bayesian

methods to stratified and linear regression methods

(Supplementary Figures 1–12). This was typically accentuated for
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FIGURE 3

Posterior distributions for outcome measures by age, with raw scores on the x-axis and posterior distribution density on the y-axis, shown different
colours for three age groups (orange = 20, blue = 40, and black = 60). Density scales are based on 20,000 predictions so sample size is fixed with no
missing data. Range of density is determined by kernal (guassian) and bandwith used, and depends on the variance and scale of the outcome measure.
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younger participants with better task performance in tasks

characterised by greater data skew. For these participants

normative conversions were constricted more strongly within the

top centiles using stratified and linear regression methods but

allow a broader spread of percentile scores using Bayesian

methods. This can be seen as an artifact of the high levels of

ceiling performance in the younger groups, when normative data

is generated through stratified and regression methodologies.

The number of participants classified to <25th, 25th–75th and

>75th percentile groups was compared across each method

(stratified, linear regression and Bayesian GLM) for each age

category as defined using stratified normative data methods. The

different methods used did not result in a statistically significant

difference in number of participants allocated to each percentile

group (<25th, 25th–75th and >75th) for most outcome measures

(Supplementary Tables 7–9). In the 18–24 year age-group,

different methods yielded a significant difference for SWM

between errors (p = 0.02) within the subsample. More specifically,
Frontiers in Digital Health 07
the Bayesian method typically classified participants more evenly

across the percentile groups. This can be attributed, at least in

part, to data skew, which limits the breadth of the distribution

available for deriving normative ranges using stratified and linear

regression methods. For example, for a male age 18–24 with a

higher educational level the highest percentile score attainable on

the SWM between errors is 72% using stratified methods and

around 81% using linear regression methods. This limits

allocation of participants to the higher performing group.
Discussion

In the current study, a large but sparsely sampled health

population was used to generate a large synthetic normative

dataset capturing cognitive processes on the CANTAB. Bayesian

methodology allowed modelling of non-normally distributed

measures as a function of age, sex and education. Cross-
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FIGURE 4

Posterior distributions for PALTEA by age and sex, with PALTEA raw
scores on the X axis and posterior distribution density on the Y axis,
shown different colours for three age groups (orange = 20,
blue = 40, and black = 60).

FIGURE 5

Posterior distributions for PALTEA by age, gender and education),
with PALTEA raw scores on the X axis and posterior distribution
frequency on the Y axis, shown different colours for three age
groups (orange = 20, blue = 40, and black = 60).
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validation of Bayesian and other well-established methodologies

included age stratification where performance-based norms are

derived from specific grouped age-ranges often spanning multiple

years (31). In addition, the linear regression method which

assumes equal rates of change in test performance across the

lifespan (32). In a random subsample of 200 participants, it was

established that the Bayesian approach showed a good degree of

convergence with other established methods. However, it also

allowed a broader spread of available normative data, by

suppressing normative scores for participants performing at

ceiling level to a lesser extent.

Whilst the Bayesian method developed in the current study

performed comparably to other established methods, it also has

clear benefits over the others. Normative data using stratification

methods would require extremely large samples to incorporate

sufficient variation at each stratum segregated by age, sex and

educational level. As a result, normative data derived using these

methods in the literature typically stratifies by broader age-

groups, and infrequently by sex and educational level (31) since

these tend to reduce restrict sample sizes which can introduce

spurious variation. Gathering norms on a large-scale is crucial

for understanding age-related changes in cognitive functioning.

As the population changes, including an increasing aging

population, the use of normative data will provide an accurate

screening reference for clinical samples. The current findings on

normative data are inconsistent with some indications that age,

sex and education level influences performance whearas others

have not found his association.

The current study indicates that sex and education may

influence certain cognitive test profiles on CANTAB. These
Frontiers in Digital Health 08
demographic measures may therefore be important to consider

when considering the level of performance of a particular

individual in relation to his or her peer group. Sex differences

have been consistently documented in neuropsychological

assessments and are in line with the findings from this study

(33). Previous work with the CANTAB has shown better

performance by men on measures of spatial working memory

(26, 34) but less clear patterns for visuo-spatial episodic

memory as measured by PAL (10, 35) and RVP (32, 34).

Similarly, our findings of a decline in cognitive function

increasing with age has been widely documented (36, 37). All

methods for deriving normative data reflect a decline in

cognitive function with age in tests of working and episodic

memory (SWM and PAL, respectively), and no clear change

with age for a measure of sustained attention (RVP). Similar

age-related declines are reported in various countries using

more typical laboratory-based assessments (32, 38, 39).

Education does not appear to moderate the degree of age-

related decline (40) with longer education consistently

associated with improved cognitive functioning (41). Indeed,

educational effects on the laboratory-based CANTAB

assessments are well documented (32, 42, 43). Moreover, using

stratified methods where performance measures are grouped

for specific age-ranges (often spanning multiple years) (26),

normative conversions may suffer from “age boundary” effects,

due to more rapid cognitive change occurring during certain

stages of life (i.e., in older age) (9). These “age boundary

effects” flatten out normative estimates of cognitive

functioning over the age-range during which performance has

been aggregated and can result in in same raw scores
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TABLE 2 Results from linear models of CANTAB outcome measures, intercept, regression coefficients and statistics for age, sex (male = 0, female = 1) and
education level (low= 0, high = 1).

Outcome measure Linear model predictors

Intercept Age Sex Education level

Estimate
(std error)

t-value Estimate
(std error)

t-value Estimate
(std error)

t-value Estimate
(std error)

t-value

PAL First attempt memory score (PALFAMS) 16.35 (0.54) 30.46*** −0.07 (0.01) −5.82*** −0.03 (0.29) −0.12 0.71 (0.31) 2.31*

PAL total errors adjusted (PALTEA) 5.039 (1.53) 3. 30** 0.20 (0.03) 6.16*** −0.10 (0.83) −0.12 −2.31 (0.88) −2.62**
RVP probability of false alarm (RVPPFA) 0.016 (0.004) 3.73*** 0.0001 (0.0001) −0.59 −0.0005 (0.002) −0.21 −0.001 (0.003) −0.51
RVPA A’ 0.91 (0.009) 104.84*** −0.00003 (0.0002) 0.27 0.005 (0.005) 0.27 0.007 (0.005) 1.48*

SWM Strategy (SWMS) 5.18 (0.38) 13.73*** 0.03 (0.008) 3.57*** 0.57 (0.21) 2.74** −0.01 (0.22) 0.96

SWM Between errors (SWMBE) 1.86 (1.15) 1.61 0.14 (0.02) 5.83*** 0.82 (0.63) 1.30 −0.05 (0.67) 0.94

***p < 0.001, **p < 0.01, *p < 0.05.
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artifactually producing very different normative scores when a

participant crosses into another normative age group on later

retesting. Normative data derived in this way may therefore be

less suited to deliver the precision needed to differentiate

between the normal aging process, clinically meaningful

change and measurement artifact.

Generalisation of the study results is limited by the combined

homogeneity and heterogeneity of its underlying population. The

sample was homogeneous in its predominance of younger and

more highly educated participants; however, similar recruitment

biases have been identified in a number of web-based studies

(44). Simultaneously, the sample is heterogeneous in its cultural

and geographic breadth. As a study of web-based assessment

collected using the assessment platform Prolific.co, it is likely to

reflect the demographic of participants on this platform at the

time where the study was carried out. Cross-regional differences

in performance on CANTAB have been noted, where age and

sex-stratified norms from developing countries tend to be lower

than those from western populations and industrialised Asian

countries (32). Due to limited samples from different

demographic regions these aspects were not explored in the

current study. It is also advisable to further examine socio-

demographically diverse older adults which is a common

limitation in remote studies that demonstrate high adherence but

a homogenous sample of older adults (45). This is particularly

important due to barriers such as social isolation which may

hamper early detection of cognitive alterations. Care is likely

required in the matching of the normative population to the

population of interest, even when considering neuropsychological

data acquired on web-based platforms. Another limitation may

be that monitoring attention is not feasible with remote

assessments. Nonetheless, reviews comparing remote to in-person

studies have shown comparable results (46, 47) in clinical

populations. It has also been recommended that deriving

remotely collected norms will inform remote clinical assessments

(48). Further studies comparing remote and in-person

assessments, in particular regarding attention and particularly in

diverse populations, are warranted.
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