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Experienced psychiatrists identify people with autism spectrum disorder (ASD) and
schizophrenia (Sz) through interviews based on diagnostic criteria, their responses,
and various neuropsychological tests. To improve the clinical diagnosis of
neurodevelopmental disorders such as ASD and Sz, the discovery of disorder-
specific biomarkers and behavioral indicators with sufficient sensitivity is important.
In recent years, studies have been conducted using machine learning to make more
accurate predictions. Among various indicators, eye movement, which can be easily
obtained, has attracted much attention and various studies have been conducted
for ASD and Sz. Eye movement specificity during facial expression recognition has
been studied extensively in the past, but modeling taking into account differences
in specificity among facial expressions has not been conducted. In this paper, we
propose a method to detect ASD or Sz from eye movement during the Facial
Emotion Identification Test (FEIT) while considering differences in eye movement
due to the facial expressions presented. We also confirm that weighting using the
differences improves classification accuracy. Our data set sample consisted of
15 adults with ASD and Sz, 16 controls, and 15 children with ASD and 17 controls.
Random forest was used to weight each test and classify the participants as control,
ASD, or Sz. The most successful approach used heat maps and convolutional neural
networks (CNN) for eye retention. This method classified Sz in adults with 64.5%
accuracy, ASD in adults with up to 71.0% accuracy, and ASD in children with 66.7%
accuracy. Classifying of ASD result was significantly different (p<.05) by the binomial
test with chance rate. The results show a 10% and 16.7% improvement in accuracy,
respectively, compared to a model that does not take facial expressions into
account. In ASD, this indicates that modeling is effective, which weights the output
of each image.

KEYWORDS

autism spectrum disorder, schizophrenia, convolutional neural networks, eye movement, facial

emotion recognition

1. Introduction

Experienced psychiatrists identify people with autism spectrum disorder (ASD) and

schizophrenia (Sz) through interviews based on diagnostic criteria, their responses, and

various neuropsychological tests (1). To improve the clinical diagnosis of

neurodevelopmental disorders such as ASD and Sz, the discovery of disorder-specific

biomarkers and behavioral indicators with sufficient sensitivity is important.

Neurocognitive mechanisms of ASD and Sz are reviewed, where similar social cognitive
01 frontiersin.org
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deficits are observed, but neurocognitive processes are concluded

to be different (2, 3). Among various indicators, eye movement,

which can be easily obtained, has attracted much attention and

various studies have been conducted for ASD and Sz (4, 5). ASD

and Sz have abnormalities in cognitive functions, particularly

social cognitive functions. Facial expression recognition is one of

the social cognitive functions, and abnormalities have been

reported in ASD and Sz (6, 7). People with ASD have been

found to differ in the recognition of subtle emotional expressions

and be less accurate when processing such basic emotional

expressions as disgust, anger, and surprise (8). In addition,

abnormalities in eye movement during facial expression

recognition have also been reported (9). We hypothesized that if

we could deepen our investigation of this trait in ASD, we would

get more accurate classification. On the other hand, while there

are papers that discuss differences in eye movements using other

tasks between ASD and Sz, to our knowledge there are no papers

that discuss differences in measured eye movements during facial

expression recognition (5). Since ASD and Sz are often difficult

to differentiate, we propose to examine eye movement differences

during facial expression recognition for the distinction. ASD is a

neurodevelopmental disorder, meaning that it does not appear in

adulthood but is an innate trait (10). On the other hand, in

clinical situations, some have spent their childhood without

being diagnosed with ASD. But, in adulthood, difficulties in real

social life may become emerged. In some cases, secondary

disorders such as depressive state are shown, then the diagnosis

of ASD is made when the first visit to a psychiatric hospital.

Investigating the developmental trajectory in processing

emotional stimuli in neurodevelopmental conditions is

important. Based on the above, we investigate whether

abnormalities in gaze activity of facial expression recognition are

markers specific to ASD. In recent years, studies have been

conducted using deep learning to make more accurate

predictions. Cilia et al. have classified ASD by inputting eye

movements during free viewing of various photos into a deep

learning model (11). Li et al. used long short-term memory

(LSTM) to classify the ASDs and controls by a model that

considers the time series nature of eye movements (12).

In this paper, we describe previous studies that attempted to use

eye movement to discriminate among psychiatric disorder groups.

First, we present relevant studies on detection between ASD and

control groups. Basic research has shown that facial scanning

patterns are different between ASD and control groups (6, 9, 13).

Further research has also been conducted into differences in facial

expressions, reporting that the fixation time of infants’ eyes

changes when viewing fearful faces (14). Król et al. used machine

learning to reveal differences in gaze scanning patterns between

ASD and control participants during facial stimuli (15). The

scan-path length is also useful for classifying ASD and control

individuals (16). Li et al. attempted to predict ASD by acquiring

eye movement while showing 64 children a variety of tasks (17).

Based on the premise that social stimuli are effective for

discriminating ASD, Jiang et al. conducted a dynamic affect

recognition evaluation task in which participants gradually

increased their facial expressions from a state of no expression

through stopping when their facial expressions were recognized
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(18). The results showed that ASD can be detected by random

forest modeling using eye movement during a task. Another study

used facial expression recognition tasks to classify ASD and

control individuals (19). In recent years, research has further

improved the accuracy by electroencephalogram in addition to

eye movements (20, 21).

Next, we present studies that attempt to differentiate Sz from

control individuals using eye movement. Morita et al. used eye

movement during a smooth pursuit task to discriminate between

Sz and control participants. The scan-path length is also an

effective feature that separates two groups in free-viewing tasks (22,

23). The scan path consists of a series of fixations in which the

gaze stops for a short period of time (typically 200-300 ms),

during which there is a fast saccade motion. Loughland et al.

showed differences in fixation patterns for faces in Sz and control

groups using images of negative and positive facial expressions (7).

Kacur et al. used eye movement during Rorschach tests (for mental

discrimination) and analyzed them using various machine learning

methods. Their results showed that the best classification results

for Sz and control were obtained by constructing a convolutional

neural network (CNN) model with a heat map showing eye-

movement pauses (24).

As mentioned above, each disorder group has different gaze

scanning patterns depending on the facial expressions shown in

the facial expression recognition task (7, 14). Although basic

research has shown that eye movements differ in disorder groups

for each presenting emotion, machine learning models that take

this into account have not been examined. Therefore, we propose a

modeling method that takes into account the differences in gaze

scanning patterns for each facial expression. We used machine

learning to model the specificity of eye movements depending on

the facial expression presented.

Our contribution is the comparison of facial expression

recognition by disorder groups and modeling that takes into

account the specific eye movement of each facial expression. We

used the facial emotion identification test (FEIT) (25, 26). We

provide a comprehensive analysis using eye movement during the

FEIT for ASD and Sz in adults and children.

Section 2 describes the participants, the tasks used, and the

experimental conditions, followed by statistical analysis. Section 3

describes the model used in this study. Section4 presents the

results of the actual classification problems. Section 5 provides a

comprehensive discussion of the results obtained, the limitations

of this study, and future perspectives, followed in the final section

by a comprehensive summary of the paper.
2. Data collection and basic analysis

2.1. Participants

We obtained eye movement data for adults with ASD and Sz

and for children with ASD. No control participants had a

history of psychiatric disorders, drug abuse, or epilepsy. No

controls had lerning delays and communication problems

because physicians and psychologists interviewed them and

excluded. For each participant, the diagnosis was determined
frontiersin.org
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according to DSM-5 research criteria for schizophrenia or ASD.

The ASDs were re-evaluated using the Autism Disorder

Observation Schedule-2nd Ed. (27). The Szs were re-evaluated

using the positive and negative syndrome scale (28) for

schizotypy symptoms. the All data collection processes were

approved by ethical committees at Nara Medical University and

Nara Institute of Science and Technology. At the beginning of

the recording, we explained the procedure to the participants

and obtained informed consent.
2.1.1. Dataset 1: Adults
For the adults, we collected data from 15 participants with ASD,

15 participants with Sz, and 26 participants as controls. For the whole

group, we obtained Kikuchi’s Scale of Social Skills: 18 items (Kiss-18)

(29) and the FEIT (25). For the ASD and control groups, we obtained

the Social Responsiveness Scale Second Edition (SRS-2) (30). We did

not obtain SRS-2 because we haven’t yet validated it for Sz. We have

not taken SRS-2 because it has not been validated for Sz. For the ASD

group, we obtained ADOS-2 (27). The Sz group was also assessed

with PANSS (28) for schizotypy symptoms. We used the SRS-2

scores to determine the number of under-sampled eye movements

(31) as a simple test of social functioning, as it is related to eye

movement. We aligned the number of participants among all the

groups using the SRS-2 scores of 16 participants (8 males and 8

females) in descending order, and the data from 15 ASD

participants (9 males and 6 females) and 15 Sz participants (7

males and 8 females). Table 1 shows the participants’ details.

These values are total raw scores.
2.1.2. Dataset 2: Children
For the children, we collected data from 15 participants with

ASD and 17 participants as controls. The SRS-2, FEIT, and

attention-deficit hyperactivity disorder (ADHD) Rating Scale

(ADHD-RS) (32) were obtained for the entire group and the Child

Behavior Checklist (CBCL) (33) was obtained for the ASD group.

We also aligned the number of participants between two groups

using the SRS-2 scores of 15 participants (7 males and 8 females)

in descending order and the data from 15 ASD participants

(13 males and 2 females). Table 2 shows the participants’ details.

These scores are total raw scores.
TABLE 1 Details of adult participants.

Group N (Males: Females) Age kiss-18

Controls 16 (8:8) 29:3+ 3:72 64:7+ 11:0

ASD 15 (9:6) 32:1+ 9:13 45:3+ 9:46

Sz 15 (7:8) 26:0+ 5:85 59:1+ 9:14

TABLE 2 Details of children participants.

Group N (Males: Females) Age S

Controls 15(7:8) 10:0+ 1:55 19:

ASD 15(13:2) 10:9+ 1:39 74:
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2.2. Procedure

We used the FEIT (25, 26) as an emotion recognition stimulus to

measure the facial expression recognition ability of the adults and

children. The FEIT uses a morphing technique and includes facial

expression recognition stimuli of various difficulty levels, such as

strong or weak facial expressions. The procedure is shown in

Figure 2. Figure 1 shows a schematic diagram of the tasks and

typical eye-movement patterns for each group. ASDs have more

fixation of the overall face, and Szs have less fixation at the eyes than

the controls. First, the cross-shaped stimulus is shown for a second to

concentrate on a display. The FEIT is then presented, displaying for 5

seconds, after which the participants are asked to verbally describe

the facial expressions. For the adults, three images for each emotion

(happiness, sadness, fear, anger, surprise, disgust, and neutral) were

randomly displayed for a total of 21 images. For the children, a total

of 32 images, 8 for each emotion (happiness, sadness, anger, and

surprise) were randomly displayed. The FEIT scores were calculated

as the number of correct answers (0 to 21 or 32) for each task.

We used Tobii Pro Fusion to measure the eye movements. The

participants sat about 65 cm from the display, which had a

sampling rate of 120 Hz and a resolution of 1920� 1080.
2.3. Statistical analysis

We conducted an eye-tracking experiment to investigate the

atypical gaze patterns of the ASD and Sz participants. The

statistical analyses were carried out before the main study. We used

fixation, saccade, and scan-path length for statistical analysis of the

eye movements. Past studies have shown that these features differ

in ASD and Sz individuals (16, 18, 23). We analyzed each facial

expression presented in the FEIT and found significant differences

in several features. We describe these features below.
2.3.1. Fixation
Fixation is a movement that stops a gaze at a specific location. It is a

slower, subtler movement to align the eyes with the target and prevent

perceptual fading, with fixation duration ranging from 50 to 600ms.

The minimum duration required for information intake depends on

the task and stimulus. This feature was calculated using attention

filter in Tobii Pro Lab (Ver. 1.145) (34). We used the Velocity-
SRS-2 FEIT ADOS-2 PANSS

55:2+ 20:9 15:5+ 2:07 N/A N/A

73:3+ 36:0 14:5+ 2:97 46:5+ 11:9 N/A

N/A 14:3+ 2:52 N/A 67:1+ 13:0

RS-2 FEIT ADHD-RS CBCL

2+ 11:5 22:1+ 2:85 6:88+ 9:40 N/A

7+ 26:9 22:2+ 3:72 17:6+ 10:2 37:1+ 14:6
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FIGURE 1

Schematic image and typical eye movement patterns. Left: ASD; center: Controls; right: Sz.

FIGURE 2

Experimental procedure: The adults were asked to choose from seven emotions (Happiness, Sadness, Fear, Anger, Surprise, Disgust, and Neutral), while the
children were asked to choose from five emotions (Happiness, Sadness, Anger, Surprise, and Neutral). The actual images could not be depicted due to the
FEIT’s copyright. Therefore, the images shown are schematic.

Iwauchi et al. 10.3389/fdgth.2023.952433
Threshold Identification (I-VT) fixation classification algorithm, which

is a velocity-based classification algorithm (35) that categorizes fixation

and saccade based on velocity. If the velocity exceeds 100�/s, it is

classified as saccade; otherwise, it is classified as fixation.

2.3.2. Saccade
Saccade is fast eye movement in which both eyes move in the same

direction and are induced spontaneously or involuntarily. The time to

plan the saccade (latency) depends on the task and varies between

100–1000ms with an average duration of 20–40ms. This feature was

calculated using Tobii Pro Lab (Ver. 1.145)’s attention filter (34).

2.3.3. Scan-path length
The scan-path length is the average distance of an eye movement

per sample. We calculated this feature using Python. Algorithm 1 is

the pseudo code for calculation of the scan-path length. First, when

either the right or left eye is detected, we compute and sum the

distances between two consecutive samples. If neither eye is

detected, we store the distance to it. The same calculation is
Frontiers in Digital Health 04
repeated. Finally, the total is calculated and divided by the number

of line segments to calculate the scan-path length.
2.3.4. Analysis method
Some past studies set the Areas of Interest (AOI) at the forehead,

both eyes, and the mouth (36); others set them at both eyes, the nose,

the mouth, and the contour (37). Figure 3 shows how AOI is set to

the eyes, nose, and mouth. Since the size of the mouth differs

depending on the expression of the presented image, we changed the

AOI for each image so that the entire region was included in each

image. We excluded trials with a scan-path length of 0 because they

do not correctly measure eye movements. In addition, all the data

used in the analysis retained at least 40% of the gaze sample. We then

analyzed 105 surprise trials, 101 happiness trials, 101 anger trials, 111

sadness trials, 101 neutral trials, 104 fear trials, and 107 disgust trials

in the adults and 172 surprise trials, 154 happiness trials, 164 anger

trials, and 164 sadness trials in the children. With the adults, we made

multiple comparisons with Welch’s t-test for each feature with the

control and ASD groups and with the control and Sz groups for each
frontiersin.org
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Algorithm 1 Calculation of scan-path length

Require: Gaze samples each trial
Ensure: Scan-path length
scan-path length, line count, line length, length temporary ← 0
for A gaze sample to whole gaze sample do

if A gaze sample is valid then
Increased line count
if Next gaze sample is invalid then
Add line length to the length list and initialize

end if
length temporary ← Calculate a length of two samples
scan-path length ← scan-path length + length temporary
Initialized length temporary

end if
if A gaze sample is invalid then

Add line length to the length list and initialize
end if

end for
scan-path length ← Divide the sum of the line list by the line count

Iwauchi et al. 10.3389/fdgth.2023.952433
emotion in the FEIT. With the children, we used Welch’s t-test between

the groups. We used the Benjamini and Hochberg method for correction

(38).

2.3.5. Statistical test result
Figure 4 shows a barplot for the number of fixations at the eyes

and mouth, and the scan-path length (n.s.: no significance, *: p , 0:05,

**: p , 0:01, ***: p , 0:001, ****: p , 0:0001). We also analyzed the

number of fixations at the nose and the saccade. The results are

contained in the supplemental materials.

We begin by describing the results for the adults. Table 3 shows

the mean and standard deviation of each feature. For fixation at the

eyes, between the control and ASD group, there were no significant

differences for the surprise, happiness, sadness, fear, and disgust

trials. However, for the anger and neutral trials, there were

significant differences (p , 0:01) between the control and Sz
FIGURE 3

Schematic image of how AOI are set to the eyes, nose, and mouth. The
eyes were set up to the eyebrows, with the nose and mouth
surrounding them.
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groups, and there were significant differences for all FEIT for each

emotion (surprise and anger: p , 0:0001; happiness, neutral, and

disgust: p , 0:001; sadness and fear: p , 0:01). For the number of

fixations at the mouth, there were no significant differences

between the control and ASD groups for the surprise and disgust

trials. However, for the happiness, anger, sadness, neutral, and fear

trials, there were significant differences (happiness and sadness:

p , 0:01; anger, neutral, and fear: p , 0:05) between the control

and Sz groups. There were no significant differences for all FEIT.

For the scan-path length, between the control and ASD groups,

there were significant differences except for the fear trials (surprise,

sadness, and neutral: p , 0:01; happiness and anger: p , 0:05).

Turning our attention to the children’s results, Table 4 shows the

mean and standard deviation of each feature. For the number of

fixations at the eyes, there was a significant difference for the anger

trials (p , 0:05), but there were no significant differences for the

others. For the number of fixations at the mouth and the scan-

path length, there were no significant differences for all trials.
3. Modeling and evaluation

We propose a model that classifies disorder groups by weighting

each task, as shown in Figure 5. We used a baseline model and a

CNN model. In each case, we used hard voting and random forest

for a total of four models for comparison. Hard voting denotes the

predicted class labels for majority rule voting. We will now explain

the details of each model.
3.1. Baseline model

The features used for the baseline multi-layer perceptron are the

number of fixations, the number of saccades, and the scan-path

length. The baseline model uses a structure with three hidden layers,

the maximum number of epochs for both models is 300, and early

stopping is applied if the validation loss is not updated for 15

epochs. We used Adam (39) as the optimization method and cross-

entropy loss as the loss function. The learning rate was optimized by

nested leave-one-participant-out cross-validation. The number of

splits was set to 1 for the test data and 8:2 for the training and

validation data. The sample size for each learning was 630 or 651,

which is sufficient compared to the previous study (24). We used

PyTorch (40) for implementation. The details of the structure are

shown in Table 5. 21 or 32 tasks were binary classified and input to

hard voting or random forest, which is our contribution to consider

the importance of tasks by random forest to determine the final

decision for considering the influence of the FEIT emotion.
3.2. CNN model

The CNN features are the task images and the heat map of eye

pauses, which can be input simultaneously to explicitly learn the

facial regions and expressions. For the heat map, the pixels

recorded in the eye-movement data were set to 1 and the other

pixels were set to 0. Then, the image was blurred using a Gaussian
frontiersin.org
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FIGURE 4

First row: comparison of ASD vs. control groups in adults; Second row: comparison of Sz vs. controls in adults. Third row: comparison of ASD vs. controls in
children. The error bar denotes the size of the confidence intervals (95%), n.s.: no significance, *: p , 0:05, **: p , 0:01, ***: p , 0:001, ****: p , 0:0001.
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kernel (s ¼ 10). A schematic diagram of the heat map superimposed

on the task images is shown in Figure 1.

Because our data set size was small, we trained it in the following

three steps:

† After cropping the center, the image size was downscaled to a

34*34 grayscale.

† The number of layers in the CNN was reduced (2 layers + 1 fully

connected layer).

† We performed leave-one-participant-out cross validation to

ensure the training data size.

The maximum number of epochs for both models is 300 and early

stopping is applied if the validation loss is not updated for 15 epochs.

We used Adam (39) as the optimization method and cross-entropy

loss was used as the loss function. The learning rate was optimized

by nested leave-one-participant-out cross-validation. The number of

splits was set to 1 for the test data and 8:2 for the training and

validation data. Since the sample size for each learning was 630 or

651, which is sufficient compared to a previous study (24), we did

not consider it necessary to use such traditional approaches as a

support vector machine. For reference, the loss during training of the

CNN in the Sz and control group classifications is shown in

Figure 6. This is a learning curve, and if the loss is falling, it means

that learning is progressing. In other words, the model can classify Sz

and control for the training and validation data. Although it has a
Frontiers in Digital Health 06
small data size, it shows that the learning is progressing. We used

PyTorch (40) for the implementation. The details of the structure are

shown in Table 5. 21 or 32 tasks were binary classified and input to

hard voting or random forest, which is our contribution to consider

the importance of tasks by random forest and determine the final

decision for considering the influence of the FEIT emotion.
3.3. Evaluation

We used nested leave-one-participant-out cross-validation to

evaluate our experiments. In each run, one participant was left out

as testing data, while the rest were used for training. The testing

results of all the participants were combined and evaluated for

accuracy, sensitivity, and specificity. The evaluation indices were true

positive (TP), true negative (TN), false positive (FP), and false

negative (FN). The disorder groups were designated as positive and

the controls as negative:

Accuracy ¼ TPþ TN
TPþ FPþ TNþ FN

(1)

Sensitivity ¼ TP
TPþ FN

: (2)

Specificity ¼ TN
TNþ FP

(3)
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TABLE 3 Statistical analysis of control, ASD, and Sz adult participants
(mean+ SD):

Controls ASD Sz

Surprise (105 trials)

Number of fixations at eyes 288:33+ 149:18 234:23+ 125:23 140:35+ 107:55

Number of fixations at
mouth

37:64+ 36:27 62:63+ 60:94 39:00+ 56:28

Scan-path length 0:05+ 0:04 0:09+ 0:08 0:15+ 0:19

Happiness (101 trials)

Number of fixations at eyes 266:68+ 131:35 206:18+ 108:08 146:67+ 128:70

Number of fixations at
mouth

31:62+ 44:68 65:21+ 41:92 39:79+ 49:58

Scan-path length 0:06+ 0:05 0:12+ 0:15 0:20+ 0:42

Anger (101 trials)

Number of fixations at eyes 299:69+ 139:58 210:11+ 131:65 143:73+ 140:49

Number of fixations at
mouth

23:94+ 29:68 43:80+ 36:87 25:50+ 41:67

Scan-path length 0:06+ 0:05 0:12+ 0:13 0:22+ 0:33

Sadness (111 trials)

Number of fixations at eyes 243:73+ 150:27 187:35+ 123:43 142:50+ 115:62

Number of fixations at
mouth

37:95+ 48:48 73:67+ 46:99 41:63+ 54:69

Scan-path length 0:06+ 0:04 0:12+ 0:12 0:16+ 0:19

Neutral (101 trials)

Number of fixations at eyes 291:38+ 151:09 200:11+ 129:89 161:62+ 140:37

Number of fixations at
mouth

27:05+ 31:71 48:09+ 40:15 37:48+ 65:84

Scan-path length 0:05+ 0:04 0:12+ 0:12 0:18+ 0:19

Fear (104 trials)

Number of fixations at eyes 253:91+ 129:23 189:00+ 127:43 153:38+ 131:99

Number of fixations at
mouth

45:12+ 50:76 73:17+ 40:50 43:88+ 53:44

Scan-path length 0:05+ 0:04 0:13+ 0:24 0:15+ 0:22

Disgust (107 trials)

Number of fixations at eyes 228:74+ 125:74 172:00+ 121:02 118:41+ 120:88

Number of fixations at
mouth

68:74+ 66:18 86:21+ 46:43 57:21+ 66:96

Scan-path length 0:06+ 0:04 0:13+ 0:14 0:20+ 0:28

TABLE 4 Statistical analysis of controls and ASD children participants
(mean+ SD).

Controls ASD

Surprise (172 trials)

Number of fixations at eyes 300:01+ 117:31 268:62+ 119:46

Number of fixations at mouth 51:76+ 54:53 50:81+ 51:47

Scan-path length 0:06+ 0:05 0:05+ 0:07

Happiness (154 trials)

Number of fixations at eyes 275:83+ 114:19 253:12+ 124:58

Number of fixations at mouth 57:28+ 55:23 54:22+ 53:33

Scan-path length 0:06+ 0:06 0:05+ 0:05

Anger (164 trials)

Number of fixations at eyes 285:29+ 116:30 243:84+ 106:33

Number of fixations at mouth 51:50+ 51:39 53:64+ 49:30

Scan-path length 0:05+ 0:05 0:07+ 0:09

Sadness (164 trials)

Number of fixations at eyes 280:54+ 125:82 267:56+ 112:78

Number of fixations at mouth 47:78+ 46:57 56:52+ 65:67

Scan-path length 0:07+ 0:06 0:06+ 0:05

Iwauchi et al. 10.3389/fdgth.2023.952433
4. Results

The results are shown in Table 6. The classification results of the

adult ASD and control participants are shown first. Among the four

models, our proposed model, the weighted CNN, had the best

accuracy and there was a significant difference in the binomial test

by chance rate (p , 0:05). The weighted model increased the

specificity from 0.625 to 0.750, which improved the baseline

accuracy. Next, we show the classification results for the Sz and

control groups. Compared with the four models, the CNN and
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weighted CNN have the highest accuracy. In this case, there was no

improvement due to random forest. A binomial test with chance

rate showed a marginally significant difference (p ¼ 0:052). Finally,

the classification results of the ASD and control groups of the

children show that, among the four models, our proposed weighted-

CNN model and the weighted baseline had the best accuracy, and

there was a significant difference in the binomial test by chance rate

(p , 0:05). Random forest increased the sensitivity from 0.333 to

0.667, which improved the baseline accuracy, and also from 0.286 to

0.600, which improved the CNN accuracy.
5. Discussion

5.1. Principal findings

In this study we obtained eyemovements during the FEIT in children,

adultswithASD, and adultswith Sz, and analyzed the relationship between

eye movement and neurodevelopmental disorder groups using statistical

analysis with reference to previous studies. We solved the classification

problem for the control groups and each disorder group by machine

learning using eye movement. In doing so, we performed modeling

utilizing the knowledge that the eye movements of the disorder group

differ from those of the controls depending on the facial expressions

that the disorder group sees, which had been analyzed in the basic

research, and compared the results with those of a model that does not

consider differences in facial expressions. Our proposed weighted-CNN

model had the best accuracy for the problem of classifying adults with

ASD and the control group, 71.0%, and was 10% more accurate than

the model that did not account for facial expressions. Compared to the

chance rate, this was a statistically significant difference by the binomial
frontiersin.org

https://doi.org/10.3389/fdgth.2023.952433
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


FIGURE 5

Flow of classification models.

TABLE 5 Details of model structure.

Baseline CNN

Feature Number of fixations Heat map

Number of saccades Task image

Scan-path length

Structures [5,5], [5,5], [5,5] [3� 3, 3� 3; 8,16]

Baseline: [neurons]

CNN: [kernel sizes] kernels]

FIGURE 6

Loss during training of the CNN in the Sz and control group classification.

Iwauchi et al. 10.3389/fdgth.2023.952433
test (p , 0:05). It also showed the best results for the problem of

classifying the Sz and control participants in the adults and the ASD

and control participants in the children. Accuracy was 64.5%

(p ¼ 0:052) and 66.7% (p , 0:05), respectively. There was no

difference in accuracy for Sz compared to the model without facial

expressions, but there was a 16.7% improvement for ASD in the

children. These results are discussed in conjunction with the statistical

analysis results.
5.2. Effects of specificity of eye movements
with presented facial expressions for
each group

The random forest classifier calculates the importance of features

and determines how to partition the data into subsets to most
Frontiers in Digital Health 08
effectively distinguish classes. We calculated feature importance for

the most accurate CNNs weighted with random forests for the

adult ASD and control models, adult Sz and control models, and

child ASD and control models. We calculated the average of the

importance of all cross-validations. In Figure 7, we show the

importance of features. Table 7 shows the correspondence between

each face number and the presented emotion.
5.2.1. ASD and control adults
Between the ASD and controls in the adults, face 8 (neutral) had

the highest score with face 2 (neutral) the next highest. The results of
frontiersin.org
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TABLE 6 Results of classification of ASD and controls in adults, Sz and
controls in adults, and ASD and controls in children: Best results are
shown in bold.

Accuracy Sensitivity Specificity

ASD and controls in adults

Baseline 0.419 0.267 0.563

Weighted baseline 0.645 0.600 0.688

CNN 0.613 0.800 0.438

Weighted CNN 0.710 0.733 0.688

Sz and controls in adults

Baseline 0.613 0.467 0.750

Weighted baseline 0.548 0.467 0.625

CNN 0.645 0.733 0.563

Weighted CNN 0.645 0.667 0.625

ASD and controls in children

Baseline 0.467 0.333 0.600

Weighted baseline 0.667 0.667 0.667

CNN 0.500 0.286 0.667

Weighted CNN 0.667 0.600 0.733

FIGURE 7

Feature importance for each weighted-CNN model.

TABLE 7 Correspondence between each face number and the presented
emotion in FEIT.

Emotion Face number

FEIT for adults

Surprise 1, 7, 14

Happiness 3, 9, 11

Anger 13, 15, 21

Sadness 4, 16, 19

Neutral 2, 8, 17

Fear 5, 10, 20

Disgust 6, 12, 18

FEIT for children

Surprise 3, 8, 10, 12, 19, 22, 25, 32

Happiness 5, 7, 9, 14, 21, 23, 26, 30

Anger 1, 6, 13, 15, 18, 24, 27, 29

Sadness 2, 4, 11, 16, 17, 20, 28, 31

Iwauchi et al. 10.3389/fdgth.2023.952433
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the statistical tests showed that there were significant differences in all

three features for the neutral trials. Some individuals with ASD may

have difficulty distinguishing subtle facial expressions (18). In

addition, as reported in Figure 4, fixation to the eyes of a neutral

face is different between adults with ASD and control. In the

present results, the neutral face was given the highest weight in the

random forest classification, which suggests that neutral face

recognition may have been more specific to the classification of

ASD and control in this study.
5.2.2. Sz and control adults
For the Sz and controls, the accuracy was the same for each

image with and without weights. The statistical analysis showed

that there were statistically significant differences in fixation at

the eyes regardless of which emotion was presented. Based on

the above, the top two features of importance are face 12

(disgust) and face 21 (anger), but we do not think that feature

importance has any particular significance. These results suggest

that there is no difference in Sz by facial expression, but the face

gaze scanning pattern may be different from that of the

control group.
5.2.3. ASD and control children
Finally, we discuss the results for ASD in children and the control

group. Feature importance was highest for face 8 (surprise), followed

by face 13 (anger) and face 6 (anger). The statistical tests showed that

there was a significant difference only in fixation at the eyes

compared to the anger trials. The 16.7% improvement in accuracy

by weighting for each facial expression indicates that this modeling

is also effective for ASD in children.

Compared to the adult results, the weighted models increased

the accuracy of the adults and the children. Since the childhood

version of FEIT used in this study does not include a neutral

face, no direct comparison is possible. But it does include anger

as a lower weight. Similarly, in the case of children, the emotion

with the next highest weight after surprise is anger. In the

statistical tests, Figure 4 shows that eye movements for control

and anger are different for both groups of children, which

suggests that a specificity might exist for eye movements for

anger in both adults and children.
5.3. Error analysis

There were cases in which the proposed method did not

work. There were 2 adults with ASD, 1 adult with Sz, an adult

in the control group, and 4 children with ASD and one control

child who could not be detected correctly by any of the 4

models constructed in this study. We checked the data for

these individuals and noted that their gaze did not move from

the center at all. Considering the possibility that they were not

solving the task seriously, we checked the FEIT scores and

found that their scores were not lower. The respective FEIT

scores were 18 and 19 for the two adults with ASD, 15 for the

adult with Sz, and 15 for the control. The 4 children with ASD

scored 19, 25, 22, and 17 and the control had 23. This suggests
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that people with wide peripheral vision may be able to

successfully complete the task without moving their eyes.
5.4. Limitation

A limitation of this study is the small data size. We need to

increase the number of participants and conduct verification to

ensure validity. In addition, error analysis showed that the

method used in this study did not successfully detect people who

observed objects through peripheral vision. Therefore, we will

conduct experiments with a larger number of data in the future

to investigate a method that can be used for people whose gaze

does not move much.

As noted in the error analysis, we misidentified 2 ASD and 1 Sz

in the adults and 4 ASD and 1 control in the children. As a

percentage, we misidentified 6.5% of the subjects in adults and

17% in children. The inability to identify participants who solved

the task without showing much eye movement is a limitation of

the present models.

Last, in this paper we recruited all participants without intellectual

difficulties. However, because we did not obtain any actual IQ values,

this study does not adequately take into account the influence of

intellectual level. This is a limitation because ASD and Sz includes a

wide range (a spectrum) of symptoms, skills, and levels of disability.

The participants of this study were only a small number of mild

(high-functioning) cases, and it remains unclear whether all types of

neurodevelopmental disorders have the same effect. We need to

consider the relationship between the proposed model and the

individual nature of disorders by obtaining actual IQ values and

other relevant factors.
6. Conclusion

In this study, we examinedwhether the accuracy of classification could

be improved by taking into account differences in eye movements due to

facial expressions in the control, ASD, and Sz groups. The results showed

that taking into account the differences in each image improved the

accuracy of distinguishing between the control and ASD adults by 10%.

The study also confirmed a 16.7% improvement in accuracy for children

with ASD. Both results were significantly different compared to the

chance rate (p , 0:05). For the control and Sz participants, there was a

marginally significant difference from the chance rate in the best model,

but no improvement in accuracy. There was a difference in eye

movement for each facial expression between the ASD and control

groups, especially for weaker expressions. Sz and control participants

showed differences in eye movement for each expression, but not for

each presented emotion. In ASD, this indicates that modeling is

effective, which weights the output of each image.
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