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According to World Health Organization statistics, inappropriate medication has
become an important factor affecting the safety of rational medication. In the
gray area of medical insurance supervision, such as designated drugstores and
medical institutions, there are lots of inappropriate medication phenomena
regarding “big prescription for minor ailments.” A traditional clinical decision
support system is mostly based on established rules to regulate inappropriate
prescriptions, which are not suitable for clinical environments and require
intelligent review. In this study, we model the complex relationships between
patients, diseases, and drugs based on medical big data to promote appropriate
medication use. More specifically, we first construct the medication knowledge
graph based on the historical prescription big data of tertiary hospitals and
medical text data. Second, based on the medication knowledge graph, we
employ a Gaussian mixture model to group patient population representation as
physiological features. For diagnostic features, we employ pre-training word
vector Bidirectional Encoder Representations from Transformers to enhance the
semantic representation between diagnoses. In addition, to reduce adverse drug
interactions caused by drug combinations, we employ a graph convolution
network to transform drug interaction information into drug interaction
features. Finally, we employ the sequence generation model to learn the
complex relationships between patients, diseases, and drugs and provide an
appropriate medication evaluation for doctor prescriptions in small hospitals
from two aspects: drug list and medication course of treatment. In this study,
we utilize the MIMIC III dataset alongside data from a tertiary hospital in Fujian
Province to validate our model. The results show that our method is more
effective than other baseline methods in the accuracy of the medication
regimen prediction of rational medication. In addition, it achieved high accuracy
in the appropriate medication detection of prescription in small hospitals.
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1 Introduction

The rational use of medicines is safe, effective, affordable, and appropriate for treating or

curing the patient (1). The inappropriate use of medicines is a major problem worldwide.

The World Health Organization (WHO) estimates that more than half of all medicines

are prescribed, dispensed, or sold inappropriately and that half of all patients fail to take

them correctly (2). In addition, in the gray area of medical insurance supervision, such as
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designated pharmacies and medical institutions, there may be “big

prescription for minor ailments” healthcare fraud (3, 4).

Inappropriate drug use behaviors such as the overuse, underuse,

or misuse of medicines not only waste medical resources but also

lead to significant patient harm in terms of medication errors

(MEs) and adverse drug events (ADEs) (1). The WHO is

committed to promoting the rational use of medicines for clinical

physicians and pharmacists to ensure that “patients receive the

appropriate medicines, in doses that meet their own individual

requirements, for an adequate period of time” (1).

One of the key challenges in the rational use of medicines is

appropriate medication use. Compared with the safety,

effectiveness, and economics of rational drug use, the evaluation of

the appropriate use of medicines is more complicated, involving

hyper-medication, under-medication, and inappropriate medication.

To address these issues, experienced investigators are assigned to

hospitals to manage Medicare fraud detection. However, this method

becomes time-consuming and inefficient due to the large amount of

data collection. With the advent of the big data era, healthcare big

data analysis can offer predictive modeling, clinical decision

support, disease or safety monitoring, and other capabilities for

public healthcare (5). Improvements in data mining and deep

learning tools have turned attention to automated systems for fraud

detection. Several deep learning-based clinical decision support

systems (CDSSs) have been developed and deployed in hospitals to

reduce the incidence of improper drug use.

Leveraging the application of knowledge graph construction

and sequence model generation makes medication decision-

making in the field of pharmacy more scientifically rational (6).

Healthcare practitioners can gain a comprehensive understanding

of the interrelationships between medications, and sequence

generation can optimize medication plans based on patients’

medical histories, symptoms, and physiological data. For

example, in the safety of rational medicines, Shao et al. (7)

construct a probabilistic probability model of massive

prescription data based on a knowledge graph to evaluate the

risk of a drug combination by a graph search algorithm. In the

rational use of medicines, Shang et al. (8) jointly model the

longitudinal patient records as an electronic health record (EHR)

graph and the drug knowledge base as a drug–drug interaction

(DDI) graph through the generation of sequence models that

train end-to-end to provide effective and safe medication

recommendations. Based on the experimental results on real-

world EHR, GAMENet outperformed all baselines in DDI rate

reduction (8). After analyzing a large number of medical records,

the diagnosis-related groups (DRGs) payment system (9) based

on disease type has been launched by The National Medical

Insurance Administration to specify uniform drug delivery rules

and prevent excessive medical treatment. However, the single and

rigid pharmaceutical rules cannot achieve more accurate personal

medication, which also poses a major challenge to the promotion

of DRGs (10). To address this issue, we need a more flexible and

intelligent method for the evaluation of appropriate medication.

Fortunately, with the emergence of medical consortia and the

sinking of medical resources, the professional prescription

experience of tertiary hospitals can be accessed, providing us
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with new perspectives to address the problems existing in

designated pharmacies and medical institutions. Therefore, we

integrate the clinical medication experience of tertiary hospitals

and medical knowledge and transfer the learned knowledge to

small hospitals and clinics so that their prescriptions are more in

line with professional standards. To achieve these goals, we need

to address the following issues.

Owing to the large individual differences in patients, such as being

children, adults, or older, and differences in their liver and kidney

functions, nervous system, and other physiological characteristics,

the same diagnosis may lead to different treatment regimens. The

majority of drugs are administered based on the patient’s age or

weight (mg/kg) (11). Therefore, to remedy the case with greater

precision, we need to consider the individualized use of medicines.

Since the relationship between disease and symptoms is not a

simple one-to-one relationship, the occurrence of a single disease

may cause the simultaneous occurrence of multiple symptoms (12);

therefore, doctors must treat patients through the combination of

multiple drugs. Multimorbidity (13) is becoming more common

and is a growing global challenge. Therefore, it is a challenge for us

to address the complex relationship between disease and drug use.

The increase in drug species shows that the compatibility

relationships between drugs are more complicated. In addition,

there would be more drug overuse and abuse in the case of “big

prescription for minor ailments,” and polypharmacy may increase

drug side effects and even more adverse drug–drug interactions

(14–16). Therefore, DDIs should be taken into account when

evaluating the appropriateness of rational drug use to reduce

adverse reactions associated with combined drug prescriptions.

In the preceding discussion, we delved extensively into the

interconnections among patient characteristics, diagnosis, and

prescription medications. However, in real-world scenarios, the

relationships among these three components are even more

intricately intertwined. A patient’s individual attributes, such as

gender, age, and medical history, exert a significant influence on

the susceptibility to diseases, progression of the illness, and

response to treatment (11). Diverse patient characteristics may

give rise to distinct pathophysiological processes, thereby

impacting the selection of diagnostic and therapeutic strategies for

the ailment. This, in turn, substantially affects the physician’s

ability to accurately diagnose the condition and formulate an

effective treatment regimen (17). The precision of the diagnosis is

pivotal in devising a successful therapeutic plan. Simultaneously,

the choice of medications must take patient-specific features into

account, including age, gender, baseline health status, and

potential interactions with other medications (18). Furthermore,

patient attributes can also influence the individual’s response to

and tolerance of pharmaceuticals; for instance, certain medications

may be metabolized at a slower rate in older patients, necessitating

dose adjustments to avert adverse reactions. To sum up, these

three elements intricately intertwine, paving the way for patients

to access optimal treatment pathways and furnish a robust

foundation for scientifically sound medication recommendations.

To address the above issues, in this study, we propose a

regulatory framework of rational drug use based on medical

consortia and big data through mining the clinical experience of
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prescription big data and medical knowledge of drug instructions.

To be specific, we first extract information from the big data of

prescription of tertiary hospitals and medical text data, and

establish the medication knowledge graph based on the extracted

information. Second, based on the medication knowledge graph,

we extract physiological, diagnostic, and drug interaction features

through feature enhancement. Finally, we construct the sequence

generation model to solve the complex relationship between

patients, diseases, and drugs and then evaluate the appropriate

medication prescribed by doctors in small hospitals using the

model learned from a tertiary hospital.

In conclusion, the contribution of this study is as follows:

1. To the best of our knowledge, this is the first study on the data-

driven evaluation of appropriate medication use. By utilizing

extensive prescription data from tertiary hospitals and

integrating medical text information, we provide a practical tool

for assessing and improving prescription practices in small

hospitals, focusing on drug selection and treatment courses.

2. We propose a data-driven experience extraction of clinical rational

drug use and an appropriate medication evaluation framework

based on advanced deep learning techniques. This approach

facilitates the transfer of rational drug use practices from tertiary

hospitals to primary care settings, thereby ensuring safer and

more effective medication management in these environments.

3. We evaluate the proposed framework with two medical record

datasets: Medical Information Mart for Intensive Care III

(MIMIC_III) and real-world prescription big data collected

from tertiary hospitals. Results show that our method has

more accurate medication regimen prediction ability and

consistently outperforms other baselines. In addition, it has

achieved high accuracy in the appropriate medication

detection of prescription in small hospitals.

4. Our research utilizes medical big data to improve medication

use practices by addressing important public health

challenges, such as MEs and ADEs. Through the analysis of

data on prescriptions and patient outcomes, our study aims

to support the development of drug safety monitoring and

medication management practices.

5. Furthermore, the methodologies and findings of our study have

profound implications for clinical trials. Our data-driven

approach allows for a better understanding of drug efficacy

and safety across diverse patient demographics, aiding in the

design and evaluation of clinical trials. This is particularly

crucial in trials that aim to tailor medical treatments to

individual patient needs, a cornerstone of personalized medicine.

The remainder of this paper is organized as follows. We first

elaborate on the proposed framework in Section 2, and then

present our experiments in Section 3. Finally, a comprehensive

summary of our work is encapsulated in Section 4.
2 Methods

We propose a framework for the experience extraction of

clinical rational drug use and appropriate index evaluation, as
Frontiers in Digital Health 03
illustrated in Figure 1. In the medication knowledge graph

construction stage, we first extract drug triads from historical

prescriptions and medical text data, then establish a patient–

disease–drug knowledge graph. In the modeling phase, we first

employ a Gaussian mixture model (GMM) (19) to group patient

population representation as physiological features, based on the

four physiological variables of gender, age, height, and weight.

Second, we transform patients’ diagnostic information into word

vectors as diagnostic features through pre-training word vector

Bidirectional Encoder Representations from Transformers

(BERT) (20) to enhance the semantic representation between

diagnoses. Third, to reduce adverse drug interactions caused by

drug combinations, we employ a graph convolution network

(GCN) (21) to transform drug interaction information into drug

interaction features. Finally, we exploit the medication regimen

from historical prescription data to train a sequence generation

model. In the analysis stage, given a new prescription from small

hospitals or clinics, we use the trained model to predict the

rational medication regimen for the prescription, and provide an

evaluation of appropriate drug use in terms of the drug list and

medication course of treatment to physicians and pharmacists in

small hospitals. We elaborate the details of the key components

in the following.
2.1 Medication knowledge graph
construction

In this section, our objective is to construct a medication

knowledge graph to model medication rules for co-prescription

in big data. However, relying only on historical prescription data

is not enough to simulate the comprehensive medication rules,

because adverse drug reactions (ADRs) may not be reflected in

clinical practice. Therefore, we also incorporate the drug

interaction information extracted from the drug instructions as a

supplement. First, owing to the large amount of non-(semi-

structured) data in historical prescription big data and drug

instructions, we need to transform these data into structured

triplet data. Second, we build the clinical experience edges and

medical knowledge edges based on the structured data of

historical prescriptions and drug instruction. Finally, we

construct our medication knowledge graph according to two

kinds of edges. We elaborate the details as follows.
2.1.1 Information extraction
In this step, to extract drug entities and relationships, we

modeled the problem as an information extraction task in

natural language processing (NLP) and solved it using

information extraction technology. First, for historical

prescription data, we transformed semi-structured disease–drug–

diagnosis information into structured clinical triples to achieve a

complete delineation of clinical experience. Then, for auxiliary

medical text data, we extracted medical knowledge triples to

supplement the medication knowledge graph. The information

extract details are elaborated as follows.
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FIGURE 1

An overview of the proposed framework.
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Clinical experience extraction. In this step, we extracted clinical

experience based on the collected prescription big data. The

historical prescription data mainly include the prescription

number, patient’s age, height, weight, and other personal signs,

the diagnosis of disease, drugs, and their course of treatment,

and other information. To better show the clinical medication

experience, we established explicit attributes of entities and

implicit triple relationships between entities according to

medication knowledge.

Specifically, we first extract different entities in the

prescription, including patients, diseases, and drugs. Then, we

regard physiological characteristics such as gender, age, height,

and weight as the attributes of patient entity. In addition, if

there is a diagnosis on the prescription that is associated with

a pregnant woman, such as at 14 weeks of gestation, the

patient will be given the role of pregnant woman.

Furthermore, we construct implicit relationships between

different entities based on prescriptions, such as the

relationship between the patient and the drug, the relationship

between the patient and the disease, and the relationship

between the diagnosis and the disease. Finally, we iterate over

each prescription and use a triple to represent all the entities

in the prescription and their relationships, such as “Influenza–

Prescribe–Ribavirin Spray,” etc.

Medical knowledge extraction. In this step, we extract medical

knowledge based on the collected dataset of drug instructions. As

there is an implicit regional structure in each of the drug

instructions, as shown on the left in Figure 2, we first divide a

part of the collected drug instruction data into blocks to extract
Frontiers in Digital Health 04
the required structured information, such as drug name, main

ingredients, indications, contraindications, adverse reactions,

precautions, and drug interactions. Second, we manually label the

pre-processed dataset based on the open source labeling tool

YEDDA, as shown in Figure 2. In addition, the labeled entity

includes but is not limited to the drug names, diseases,

ingredients, indications, adverse reactions, and contraindications.

Third, we also marked another dataset in the format of (text,

entity, relationship, entity) on the module data of annotated

notes and drug interaction to extract drug interactions.

According to the harm degree of drug interaction to the human

body, the relationship fields of drug interaction are divided into

four categories, which are beneficial, no effect, unknown, and

harmful. Finally, we model the medical knowledge extraction

problem as named entity recognition and relation extraction

tasks in NLP to extract medical triplet information, as shown

in Figure 3.

Specifically, we first train the Bert-BilSTM-CRF model to

recognize medical entities, including drug, ingredient, disease,

indication, and contraindication. The Bert-Bi-LSTM-CRF model

was proven to outperform all other models in the NLP of

Chinese electronic health documents (22). Second, to extract the

relationships between entities, such as drug interactions, we

construct the relation extraction model (RE model): BertModel þ
Dropout þ Linear. Finally, we employ the trained entity

recognition model to extract medical entities. In addition, for

drug interaction data, we identify the relationships based on the

extracted entities. There are two approaches to form medical

triplet data. The first method is to take the drug name and other
frontiersin.org
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FIGURE 2

We use the YEDDA tool to label the entities in the drug instructions, and the labeled entities include the drug names, diseases, ingredients, indications,
adverse reactions, and contraindications.

FIGURE 3

The medical knowledge extraction framework.

Hong et al. 10.3389/fdgth.2024.1198904
entities as the first entity and the second entity, respectively, and

label as the relation, such as “Ribavirin spray–Ingredient–

Ribavirin.” The second method is to use the triplet data extracted

from the RE model, such as “Cefoperazone sodium for injection–

Contraindication–Amikacin.”
Frontiers in Digital Health 05
2.1.2 Graph node and edge construction
To construct the medication knowledge graph G ¼ (E, R), we

define entities (E) and the relationships (R) between them, as

illustrated in Figure 4. In graph theory, the triple Q is defined as

the set of (ei, r, ej), where ei and ej denote two different entities,
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and r denotes the relationship between node ei and node ej. As

shown in Figure 4, the black edge sets represent the clinical

experience edges Ra, and the red edge sets represent the medical

knowledge edges Rb. The detailed construction information can

be found in the Appendix.
2.2 Drug recommendation model based on
knowledge graph

In this section, our objective is to model the complex

relationships between patients, diagnoses, and drugs based on the

medication knowledge graph constructed in the previous phase.

As there are many prescription features in the medication

knowledge graph, we first extract the features of patients,

diagnoses, and drugs. Then, we employ the sequential generation

model to model the sequential decision-making process of the

drug regimen. We specify the specific work as follows.
2.2.1 Feature extraction from graph
In clinical practice, most pediatric medicines are dosed

according to the patient’s age (23), body height, or body weight

(mg/kg) (11). Moreover, treatments also vary according to the

patient’s symptom and indication; therefore, diagnostic

information is helpful when developing medication regimens

(24). As combination drugs are more common in complex

prescriptions, they are more likely to cause ADRs. Therefore,
FIGURE 4

The structure of the medication knowledge graph.
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drug interactions should also be considered in the rational and

appropriate use of drugs. Based on this previous knowledge, we

extract the corresponding physiological diagnostic features and

drug interaction feature from the medical knowledge graph

constructed in the previous phase. Detailed information is

provided in the Appendix.
2.2.2 Sequence generation model
In this step, our objective is to predict the rational medication

regimen based on the extracted features. One of the intuitive

methods is to concatenate the physiology and indication features

into a vector and build a regression or classification model to

predict the rational medication regimen. However, owing to the

considerable variety of the two categories of features, such a

direct concatenation of the two heterogeneous features does not

perform well, especially when some features play a dominate role

in specific medication conditions (25). To address these

challenges, we use the sequence generation model to transform

the problem into a sequence decision process of the drug

regimen, including the medication list and treatment of drug use.

Detailed information is provided in the Appendix.
3 Experiments

In this section, we evaluate our method with a medical record

dataset collected from the MIMIC_III dataset and real-world
frontiersin.org
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anonymized prescription big data collected from tertiary hospitals.

We first introduce the experiment settings and then present the

evaluation results. Finally, we display our analysis results on the

visualization platform.
3.1 Experiment settings

3.1.1 Dataset
After data cleansing, we obtain a dataset containing 1,084,594

prescriptions with 23,225 patients, 2,393 medicines, and 5,591

diagnoses from the MIMIC_III database, and another dataset

containing 230,390 prescriptions with 19,146 patients, 3,782

diagnoses, and 1,198 medicines from tertiary hospitals. The

summary of the dataset is shown in Table 1.

MIMIC_III dateset: In this study, we first perform the pre-

processing operation of removing invalid patient prescriptions

with medical devices, no weight field, and incorrect age statistics.

As shown in Table 2, after pre-processing, the dataset contains 11

attributes: (1) patient ID; (2) case number; (3) sex; (4) age,

calculated from the patient’s date of birth and admission date,

measured in years; (5) Weight, measured in kilograms; (6)

diagnosis name; (7) drug ID, National Drug Code for medications;

(8) drug name; (9) dosage; (10) dosage unit; and (11) days of

administration (the duration of medication usage prescribed by the

doctor, calculated from the start and end dates of medication

usage, measured in days). The dataset’s characteristics include the

presence of multiple hospital admissions for some patients, as

evidenced by records 4–5 in Table 2, in which patient “109” has

two case numbers: “173633” and “172335”. In addition, the

dataset includes instances in which multiple diagnoses were

assigned to a patient during a single prescription, with multiple

medications prescribed for treatment, as illustrated by records 1–3

in Table 2. For example, for patient “23,” with case number

“124321,” the physician assigned two diagnoses, “2252” and

“V4581,” and prescribed three medications for treatment:

“vancomycin,” “levofloxacin,” and “dexamethasone.”
TABLE 1 Summary of datasets.

MIMIC_III FUJIAN
Data collection period 2001–2008 January 2015–January 2017

# Prescriptions 1,084,594 230,390

# Medicines 2,393 1,198

# Diagnoses 5,591 3,782

# Patients 23,225 19,146

TABLE 2 Example of the MIMIC_III medical record dataset.

Patient
ID

Case
Number

Sex Age Weight Diagnosis na

23 124321 M 75 66.8 Meningitis

23 124321 M 75 66.8 Meningitis

23 124321 M 75 66.8 Meningitis

109 173633 F 24 44.9 Hypertensive chronic k
disease

109 172335 F 24 66.8 Other primary cardiom
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Fujian dataset: The second historical medical record dataset

used in this study is derived from the clinical outpatient data of

a tertiary hospital in Fujian Province, China. After pre-

processing, this dataset contains a total of 11 attributes, as shown

in Table 3. The difference between this dataset and the

MIMIC_III dataset lies in the inclusion of prescription numbers

and patient heights, while excluding case numbers and drug

numbers. As illustrated by the examples in Table 3, it can be

observed that the characteristics of this dataset are consistent

with those of the MIMIC_III medical record dataset. These

characteristics include multiple hospital admissions for patients

and instances in which multiple diagnosis information and

multiple medications are prescribed for a single hospitalization.
3.1.2 Experiment plan
First, we randomly select 80% of the prescriptions collected

from the constructed medication knowledge graph for

training, and the left 20% for evaluation. Then, we collected

100 problematic prescriptions with inappropriate drug use

from small hospitals as a test dataset to evaluate our trained

model. Specifically, for each prescription, we use our model to

classify whether these prescriptions are an inappropriate use of

drugs. We evaluated our model by measuring the proportion

of correctly classified prescriptions in terms of the medication

sequence list and medication treatment, and using the rational

medication regimen to represent the predicted results of both.
3.1.3 Evaluation metrics
To measure the accuracy of the proposed model, we used the

Jaccard Similarity Score (Jaccard, as defined in Equation 1),

precision (as defined in Equation 2), recall (as defined in

Equation 3), and average F1 (as defined in Equation 4), as

shown in Table 4. Jaccard is defined as the size of the

intersection divided by the size of the union of the ground

truth medication regimen Y (k)
t and predicted medication

regimen Ŷ (k)
t :

Jaccard ¼ 1PN
k 1

XN
k

jY (k) T Ŷ (k)j
jY (k) < Ŷ (k)j (1)

where N is the number of patients in test set.

Precision ¼ 1PN
k 1

XN
k

jY (k) T Ŷ (k)j
jY (k)j (2)
me Drug ID Drug name Dosage Dosage
unit

Days

00338355248 Vancomycin 1,000 mg 4

00045006601 Levofloxacin 750 mg 2

00054817525 Dexamethasone 4 mg 2

idney 00172438210 Gabapentin 300 mg 6

yopathies 00182055589 Hydralazine 50 mg 2
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TABLE 3 Example of medical record dataset from Fujian Province.

Patient
ID

Prescription
number

Sex Age Height Weight Diagnosis name Drug name Dosage Dosage
unit

Days

12**26 d1**2c M 57 164 58.5 Septicemia Alfacalcidol 0.25 g 10

12**26 d1**2c M 57 164 58.5 Septicemia Rebamipide Tablets 0.1 g 14

12**26 c0**28 M 57 164 58.5 Nausea and vomiting Trivitamins ferrous chewable tablets 20 tablet 14

10**26 ae**02 F 79 166 70 Hypertension Nifedipine controlled release tablets 30.0 mg 14

10**26 ae**02 F 79 166 70 Hyperlipemia Pitavastatin calcium tablets 2.0 mg 7

TABLE 4 Evaluation metrics overview.

Metric Description
Jaccard Measures the similarity between predicted drug prescriptions and actual

drug prescriptions.

Precision Measures the proportion of predicted drug prescriptions correctly
identified by the model.

Recall Measures the percentage of successful identifications by the model in
actual drug prescriptions.

F1 Combining the accuracy and recall of the model is a comprehensive
metric for evaluating the performance of the model.

DDI Rate Measures the probability of a drug interaction in a predicted drug
sequence.

TABLE 5 The rational medication regimen prediction results of the
MIMIC_III dataset.

Methods Jaccard Precision Recall F1 DDI rate
Bi-LSTM 0.5115 0.6705 0.5697 0.6160 0.1624

GAMENet 0.6517 0.7501 0.6535 0.6985 0.1324

Ours 0.8685 0.9555 0.8927 0.9173 0.0867

Ours indicate the proposed method in this paper and bold values indicate the best

performance in the corresponding metric.

Hong et al. 10.3389/fdgth.2024.1198904
Recall ¼ 1PN
k 1

XN
k

jY (k)
T
Ŷ (k)j

jŶ (k)j (3)

F1 ¼ 2� precision� recall
precisionþ recall

(4)
When considering the accuracy of drug prediction, we also need to

measure the safety of drug prediction; therefore, tomeasuremedication

safety, we define the DDI rate (as defined in Equation 5) to judge the

probability of drug interactions in the predicted drug sequence:

DDI Rate ¼
PN

k

P
i,j j{(ci, c j) [ Ŷ (k)

t j(ci, c j) [ 1d}j
jPN

k

P
i,j 1j

(5)

where the set will count each medication pair (ci, c j) in the

recommendation set if the pair belongs to the drug interaction

adjacency matrix constructed. Here, N is the size of the test dataset.

3.1.4 Baseline methods
We compared our method with several baseline methods with

regard to medication regimen prediction and medication regimen

adequate evaluation. For medication regimen prediction, we

compared our model with several baseline methods as follows.

1. Bi-LSTM: this baseline is a sequence-sequence model. At the

encoding end, BI-LSTM is used to learn the diagnostic

information at the input end, and at the decoding end,

ordinary LSTM is used to predict drugs.

2. GAMENet: this baseline is a memory-enhancing neural network

model that inherits a drug interaction knowledge graph through

the graph convolutional network storage module to provide safe

and personalized drug combination recommendations.

For appropriate medication evaluation, we compare our model

with the following baselines.
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1. Empirical: This method is based only on the medical

experience of professional doctors in tertiary hospitals,

without considering the drug contraindication information

from existing drug instructions.
3.2 Evaluation results

3.2.1 Medication regimen prediction evaluation
results

Table 5 shows the rational drug use prediction results from the

MIMIC_III dataset using our proposed method as well as the

baselines. Results show our proposed method has the highest

score among all baselines with respect to Jaccard, precision,

recall, and F1. The model we used benefited from the advantages

of its structure, which could obtain the relationship between

patients’ multiple diagnoses, making it closer to the real doctor’s

prescription when making drug predictions.

Table 6 shows the rational drug use regimen prediction results

for the outpatient medical record dataset using our proposed

method as well as the baselines. Results show our proposed

method achieves the best performance compared with other

baseline methods. As this dataset is different from MIMIC_III,

no authoritative drug classification has been performed, and

drugs with therapeutic equivalence exist in this dataset as

multiple drugs. Therefore, we chose to provide three alternative

elements for each element generated by the sequence model. It is

deemed to be the correct prediction when the actual use of the

drug appears in the three alternatives. The calculation formula of

its evaluation index is shown in Equation 6.

Precision ¼ 1PN
k 1

XN
k

XM
i

jY (k)
i [ Ŷ (k)

i j
M

(6)

where M ¼ min (jY (k)j, jŶ (k)j).
Table 7 clearly shows the predicted results of rational drug use

of the model in the Fujian province dataset. The actual
frontiersin.org
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TABLE 6 The prediction results of the outpatient medical record dataset.

Methods Precision
Bi-LSTM 0.4355

GAMENet 0.6355

Ours 0.7769

Bold values indicate the best performance in the corresponding metric, and Ours indicate the

proposed method in this paper.

TABLE 9 The influence of DDI features.

DDI rate Jaccard
No DDI features 0.0906 0.8239

Have DDI features 0.0837 0.8167

Bold values indicate the best performance in the corresponding metric.

TABLE 10 The appropriate evaluation of prescription in small hospitals.

Methods Accuracy
Empirical 83%

Ours 89%

Bold values indicate the best performance in the corresponding metric.
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prescriptions shown on the left of the table below are two drugs

taken by a boy for allergic rhinitis, mycoplasma infection, and

bronchitis. On the right are the recommendations for drug

therapy provided by our model. It can be found that the model

in this paper can accurately cover the real prescription after

providing three alternatives, and most of the other alternatives

provided are also drugs for the treatment of respiratory diseases

such as rhinitis. It indicates that the model in this study can

obtain the drug recommendations of actual doctors according to

patient diagnosis and other characteristics.

In addition, we conducted two comparative experiments to

determine whether the addition of patients’ physiological and DDI

features could improve the effect of our model. Table 8 shows the

accuracy rate of drug recommendation is improved after the

introduction of physiological characteristics in our model. Table 9

shows that after the introduction of DDI features in our model,

although the accuracy of model prediction is slightly sacrificed, the

probability of adverse drug interactions caused by recommended

drugs is reduced. Therefore, we can adjust the weight proportion of

DDI characteristics to meet the application requirements.

3.2.2 Medication regimen appropriateness
evaluation results

In this study, we use the trained models as classifiers to judge the

appropriateness of prescriptions in small hospitals. Table 10 shows the

average accuracy scores of medicine use appropriate evaluation using

the proposed method and the baselines. We can see that the

proposed method achieves the best performance with regard to

evaluation accuracy scores. Specifically, the baseline method

Empirical attempts to evaluate the appropriate use of drugs based

only on the experience of drug use of professional doctors in tertiary
TABLE 8 The influence of physiological features.

Jaccard Precision Recall F1
No physical features 0.8556 0.9546 0.8727 0.9069

Have physical features 0.8627 0.9564 0.8855 0.9131

Bold values indicate the best performance in the corresponding metric.

TABLE 7 Drug recommendation cases in the Fujian Province dataset.

Real prescription Predict prescription
Ganan mixture Ganan mixture,

Josamycinpropionate granules,

Mometasone furoate aque

Loratadine tablets Montelukast sodium oral granules,

Loratadine tablets,

Ambroterol oral solution
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hospitals, which results in some combination drugs with adverse

reactions being misjudged. In summary, the proposed method

integrates the two heterogeneous information to model sequential

patterns and therefore improves the accuracy of evaluation. The

calculation formula of its evaluation index is shown in Equation 7.

Accuracy ¼ 1PN
k 1

XN
k

XM
i

bjY
(k)
i [ Ŷ (k)

i j
M

c � T̂i (7)

where M ¼ min (jY (k)j, jŶ (k)j), and T̂ represents the rationality

marker of prescriptions in small hospital.
3.3 Clinical appropriate medication
evaluation system

To demonstrate the work in this paper more clearly, we have built

a platform for the appropriateness of rational drug use and applied it

in a small hospital to evaluate the appropriateness of doctors’

prescriptions. As shown in Figure 5, this platform is mainly divided

into two parts, among which the left view is divided into three

subgraphs (patient–disease–drug), and the right view shows the

evaluation results. In the left frame, you can first fill in patient

information, diagnostic information, and drug information. Then,

click the button to evaluate for the appropriateness of prescribing.

Finally, the predicted medication results are displayed on the right

side of the frame, with a tabulated comparison of the doctor’s

medication regimen and the predicted medication regimen. At the

same time, the entity relationship involved with the disease in the

medication graph would be visualized below the evaluation results,

which would be convenient for doctors and pharmacists to further

review and modify prescriptions.
3.4 Case study

We conduct a case study of one prescription randomly selected

from 100 problematic prescriptions of inappropriate medications

in small hospitals. As shown in Figure 5, in the input

prescription, the patient is a male, has a height of 112 cm, has a

weight of 19 kg, and is 5 years old. The patient’s diagnosed
frontiersin.org
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FIGURE 5

Clinical prescription appropriateness evaluation system.
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symptoms were acute bronchitis, bronchitis, and an acute upper

respiratory tract infection. The prescribed medicines were

amoxicillin and clavulanate potassium for oral suspension,

Combivent, calcium gluconate oral solution, and the

corresponding treatment courses are 3, 1, and 1 day(s). Based on

our proposed framework, the predicted medication regimen was

amoxicillin and clavulanate potassium for oral suspension for 3

days and Combivent for 1 day. After evaluation, the system

would provide default color labels and red labels to represent the

consistent medication regimen and inconsistent medication

regimen, respectively. The red label in the picture indicated

whether calcium gluconate oral solution are unnecessary drugs.
4 Conclusion

In this study, we investigate one of the key problems in rational

medication, i.e., the evaluation of appropriate medication use. We

propose a framework of appropriate drug use based on medical

association and big data to accurately predict the medication

regimen by leveraging prescription big data and medical text data.

Specifically, a medication knowledge graph is first constructed

based on historical prescription big data and medical text data

from tertiary hospitals. Then, we employ a GMM for physiological

features, BERT for diagnostics, and graph convolutions for drug

interactions, yielding accurate medication regimens. Our approach

surpasses baselines in predicting regimens and detecting

appropriate medications, and was validated on MIMIC_III and

real-world prescription data from tertiary hospitals.

One of the limitations of this study is the feature selection. There

might be other indication or physiology features that could be
Frontiers in Digital Health 10
associated with medication regimens and used as predictive

features for example. For example, for adolescents, the probability

of developing corresponding diseases during adolescence can also

be considered in the prediction model to improve the prediction

accuracy in teenagers. We are currently working with hospitals to

retrieve richer information related to prescription datasets, such as

picture archiving and communication systems and inspection

results from laboratory information systems, which we believe will

provide useful and important features for drug regimen prediction.

In the future, we plan to extend our work in the following

directions. First, we plan to involve more data sources from other

hospital information systems, especially data from clinical

laboratories, to investigate more relevant factors of doctor

medication. Second, we plan to investigate the reasons for the wrong

medication sequence list, including overtreatment or undertreatment

by model overfitting, and then leverage the knowledge to improve

our predictive models. Third, we plan to integrate our method with

the existing clinical decision support systems to provide dosing

recommendations for doctors and pharmacists in small clinics.
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Appendix

1 Graph node and edge construction

Clinical experience edges. We first construct the clinical

experience edge set Ra based on the triples extracted from

prescription big data. Specifically, the edge set Ra of graph G are

defined as follows: for the triples extracted from the prescription

record, we set up two nodes and assign a directed edge between

the corresponding nodes in graph G. The triples include

“Patient-Have-Prescription,” “Prescription-Diagnose-Disease,”

“Prescription-Prescribe-Drug,” “Patient-Have-Disease,” and

“Patient-Use-Drug.”

Medical knowledge edges. The second step is to construct

medical knowledge edges Rb based on the triples extracted from

the drug instructions. Specifically, the edge set Rb of graph G are

defined as follows: for the triples extracted from drug

instructions, we set up two nodes and assign a directed edge

between the corresponding nodes in graph G. The triples include

“Drug-Ingredient-Drug,” “Drug-Indication-Disease,” “Drug-

Contraindication-Patient,” “Drug-Contraindication-Disease,”

“Drug-Interaction-Drug,” and “Drug-Contraindication-Drug.”
2 Feature extraction from graph

Physiological feature extraction. In this step, our objective is to

extract patients’ physiological information from historical

prescription big data as the features of rational drug use.

Physiology metrics of patients, such as sex, age group, body

weight, and body height, are usually the most important

considerations in clinical medication calculation. Although the

combination of these factors provides the greatest accuracy in

calculating medication regiments, simple digital groupings of

different age groups, heights, or weights could lead to excessive

discretion in the population sample. Therefore, we group

patient populations as a physiological feature by modeling

physiological information.

Owing to differences in gender, height, weight, and other

physiological characteristics, the distribution of prescription data

may be composed of N Gauss. For example, patients with

chronic gastritis. By plotting the distribution of patients of

different ages in male and female genders, as shown in

Figure A1, we can observe that there are approximately two

component kernels in the distribution. The component kernals

were contributed by male patients aged approximately 50 and

female patients aged approximately 60. Therefore, we can use a

mixed Gaussian distribution to fit all patient prescription data.

We use the BMI to represent height and weight for each

prescription data. First, we estimate the optimal number of

component cores n for the patient’s prescription data using the

Akaike information criterion (AIC) (26) and Bayesian

information criterion (BIC) (27, 28). The number of component

cores is optimal when the AIC and BIC are as small as possible.

Then, we calculate the probability distribution of the patient in
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each component kernel. Finally, we take the group with the

highest probability as physiological characteristics, as shown in

the Figure A2. The probability density function of the GMM is

given by Equation (A1):

p(x) ¼
XK
k¼1

pkN (xjuk, Sk) (A1)

where X is the age distribution of prescriptions, K is the number

of sub-Gaussian models in GMMs, and pk is the mixture

coefficient, which is the probability that each observation data

belongs to the kth submodel. The N (xjuk, Sk) is the

distribution function, uk is the expectation, and Sk is the

covariance of the kth component in the mixed model.

The above variables satisfy Equations (A2) and (A3):

XK
k¼1

pk ¼ 1, (A2)

0 , pk , 1 (A3)

With the EM algorithm (expectation-maximization algorithm)

(29), we can iteratively calculate the parameters in the GMM:

(pk, xk, Sk ). In short, the EM algorithm has two steps. The first

step is E (expectation), which updates the implicit variable. The

second step is M (maximization), which is used to update the

parameters of each Gaussian distribution in the GMM. Then, the

above two steps are repeated until the iteration termination

condition is reached.

Diagnostic feature extraction. In this step, our objective is to

extract diagnostic sequence information as diagnostic features of

the patients. A simpler approach to represent diagnostic

information is to digitize the diagnosis. However, the diagnostic

text representation is rich in the semantic information of words,

such as text similarity. Therefore, considering that word vectors

are rich in more semantic features, we choose to represent

diagnostic features by transforming text into word vectors

through a BERT pre-trained word model (20), as shown in

Figure A3. We elaborate the details as follows.

When sending a diagnostic text into BERT, it will encode the

text into an input vector, the length of which is always 512. For

an input vector, it is composed of three embedding features: (1)

WordPiece (30), (2) position embedding, and (3) segment

embedding. Furthermore, as shown in Figure A3, its framework

consists of the multi-layer transformers proposed by Vaswani

et al. (31). Transformers realize a series of encoding and

decoding to transform an input text into a possible predicted

result. Finally, the diagnostic text is converted to tokens by

BERT, and a word vector at the corresponding position of each

token is printed. We take out the results of the penultimate

hidden layer and use the results of all vector mean pooling as

diagnostic features.

Drug interaction feature extraction. In this step, our objective

is to establish drug interaction relationships from the medication
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FIGURE A1

Distribution of patients with chronic gastritis.
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knowledge graph as another feature. It can be found that the

main form of drug interaction relation stored in the

medication knowledge graph is pair, and it is more effective to

use the graph structure to represent the drug interaction

relation. Therefore, we used such a pair relationship to

generate the drug interaction matrix A to represent the drug

interaction graph. However, the interaction diagram exists as a

two-dimensional matrix, whereas physiological and diagnostic

features exist as one-dimensional vectors. Therefore, we need

to transform the characteristics of drug interaction so that it

can be spliced with the other two characteristics as the input

of a reasonable drug recommendation model. We elaborate on

the details as follows.

The size of the drug interaction matrix is N � N , where N is the

size of the drug set. For the MIMIC_III dataset, we first select two

drugs in the drug set randomly, assuming that the coded values are

i, j. Then, we map its ATC4 code to the CID classification. Finally,

we use the CID code as the keyword to search the drug interaction

database for adverse drug interaction risks in these two categories.

We iterate through all drug pairs in the database to generate an

adjacency matrix of the final drug interaction diagram, which

reflects the currently known drug combination contraindications

and can reduce the number of treatment options that produce

ADRs when a drug is recommended. For the medical record data

of Fujian Province, we also randomly select two drugs in the drug

set, and then search in the medication knowledge graph with the

keyword of drug composition for whether these two drugs have

an adverse drug interaction risk. If there is, the corresponding

element of the marker matrix is 1, otherwise it is 0. The simplest

way to convert a two-dimensional matrix to a one-dimensional

vector is to compress the matrix. However, such compression

destroys the connection between nodes, making it impossible for

the model to learn the complete drug interaction relationship.

Therefore, we employ the graph neural network method to

embed the two-dimensional drug interaction characteristics into

the one-dimensional space. The specific transformation process is

described as follows.
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Like the convolutional neural network in image vision, the GCN

(21) is used for feature extraction. Therefore, we use the basic graph

convolution network to construct a simple graph neural network,

which maps the graph node representation to the low-dimensional

vector space while preserving the topology and node information

of the graph. A graph neural network with two GCN layers is

established in this study, where A is the graph structure and X is

the matrix representation of the graph. The GCN layer compresses

the hidden representation of each node by aggregating the feature

information from the node neighborhood, and after the feature

aggregation, non-linear permutation, such as ReLU, is applied to

the generated output. Through the stacking of multiple layers of

the GCN, the final hidden representation of each node in the

diagram obtains information from subsequent neighborhoods.

Finally, we connect it to a fully connected network to obtain a

one-dimensional vector output. Through the transformation of the

graph neural network, we obtain the one-dimensional

representation of the characteristics of drug interactions.
3 Sequence generation model

First, the symbols are defined, with X representing the

diagnostic space and Y representing the drug treatment space.

R ¼ {(X1, Y1), (X2, Y2), . . . , (Xk, Yk)} is a set of prescription

records, Xk # X is a diagnostic sequence, and

Xk ¼ {Xk
1 , X

k
2 , . . . , X

k
jYkj}, Yk # Y is a sequence of medication

regimen, Yk ¼ {yk1, y
k
2, . . . , y

k
jYkj}. jXkj and jYkj are the sequence

lengths of Xk and Yk, respectively. There is no explicit mapping of

the corresponding elements between diagnostic sequence Xk and

drug sequence Yk. To avoid confusion, if there is no ambiguity, we

omit k in the symbol. The purpose of drug prediction is to select

the best sequence of medication regimen Yk among all drugs Y

based on the diagnostic sequence x. Therefore, the model in this

study should have the ability to learn to map any diagnostic

sequence to a corresponding medication regimen sequence, which

requires the model in this study to learn not only the relationship

between drugs and diagnosis but also the relationship between

drugs and drugs. Therefore, we used the popular transformer

approach in NLP to generate drug sequences. We will take a brief

look at one of the key mechanisms in the transformer model and

the overall architecture.

Attention mechanism. The transformer is based on the attention

mechanism; therefore, before introducing the overall framework of

the transformer model, we first introduce the role of the attention

mechanism. The sequence generation model transformer is

composed of an encoder module and a decoding module. As

shown in Figure A4(a), the encoder compresses the information

expressed by the input sequence into a fixed-length semantic

vector, and then the decoder decodes the information based on

this semantic vector and generates the target sequence one by one.

It means that elements at any point in the input sequence are

equally important to the current target element. This method of

learning input sequence cannot express the position information

of the sequence, and if the sequence is too long, the decoding

effect of the fixed semantic vector will be poor, because it is easy
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FIGURE A2

The framework of physiological feature extraction.
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to lose the information contained in the sequence. To solve the

above problems, Luong et al. (32) proposed the attention

mechanism in 2015. As shown in Figure A4B, the mechanism

generates an independent semantic vector for each element in the

output sequence, which could express the different importance of

each input sequence to the decoded target element. The semantic

vector Ci is the weighted sum of the elements in the input

sequence, as described in Equations (A4) and (A5):

Ci ¼
XLx
j¼1

aijhj (A4)

aij ¼ exp(eij)PTx
k¼1 exp(eik)

(A5)
FIGURE A3

Framework of diagnostic feature extraction.
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eij ¼ a(si�1, hj) (A6)

where Lx is the length of the input sequence, a is the distribution of

attention, aij represents the importance of the element in the input

sequence to the element that determines the output sequence, and hj
represents the implicit state of the jth element in the input sequence.

In fact, a is a similarity measure, which is calculated according to the

correlation between the jth element in the input sequence and the ith

element in the output sequence. As shown in A6, eij is obtained from

the output Si�1 of the hidden layer at the time of i� 1 in the decoder

and the correlation degree of the hidden state hj corresponding to

each element in the encoder. There are many methods to calculate

the similarity between si�1 and hj. In this study, we adopt the dot
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FIGURE A4

The framework of diagnostic feature extraction.
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product method as shown in A7 to calculate the similarity.

a(ht , hs) ¼ hTt hs (A7)

The above attention mechanism focuses on the relationship

between the input sequence and output sequence, which can help

us obtain more information when we model the relationship

between drug and prescription. However, the relationship

between elements in the input and output sequences is not taken

into account. To solve this problem, another new attention

mechanism, self-attention (33), has been proposed and widely

used. Compared with the use of various cyclic neural networks

that require longer information accumulation, the model with the

introduction of the self-attention mechanism cannot only obtain

the dependency relationship between two elements that are far

apart, but also obtain the dependency relationship between the

internal elements of the sequence more easily. In addition, the

self-attention mechanism also improves the parallel computing

capability of the model, greatly reducing the training time of the

model. The transformer model used in this study is also based

on the self-attention mechanism.

In the self-attention mechanism, the input sequence will be

represented in the form of key value pairs, and then the input

sequence with N elements will be represented as

(K , V) ¼ [(k1, v1), (k2, v2), . . . , (kN , vN )], where the key value is

used to compute the attention distribution a and the value is

used to compute the semantic vector. The output sequence will

be represented as N queries; therefore, the semantic vector

computation problem can be considered as an addressing

operation. We use query to find the key ¼ query element in the

input sequence, and the value obtained is the semantic vector or

called attention. In particular, the self-attention mechanism can

be thought of as soft addressing. Instead of looking only for

elements with key values that are equal to the query value, a

weighted sum is applied to all values to calculate the final

attention. The weight of each value is determined by calculating

the similarity between the query and each key. Therefore, the
Frontiers in Digital Health 15
formula for calculating attention is shown in Equation (A8):

Attention(Q, K , V) ¼ softmax
QKTffiffiffiffiffi
dk

p
� �

V (A8)

where Q [ Rn�dk , K [ Rm�dk , and V [ Rm�dv ; therefore,

attention is a n� dv matrix. Different from the general attention

mechanism, the self-attention mechanism also performs a

division operation when calculating the attention distribution

coefficient to avoid the similarity value calculated by the inner

product method being too large, which results in 0 or 1 being

generated when the softmax function is used for normalization,

losing the meaning of soft addressing.

Overall framework of transformer. The transformer model is a

machine translation model proposed by Google in 2017 Vaswani

et al. (31). As shown in Figure A5, the transformer model is

mainly composed of an encoder module and a decoder module.

Each module is composed of several encoder and decoder layers,

and the number of stacked layers can be adjusted according to

the difficulty of tasks. This model abandons the traditional RNN

or CNN architecture and adopts the structure of a full self-

attention stack, which achieves excellent performance in NLP

tasks. In this study, we build a two-layer transformer model to

carry out the task of rational drug recommendation.

There are three kinds of attention in transformer, namely, self-

attention in the encoder, self-attention in the decoder, and

attention between the encoder and decoder. To capture all the

spatial information in the input sequence, the attention

calculation method in transformer is improved on the basis of

the previous introduction and the concept of multi-head is

introduced. It is mainly used to project query, key, and value to

different spaces for H times through linear transformation, and

then h self-attention matrix is obtained through calculation. As

the feed-forward layer can only receive one matrix, we finally

splice the h matrices and multiply by a weight matrix to generate

the final attention matrix. When self-attention between the input

and output sequences is calculated, set Q ¼ K ¼ V , and the
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FIGURE A5

The transformer model framework.
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specific calculation process is shown in Equation (A8) and (A9):

MultiHead(Q, K , V) ¼ Concat(head1, . . . , headh)W
0 (A9)

headi ¼ Attention(QWQ
i , KW

K
i , VW

V
i ) (A10)

As we can see from Figure A5, the decoder structure is similar

to that of the encoder, with the difference that the decoder has two

attention layers. The decoder’s goal in decoding is to give a

probability distribution for the first output element. Therefore,

we need to calculate the attention value of the last decoder layer

in the decoder module. The input to this attention layer consists

of two parts: the output of the last encoder module and the

output of the first decoder module in the decoder module.

Therefore, in calculating the attention of the decoder layer, the

value K , V in A9 comes from the encoder and Q comes from

the decoder. Decoder decoding is different from the encoder in
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that it can compute in parallel because it needs to use the output

of the previous decoder layer as a query; therefore, the decoder is

used one by one to generate the elements of the output sequence.

In the model training process, the decoder layer uses real values;

therefore, the mask method should be used to calculate the self-

attention between output sequences to ensure that the current

model cannot obtain more information than the current location.

Based on the transformer model, as shown in Figure A5, we

join the features together as the input sequence. After a multistep

process of encoding and decoding, we select the element with the

highest probability in the probability distribution as the

prediction result for the current position, until we either reach

the end of the generated identifier or the maximum sequence

length. The resulting sequence is used as the model’s

recommendation for the current patient. Next, we will verify the

effectiveness of the transformer model in the prediction of

rational drug use through several comparative experiments.
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