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Dicing with data: the risks,
benefits, tensions and tech of
health data in the iToBoS project
Niamh Aspell1, Abigail Goldsteen2 and Robin Renwick1*
1Innovation & Research, Trilateral Research Ltd., Waterford, Ireland, 2Data Security and Privacy, IBM
Research, Haifa, Israel
This paper will discuss the European funded iToBoS project, tasked by the
European Commission to develop an AI diagnostic platform for the early
detection of skin melanoma. The paper will outline the project, provide an
overview of the data being processed, describe the impact assessment
processes, and explain the AI privacy risk mitigation methods being deployed.
Following this, the paper will offer a brief discussion of some of the more
complex aspects: (1) the relatively low population clinical trial study cohort,
which poses risks associated with data distinguishability and the masking
ability of the applied anonymisation tools, (2) the project’s ability to obtain
informed consent from the study cohort given the complexity of the
technologies, (3) the project’s commitment to an open research data strategy
and the additional privacy risk mitigations required to protect the multi-modal
study data, and (4) the ability of the project to adequately explain the outputs
of the algorithmic components to a broad range of stakeholders. The paper
will discuss how the complexities have caused tension which are reflective of
wider tensions in the health domain. A project level solution includes
collaboration with a melanoma patient network, as an avenue for fair and
representative qualification of risks and benefits with the patient stakeholder
group. However, it is unclear how scalable this process is given the relentless
pursuit of innovation within the health domain, accentuated by the continued
proliferation of artificial intelligence, open data strategies, and the integration
of multi-modal data sets inclusive of genomics.
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1 Introduction

Balancing the risks and benefits of using medical and genomics data for diagnostic

clinical decision support tools is a complex task. Principles of medical ethics such as

autonomy, beneficence, and non-maleficence are weighed against broader concepts such

as privacy, security, safety, bias, explainability, and cost. Concerns are further

compounded by the proliferation of Artificial Intelligence (AI) in the health domain,

intending to improve healthcare by aiding the clinician’s knowledge or by highlighting

suspicious observations that are otherwise unobservable. In addition to fundamental
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societal harm, careless deployment of AI technologies may result in

negative brand reputation, lawsuits, and regulatory fines. This has

led to the rise of the concept of Trustworthy AI, sometimes

called Responsible AI or AI Ethics1. Making AI systems

trustworthy depends on the ability to ensure that they are fair,

robust, explainable, accountable, respectful of the privacy of

individuals and cause no harm. Trustworthy or Responsible AI

typically entails considering these aspects when designing,

implementing, and deploying AI-based solutions.

This paper will discuss the iToBoS project, in which an AI

diagnostic platform for early detection of melanoma is being

developed. Assuring the project’s solutions are produced in an

ethically and socially responsible manner, with regulatory

compliance at their core, is one of the project’s primary goals.

Stating the goal of the project is relatively straightforward but

achieving the goal adequately is less so—especially when research

tasks are considered alongside an evolving health sector (1). This

paper will communicate existing tensions in the development of

the iToBoS tools, with specific focus on the privacy aspect, which

is one of the main trustworthiness aspects tackled in the project.

We will outline the AI Privacy technologies that are deployed as

risk mitigation measures. This includes tools for anonymising the

AI model training data and AI models themselves, and to

support adherence to the data minimisation principle. The article

will conclude with a brief discussion on the existing complexities

of balancing risk and benefit when developing AI diagnostic

platforms, with specific focus on understanding perspectives of

privacy, explainable AI, and the cost/benefit calculation from

predominant stakeholders such as patients, clinicians, and the

wider health research community.
2 iToBos and its data

IToBoS is a European-funded research project, in which the

core research task is to develop an AI diagnostic platform for the

early detection of melanoma. The platform includes a novel total

body scanner and a Computer-Aided Diagnostics (CAD) tool,

incorporating relevant data such as patients’ clinical data,

phenotypic data, genetic data, skin imaging, and records of

familial melanoma. The AI component of the platform has two

primary functions. First, high-resolution skin images will be

captured, analysed and classified to aid melanoma detection and

classification. Secondly, the images will be integrated with

available patient data to train machine learning (ML) models in

the development of an AI-based “cognitive assistant” (AICA).

The iToBoS platform will subsequently provide clinicians with a

personalised risk assessment to support the early diagnosis of

melanoma. The intention is to improve the skin melanoma
1For a high-level overview of Trustworthy, Responsible or Ethical AI

initiatives, the authors point to this reference. https://www.aiethicist.org/

frameworks-guidelines-toolkits
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detection and classification processes (previously a labour-

intensive task completed manually by clinicians), and to provide

further insights into patient health through the detection of

patterns across otherwise indirectly connected data sets.

With the direct involvement of clinicians in the project, iToBoS

was able to select a range of features to include in the development

of the AICA. The data points have demonstrated, through prior

melanoma research, relevance to skin melanoma prognosis (a

prediction of the probable course and outcome of a disease).

These include data pertaining to the patient’s phenotype such as

skin pigmentation, ancestry, hair and eye colour, and lifestyle

factors, such as sun exposure habits (2, 3). In addition to these

recognised phenotypic determinants, individuals with certain

hereditary gene mutations also have an increased, or

compounded, risk of developing melanoma (4). The collection of

phenotypic and genetic data has raised concerns in recent years,

as they have been targeted for exploitation by researchers,

employers, insurers, and law enforcement (5). Genomic studies

have identified various susceptibility variants for melanoma. This

means that researchers have identified genomic variants that

seem to determine an individual’s susceptibility to developing

melanoma. Combining these variants into polygenic risk scores

(PRS) may offer important information to clinicians and provide

an additional layer of privacy (6). The risk scores are used to

estimate patients’ risk of developing particular diseases. In the

iToBoS project clinicians will evaluate and assign a PRS to

patients who “opt-in” for genetic screening.
3 Privacy impact assessment+

In iToBoS, project specific concerns related to medical data and

genomics are evaluated through the conducting of a Privacy Impact

Assessment + (PIA+). The process considers privacy from the

standpoint of the current ISO PIA standard (ISO/IEC

29134:2017) (7). In the project context, the “+” designates that

additional domains are also considered alongside privacy, such as

ethics, society, and law. At a high level, the PIA + tool is a

vehicle for identifying possible risks, forecasting implications, and

proposing mitigation measures during the development lifecycle.

It has been used effectively across a number of recently funded

EU projects (e.g., SOTER2, EUNOMIA3, and AQUA3S4).

Additionally, the PIA + process is completed in a public and

open manner, acting as a vehicle for building trust, as well as an

accountability and transparency tool (8, 9).

It is intended to:

• Help minimize potential risks and harms, while signposting

future (post-project) concerns for the iToBoS technology.
2https://cordis.europa.eu/project/id/833923
3https://cordis.europa.eu/project/id/825171
4https://cordis.europa.eu/project/id/832876
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• Support the pursuit of compliance with regulatory frameworks,

such as the European General Data Protection Regulation

(GDPR) (10).

• Contribute to informed decision-making and development of

mitigation measures to minimise privacy, social and ethical

risks for individuals, organisations, and society.

In practice, the PIA + is conducted in a similar manner to a risk

assessment. System features, assets and data flows are initially

identified, with collaborative analysis then conducted to understand

system specific vulnerabilities and their associated risks. These

risks are defined qualitatively, with a description communicated

alongside a qualification of the potential impact (i.e., low, medium,

high), and probability of occurrence (i.e., low, medium, high). The

process is analytical in nature, as opposed to empirical, but is used

to focus efforts across the development team, and drive ideation

and creation of solutions for identified risks.
4 AI privacy

One of the core elements of iToBoS is the development of a

privacy-respecting AICA. In order to develop this, a number of

tools are deployed to ensure that any data used during the AI

development process, as well as the resulting models, are

adequately protected. In an AI system, it is necessary to ensure

that data (whether for testing, validation or training) is

adequately and lawfully collected, stored, protected, and

governed. It is also critical that there is a legitimate purpose for

processing. Recent studies have shown that a malicious third

party with access to a trained machine learning (ML) model,

even without access to the training data itself, can reveal sensitive

information about the people whose data was used to train the

model (11). It is therefore important to address privacy aspects

both with the datasets and resulting models.

The technical approaches taken to address AI privacy risks in

the iToBoS project will be described, including anonymising

training data to yield an anonymised model, and applying data

minimisation to the newly collected data for analysis.

Both AI privacy methods applied to iToBoS are currently

available in the open-source ai-privacy-toolkit (12). Initial results

indicating the applicability of these technologies to health-related

data have been recently demonstrated (13).
5https://www.dhcs.ca.gov/dataandstats/data/Pages/ListofHIPAAIdentifiers.aspx
4.1 Anonymising models

According to GDPR, anonymous data is data from which the

data subject is no longer identifiable. It has been shown in the

past that simple removal of direct identifiers is not enough to

achieve this goal (14). Therefore, more sophisticated methods

such as k-anonymity and differential privacy have been

developed. As the iToBoS project intends to publish research

datasets and models, it is important to apply one of these

techniques, to reduce the risk of patient re-identification in

published results.
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4.1.1 Possible approaches
K-anonymity (15) is a method that attempts to reduce the

probability of people being identified when publishing datasets

that contain personal information, even when linking them

with other data sources. It involves generalizing some of the

attributes, and sometimes also deleting select records, until each

record in the dataset is indistinguishable from at least k−1
others. Traditionally, ML models trained on anonymised data

tend to suffer from very poor accuracy. Therefore, a model-

guided anonymisation method was proposed (16) that utilizes

knowledge encoded within the model to create an

anonymisation tailored to that specific model, thus retaining

more utility than non-tailored approaches.

Differential privacy (DP) is another known approach to reduce

the effect of individual data records on a model’s outcome (17).

This is achieved by adding noise during training. This type of

approach requires changing the ML algorithm implementation

and is therefore more difficult to use in practice. Yet another

possible approach entails generating synthetic data that shares

desired characteristics with the original data (18).

The iToBoS project intends to publish training datasets as part of

iToBoS challenges. These are open hackathon type events where

development teams can experiment with novel data sets—similar

to the International Skin Imaging Classification Challenges (ISIC)

(19). The project will also likely release the models themselves, so

a model-guided anonymisation approach (16) that enables

anonymising tabular data and models in the same manner, whilst

providing adequate privacy protection guarantees was selected.

Typically, k-anonymity methods require that a list of quasi-

identifiers (QI) be determined. These are attributes (features)

that may be used to re-identify individuals when combined with

each other or linked with other external datasets. To determine

which features should be treated as QI in the tabular data

collected in iToBoS, we plan to both use as reference the list of

HIPAA identifiers5 and apply a risk analysis tool (20) to identify

potential QIs.
4.2 Minimising the collected data

GDPR dictates the principle of data minimisation which

requires organisations to collect only the data that is required to

achieve a given purpose. Advanced ML algorithms, such as deep

neural networks, tend to consume large amounts of data to

produce a prediction, and often result in “black box” models

where it is difficult to derive exactly which data influenced the

decision (21).

To this end, a method for data minimisation that can reduce

the amount and granularity of input data used to perform

predictions by ML models was developed (22). Once a model is

trained and validated, the method allows a re-evaluation of
frontiersin.org
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exactly what data is required for the model to be accurate. Using

knowledge encoded in the model, it tries to determine whether

input features may be generalized, or completely removed,

without reducing overall model accuracy. For example, instead of

exact ages, it may be possible to use 5- or 10-year ranges.

Even if there are cases where all the collected data is required to

achieve the model’s original accuracy and no generalisation may be

performed, it still must be demonstrated that this is the case.
5 Risk v utility

As mentioned, training ML models with sensitive and personal

data poses enhanced privacy risks. Once algorithms have been

trained, an adversary observing the model but without access to

the training data, can apply inference algorithms to re-identify

information related to the training cohort (23). Reports

published by the Information Commissioner Office (ICO) and

the National Institute of Standards and Technology (NIST)

highlight the privacy risks of data from ML models, and how the

risks of using the AI tools should be outweighed by its utility

(24, 25). A proposed response has emerged in the form of

guidance, authored by cybersecurity researchers and focused on

the development of privacy risk evaluation tools (26). The

application of probabilistic programming to quantify indirect

data leakage using tools such as “Privug” offer solutions for both

privacy researchers, and data controllers, to conduct analysis in

order to make informed decisions when anonymising data

(27, 28). In a similar fashion, a recent publication from the

European Union Agency for Cybersecurity details risks

associated with medical imaging data for diagnosis (29). The

agency outlines 29 measures (as well as associated threats and

vulnerabilities), split into generic and specific controls.

While tools and methods have emerged in response to the

identified risks, the task for AI developers, research teams, and

the health domain remains complex. Proposed mitigations

include tasks such as regular auditing, bias detection and

mitigation strategies, AI conformity assessments, and ongoing

compliance with data protection obligations. Privacy- and

Security-by-Design strategies are recommended, as well as formal

Data Protection- or Privacy- impact assessment processes. These

methods are viewed as integral components of responsible

design, development, and deployment. However, even given the

array of risk mitigation methods available and recommended,

complexities remain. It is rational to assume that no overarching

panacea to emerging health domain risks exists, especially as

risks are continually spurred on by relentless adoption of new

technology. It is also rational to assume that the application of

formal mitigation strategies slows the pursuit of progress,

creating burdens (both technical and practical) for compliance

managers, data ethicists, ethics managers, impact assessors,

computer scientists, and so on. In the section below we will

outline some of the complexities found within the iToBoS

project, and demonstrate how these might be viewed as

representative of wider complexities found in the health domain.
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Within iToBoS, tasks primarily focused on risk and impact

mitigation are included but delivering them adequately has posed

problems. Firstly, some unique challenges arise when applying

anonymisation to data collected in iToBoS. The most

predominant issue of concern is the relatively small size of the

dataset. The initial study planned to collect data from around

500 patients. This means that in order to gain meaningful

insights, the selected privacy parameter (k-value) cannot be too

high. A related issue stems from the sparseness of some of the

features included in the data set. For example, since only a few

clinical sites are involved, country of residence tends to be very

centralised to the country where the study is being conducted,

with only a few outliers. Country of birth is also similarly

distributed, with a very high tendency (>80%) towards the site

country, and very sparse presence in other locations. This may

be solved by manually removing some of the features or records

or by binning multiple possible feature values together, before

starting the automatic anonymisation process.

Secondly, data collection is dependent on adequate informed

consent being collected from patients. In practice, this means

that patients are required to fully understand how data is being

processed, by whom, the purpose for processing, and what the

initially identified risks are. Adequately explaining how machine

learning algorithms will be deployed, what inferences they may

make, and what patterns they may detect while ingesting multi-

modal data sets, however, is not simple. Prior research has

identified problems with clinical trial consent (30), and this is

further complicated in iToBoS given the specific masking

techniques being applied to multi-modal collected data. What

level of understanding do we expect patients to have of machine

learning technologies, and how cognisant can we realistically

expect them to be of the broader risks as well as the proposed

mitigation strategies provided by the anonymisation tools?

Third, while iToBoS utilises project specific clinical data for the

development of the AICA, the project also commits to contributing

to the ISIC challenges and associated archive (19). The ISIC archive

is a platform for open and collaborative AI-based skin melanoma

diagnosis and promotes the sharing of clinical skin imaging data

for the benefit of researchers, patients, clinicians, and the wider

health research community. This open data commitment poses

additional risks for the study cohort, and so demands that

additional anonymisation efforts are applied to the collected data.

While specific methods may be adequate to mitigate privacy

concerns at a local level, additional steps are required to

sufficiently mitigate risks if data is intended to be shared for

further processing. This is especially complex given the proposed

release of multi-modal data sets, which may afford a greater

degree of inference given possible data combinations.

Lastly, clinicians currently have limited understanding of how

machine learning algorithms infer specific prognoses for

melanoma. This limitation affects clinicians’ ability to adequately

explain to the patient how the AICA reached its conclusion. The

black-box nature of algorithms has the potential to alter aspects

of classical medical ethics (31) including accountability, liability,
frontiersin.org
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and the ability of the clinician to develop experience and expertise

in manual prognosis (and diagnosis) according to professional

norms. In the medium to long term, clinicians might become

more dependent on the output of a technology, rather than

building their own professional corpus on how to compare,

contrast, and correlate multi-modal streams of health data.

iToBoS has specific explainable-AI (xAI) tasks that seek to

mitigate this explainability risk—but formally understanding the

xAI requirements has also proven to be problematic. The project

will provide an xAI framework so that computer scientists can

understand how algorithms have arrived at lesion detection,

classification, or overall skin melanoma risk-profile conclusions.

However, researchers are also attempting to clarify exactly what

sort of information (and in what detail) is required so that

clinicians and patients can also understand (and be able to

explain) how the AICA has arrived at a specific prognosis, or

patient risk score. These two types of explanations differ

substantially, and it has proven difficult to balance the two,

sometimes competing, requirements. Additionally, the project is

continually attempting to balance requirements for privacy, data

utility and explainability. Researchers are simultaneously striving

for privacy-preserving data ingestion as well as for trained

model accuracy and efficiency. Balancing competing

requirements is complex and requires problem framing through

varied privacy, machine learning, and security lenses (32)—

which inevitably slows progress and stifles aspects of innovation.

There are tools that can help this calculation, but they inevitably

rely on some level of qualitative assessment, based on subjective

experience, expertise, and problem framing. While no subjective

assessment is perfect, the iToBoS project does try to include

multiple stakeholders in the assessment process, with the

intended goal to reach some form of broad consensus regarding

risks and benefits.
6.1 Patient led mitigation

One of the research partners in the iToBoS project is the

Melanoma Patient Network of Europe (MPNE). They are a

network organisation that includes melanoma patients, carers

and advocates drawn from across Europe. Their mission is to

provide a platform for communication and collaboration between

patients, researchers, and health service providers. They also

provide a channel through which initially identified risks can be

validated, and mitigation methods developed, in a collaborative

fashion—regardless of whether they were identified through

qualitative impact assessment processes or formal quantitative

assessment of anonymised data. This process allows

technologists, model developers, and researchers to understand

their role and responsibilities alongside the voice of the patient,

as opposed to the vacuum of the computer science laboratory.

Researchers can canvas opinions on a wide range of topics, from

artificial intelligence to big data, from genomic screening and

risk-scoring to ergonomic and inclusive design of skin imaging

hardware. This collaboration does not guarantee a perfect

outcome, but it helps to foster a more patient-centric project,
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explainability, trustworthiness and privacy mitigations are being

perceived and understood by patients, which in turn informs

how deeply clinicians might adopt (and trust) algorithmically led

decision support systems.

This patient-led strategy is not new, with recent studies being

conducted in a wide range of health sub-domains, from the use

and adoption of Electronic Health Records (EHR) (33) to

machine learning and artificial intelligence (34, 35). Attempting

to understand patient views, both positive and negative, allows

researchers to frame wider implications and potential

apprehensions of emerging technology. It also supports a

robust qualitative avenue of enquiry for the risk vs. utility

calculation. AI and data privacy remains a high-agenda topic

across European and Global policy and regulatory initiatives,

but less is known about how patients view AI clinical decision

support tools, the associated privacy risks, and the degree to

which patients would be willing to share their health data if

provided the autonomy to consider the risks and potential

health opportunities accurately (36). This sentiment is shared

by McDougall (2019), who proposes the need for “value-

flexible AI”, essentially moving from clinician-based support

tools to shared decision supports, ultimately advocating

for continual patient engagement in medical decision making

(37). While there is merit in this proposition, it is unclear

whether this sort of patient engagement is achievable (or

sustainable) in the short to medium term, as AI tools

proliferate the market, strongly dictating their adoption into

the broader health domain.
7 Discussion

Market forces (more often than not) dictate the speed and

depth at which new technologies embed themselves into society

(38). This is no different in the health domain, even given the

complex social, ethical, privacy and security concerns that have

(and will continue to be) raised. The strong hand of regulation

has been proposed as the predominant risk mitigator, whether

enforced through strict obligations regarding the use of AI (39),

medical devices (40), or the oversight and regulation of

European Health Data Spaces (41). The seeming tension

between the European Commission’s desire for open-data—

governed through its Digital Strategy—and the risks inherent

with the generalised sharing of health, genomics, and model

data is a concern that is yet to be fully addressed. Information

potentially revealed by certain data-led health strategies is

classified as sensitive in most (if not all) situations, with risks

amplified as machine learning algorithms are applied to a broad

range of prognosis and diagnosis methods. However, it is also

fair to assume that excessively rigid regulations may limit

innovation (42, 43, 44), and potentially restrict society from

reaping the full public health benefit, especially when genomics

are involved. While the perspective of how exactly market

forces skew the evolution of public health has been

communicated (45), there is also loose consensus that
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algorithmic technology can provide immense benefits for societal

well-being, bring concrete efficiencies, and provide measurable

improvements to the provision of healthcare (46).

Moving forward, conversations should continue to include a

multitude of stakeholders—patients, clinicians, advocacy bodies,

policy makers, and technologists—but it is still not clear if

discussions will provide meaningful resolution to a host of

ongoing concerns surrounding explainability, trustworthiness,

open-data, privacy, and machine learning. Within iToBoS, efforts

have been made to incorporate a wide range of stakeholder views

but it is not clear whether these methods are viable at scale.

Applying state of the art technologies to iToBoS’ data processing

allows project specific controls to be deployed, whilst learnings can

also be applied to other health domain use-cases and integrated

into high-level policy initiatives. However, it is still not entirely

clear how much impact this will have on the wider health domain,

given the rapid pace of development we are currently witnessing at

the intersection of health, data, and machine learning.

As discussed, the iToBoS project has encountered project

specific complexities that can be mitigated, such as issues with

the size and distinguishability of the clinical trial cohort data.

The project, however, has also encountered broader concerns that

it has found more difficult to navigate—especially those

surrounding meaningful consent, the required depth and range

of algorithmic explainability, and the ongoing commitment to

open data sharing. The project consortium has learned that

communicating risks and benefits in an inclusive manner is an

integral step in facilitating better research practice, as well as

providing critical groundwork in establishing public and

professional trust in the open data concept. We have also learned

the importance of ensuring (and communicating) that proper

and correct data protection and privacy technologies have been

applied during the research process. Involving patients in this

discussion is critical—even if it might seem to slow progress or

muddy the risk vs. utility calculation.

Ultimately, it should be remembered that patient groups carry

the greatest risk burden and are rewarded with the most potential

benefit—regardless of what tool is developed. Integrating their voice

throughout the development cycle is the only fair way to assess

technologies and gauge whether algorithms have impacted their

ability to make fair and proper calculations. Understanding how

well patients understand and perceive concepts related to

explainability, machine learning data set inference, and multi-modal

health data risk-profiling will not solve every nuanced problem, but

it will allow us to understand both practical and technical gaps that

need bridging, as the health domain continues to evolve.
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