AUTHOR=Jeong Harim , Yoo Joo Hun , Goh Michelle , Song Hayeon TITLE=Deep breathing in your hands: designing and assessing a DTx mobile app JOURNAL=Frontiers in Digital Health VOLUME=6 YEAR=2024 URL=https://www.frontiersin.org/journals/digital-health/articles/10.3389/fdgth.2024.1287340 DOI=10.3389/fdgth.2024.1287340 ISSN=2673-253X ABSTRACT=

Digital Therapeutics (DTx) are experiencing rapid advancements within mobile and mental healthcare sectors, with their ubiquity and enhanced accessibility setting them apart as uniquely effective solutions. In this evolving context, our research focuses on deep breathing, a vital technique in mental health management, aiming to optimize its application in DTx mobile platforms. Based on well-founded theories, we introduced a gamified and affordance-driven design, facilitating intuitive breath control. To enhance user engagement, we deployed the Mel Frequency Cepstral Coefficient (MFCC)-driven personalized machine learning method for accurate biofeedback visualization. To assess our design, we enlisted 70 participants, segregating them into a control and an intervention group. We evaluated Heart Rate Variability (HRV) metrics and collated user experience feedback. A key finding of our research is the stabilization of the Standard Deviation of the NN Interval (SDNN) within Heart Rate Variability (HRV), which is critical for stress reduction and overall health improvement. Our intervention group observed a pronounced stabilization in SDNN, indicating significant stress alleviation compared to the control group. This finding underscores the practical impact of our DTx solution in managing stress and promoting mental health. Furthermore, in the assessment of our intervention cohort, we observed a significant increase in perceived enjoyment, with a notable 22% higher score and 10.69% increase in positive attitudes toward the application compared to the control group. These metrics underscore our DTx solution’s effectiveness in improving user engagement and fostering a positive disposition toward digital therapeutic efficacy. Although current technology poses challenges in seamlessly incorporating machine learning into mobile platforms, our model demonstrated superior effectiveness and user experience compared to existing solutions. We believe this result demonstrates the potential of our user-centric machine learning techniques, such as gamified and affordance-based approaches with MFCC, which could contribute significantly to the field of mobile mental healthcare.