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Introduction: Accelerometry has become increasingly prevalent to monitor
physical activity due to its low participant burden, quantitative metrics, and ease
of deployment. Physical activity metrics are ideal for extracting intuitive,
continuous measures of participants’ health from multiple days or weeks of high
frequency data due to their fairly straightforward computation. Previously, we
released an open-source digital health python processing package, SciKit Digital
Health (SKDH), with the goal of providing a unifying device-agnostic framework
for multiple digital health algorithms, such as activity, gait, and sleep.
Methods: In this paper, we present the open-source SKDH implementation for the
derivation of activity endpoints from accelerometer data. In this implementation,
we include some non-typical features that have shown promise in providing
additional context to activity patterns, and provide comparisons to existing
algorithms, namely GGIR and the GENEActiv macros. Following this reference
comparison, we investigate the association between age and derived physical
activity metrics in a healthy adult cohort collected in the Pfizer Innovation
Research Lab, comprising 7–14 days of at-home data collected from younger
(18–40 years) and older (65–85 years) healthy volunteers.
Results: Results showed that activity metrics derived with SKDH had moderate to
excellent ICC values (0.550 to 1.0 compared to GGIR, 0.469 to 0.697 compared to
the GENEActiv macros), with high correlations for almost all compared metrics
(>0.733 except vs GGIR sedentary time, 0.547). Several features show age-group
differences, with Cohen’s d effect sizes >1.0 and p−values < 0.001. These
features included non-threshold methods such as intensity gradient, and activity
fragmentation features such as between-states transition probabilities.
Discussion: These results demonstrate the validity of the implemented SKDH
physical activity algorithm, and the potential of the implemented PA metrics in
assessing activity changes in free-living conditions.
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1. Introduction

Inertial measurement units (IMUs) have gained popularity and

became one of the best solutions for continuous monitoring of

populations in free-living environments (1). This has led to

various algorithms being developed to extract digital metrics that

quantify physical activity (PA) from continuous accelerometer

recordings. The simplest of these methods compute general

summary metrics of physical activity throughout the day,

oftentimes through energy-expenditure based thresholds applied

to lightly filtered and transformed data (2). These physical

activity metrics provide a high-level summary of how active a

user is day-to-day, without requiring more sophisticated

processing to estimate metrics from gait, for example.

Additionally, the typical wrist-based placement to obtain these

measures of physical activity provides an easy, convenient, and

relatively comfortable mounting spot for the IMUs which can

take the place of or be integrated with watches or other wrist

bands (3).

The simplicity and convenience have therefore led to previous

work into physical activity metrics, from early work on circadian

rhythm (4, 5), to more recent work investigating physical activity

trends in large populations (6, 7). In practice, most algorithms

that estimate these physical activity metrics are similar; first they

compute a summary measure of acceleration magnitude (8, 9),

often with light signal filtering, then threshold into multiple

different bins (sedentary, light, moderate, and vigorous physical

activity) based on metabolic equivalent tasks (METs), and

compute the amount of time in each of the bins (10–15). While

easy to understand and interpret, these four activity bin

thresholds are empirically based, resulting in discrepancies in

threshold values, even among the same populations, as well as

largely different thresholds for healthy children compared to

healthy adults (13, 14). These population threshold differences

pose problems when working with non-healthy populations, as

the thresholds may not allow for fully sensitive detection of

changes in activity level. However, there have been suggested

ways to move away from threshold-based digital metrics, such as

examining the decreasing amount of time spent in more vigorous

activity (16).

Many device companies have their own, often closed-source,

activity endpoints computation, such as ActiGraph,1 the

Activinsights GENEActiv R markdown scripts,2 Axivity,3 or the

Philips Actiwatch software.4 However, using such packages

comes with some challenges, notably the lack of generalizability

in ingesting data from other devices and the flexibility to

incorporate additional configurations. There have been several
1https://theactigraph.com/centrepoint
2https://activinsights.com/support/geneactiv-support/
3https://axivity.com/
4http://www.actigraphy.respironics.com/solutions/actigraphy.aspx
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open-source packages previously released to process

accelerometry signals and generate digital metrics, such as GGIR

(17) and pyActigraphy (18). pyActigraphy, with the capability to

be used for multiple data formats, but they only provide metrics

related to circadian and rest-active rhythms, and not general

physical activity or measurements of gait. GGIR, as one of the

most commonly used R packages to process and analyze

accelerometry signals, has its own limitations. Notably, while

GGIR provides many options for its processing steps,

understanding these options requires a significant time

investment, and any significant modifications to the GGIR’s

processing would require intermediate or higher knowledge of R

software. Finally, any extensions of GGIR’s functionality would

be likely be highly complicated and convoluted due to the

current nature of the code base. However, it is still important to

keep in mind that GGIR has significant popularity and previous

use in literature, and would provide a good benchmark for future

physical activity computation packages.

In order to overcome these challenges and limitations,

Adamowicz et al. recently released SciKit Digital Health (SKDH)

(19), a general-purpose, unified, and open source Python package

containing various algorithms (e.g. gait, activity, and sleep), pre-

processing steps (e.g. wear detection, signal calibration), and data

ingestion methods, that aims to be easily accessible by end users

with a minimal learning curve.

In this work, we first present a comparison of SKDH physical

activity endpoints against corresponding GGIR physical

activity metrics and Activinsights GENEActiv R markdown

metrics in a healthy adult cohort. This comparison provides the

first hand validation evidence to ensure that the SKDH

implementation maintains consistency with existing physical

activity implementations that have been widely used to generate

physical activity metrics in the literature. Second, we demonstrate

the scientific applications of SKDH-generated digital metrics of

physical activity by evaluating their relationship with age, with

attention to non-threshold based metrics.
2. Methods

2.1. Subjects and procedure

Data used for validation and testing of the physical activity

algorithms were from the Sensors to Record Your Daily Exercise

(STRYDE) study completed at the Pfizer Innovation Research

Lab (PfIRe Lab) in Cambridge, Massachusetts. Full details of the

study design can be found in previous publications (20). In

summary, 66 healthy participants were recruited in the greater

Boston area, Massachusetts, USA (older cohort (ages 65–85):

N ¼ 32, 16 Females (50:0%), age 72:3+ 5:8, younger cohort

(ages 23–39) N ¼ 33, 17 Females (51:5%), age 29:2+ 4:6). One

male participant in the older adults group was excluded as it was

determined that he did not meet the inclusion criteria after study

completion. The key inclusion criteria included no significant

health issues, BMI between 18.5 and 30 kg/m2, or absolute weight

<125 kg. The key exclusion criteria included self-reported medical
frontiersin.org
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condition, recreational drug use, or medication use preventing

study task completion, Vulnerable Elders Survey (21) total score

>3 including 0 in all activities of daily living (ADLs)).

Participants completed two in-lab visits spaced 7–14 days apart.

Between the two lab visits, participants wore accelerometers on

their lower back and on their non-dominant wrist while going

about their daily lives (all subjects were community-dwelling).

Only wrist sensor data are presented in this work. The final

protocol and informed consent documentation were reviewed

and approved by Advarra Institutional Review Board (study ID:

Pro00029419). All participants gave written consent prior to

enrollment.
2.2. Instrumentation

During the at-home portion of the STRYDE study, participants

wore two devices (GENEActiv, Activinsights, UK): one on their

non-dominant wrist and another on the lower back. Devices

recorded tri-axial accelerometer data (range: +8 g, sampling rate:

50 Hz) and were attached to the body using straps. Data were

stored locally on the device and downloaded for offline

processing following the return of the device to the study site.

For this work, only data from the wrist worn device were used to

generate physical activity metrics.
2.3. Reference processing methods

In this work, two different software packages were used as

reference benchmarks to process raw accelerometry signals and

generate daily physical activity metrics, namely GGIR and the

GENEActiv macros.
2.3.1. GENEActiv macros
As the GENEActiv devices were deployed in the study, the

accompanying GENEActiv Microsoft Excel Macros (Activinsights

now provides these as R markdown scripts) were used as one

benchmark processing method to derive physical activity metrics

from the at-home monitoring period.

The macros utilize both accelerometry signals and near-body

temperature signals and proceed with the following components:

1. Segment the data into 24-hour periods

2. Classify each 24-hour period into periods of non-wear, sleep,

sedentary, light, moderate, and vigorous

3. Generate the relevant activity and sleep metrics.

4. Generate reports with tables and visualizations.

2.3.2. GGIR
GGIR was used to compute physical activity metrics due to its

wide acceptance and usage in the research community. It has been

evaluated in over 90 peer-reviewed journal publications (17). GGIR

is a collection of algorithms for activity and sleep research driven

by the research community, written in R, and includes code to

ingest, calibrate, and detect sleep, and activity levels from raw
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acceleration data. GGIR’s functionalities consist of the following

five groups in logic processing order:

1. Calibrate the raw acceleration, derive the acceleration summary

metrics, and detect nonwear time,

2. Generate basic statistical summaries of the acceleration while

incorporating the non-wear time,

3. Detect the inactive period based on arm angle variability

4. Detect the sleep period based on the inactive period

5. Derive summaries of sleep and activity metrics and generate the

final report.

2.4. Proposed method for activity metrics
computation in SKDH

There were several key processing steps that happened before

the activity metric estimation could occur, notably accelerometer

calibration, wear detection, and sleep period detection. While

none of these steps are technically necessary to compute activity

metrics, they aid in providing more informed values that should

better reflect how a person is going about their daily life.

Calibration has been shown to be an important step, especially

when computing the activity metrics (22). The goal of the

calibration step is to ensure that when a sensor is at rest, it

would measure 1 g instead of 1.05 g for example. This was

accomplished by mapping all data points reasonably assumed to

be at rest to a sphere and then scaling these points to get the

least sum of distances from the radius one sphere (22).

The next pre-processing step for the activity metric pipeline

was to compute wear time. Using a previously published

algorithm (23) called DETACH, acceleration, temperature, and

rate of change in temperature were used to determine if a device

was being worn. The DETACH algorithm computes wear status

with resolutions down to single-digit seconds. The following

parameters were used: acceleration standard deviation of 0.008 g,

low-temperature threshold of 26.0°C, high-temperature threshold

of 30.0°C, temperature rate of decrease threshold of −0.2°C/min,

and temperature rate of increase threshold of 0.1°C/min. A

window size of 1 s was used, based on the previous work (23).

For use cases lacking temperature data, SKDH provides

alternative methods of calculating wear time using only the

accelerometer data (24–28).

Finally, sleep periods were computed using a modified version

of SleepPy (29, 30). This algorithm is very similar to the one used

by GGIR (31) and also uses acceleration from the wrist as the basis

for estimating sleep periods. In the case where temperature is

available (as it is in this work), temperature is also accounted for

in determining this sleep window, by excluding periods where

the temperature would be uncharacteristically low for worn

sleeping periods.

The proposed method for computing physical activity metrics

is very similar to that in GGIR and is based on previous work

(24, 26, 32) that GGIR uses and cites as well. The algorithm is

intuitive and is shown as pseudo-code in Algorithm 1.

In Algorithm 1, yacc is the measured acceleration in units of

gravitational acceleration (g), ENMO is the Euclidean Norm
frontiersin.org
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ALGORITHM 1 Computation of Euclidean Norm Minus One (ENMO)
which is then used to compute the rest of the activity metrics.

Data: yacc ¼ ½yax ; yay; yaz �, day index, [wear index], [sleep index]
Result: ENMOwin

for day in day index do
yacc  yacc½day wear� // if available
if twear < threshwear then

continue
end
for wake, sleep in day do // if available

ENMOðtÞ  
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2axðtÞ þ y2ayðtÞ þ y2azðtÞ

q
� 1

ENMOðtÞ  maxðENMOðtÞ; 0Þ
ENMOwin  moving meanðENMO;wlen;wlenÞ

end
end

Lin et al. 10.3389/fdgth.2023.1321086
Minus One, and ENMOwin is the windowed average ENMO over a

sub-minute window length designated wlen. For this work, wlen

was set to 5 s. Additionally, threshwear was set to 10 h.

First, iterating over each day (as activity metrics are computed

on a per-day basis), the non-wear time was removed. If the

remaining acceleration wear time (twear) was less than the

threshwear then no metrics were computed for that day. Next, if

sleep periods were provided, the day was split into waking and

non-waking (i.e. sleep) periods, and activity metrics were

computed separately for each period. Next, ENMO was

computed by taking the square root of the sum of the

acceleration components squared (Euclidean norm or vector

magnitude) and subtracting one for each time point. ENMO was

trimmed at 0. Finally, a moving mean with non-overlapping

windows was computed to obtain ENMOwin, which was used as

the basis for computing the final activity metrics.

A series of metrics was then produced based on ENMOwin. The

most basic is the accumulation of time in different brackets of activity

level. For this work, the following cut-points were used: [0 g, 0:050 g)

for sedentary, [0:050 g, 0:110 g) for light, [0:110 g, 0:440 g) for

moderate, and [0:440 g, 1) for vigorous activity levels (15). From

these definitions, moderate and vigorous physical activity (MVPA)

was anything above 0.110 g, and sedentary and light physical

activity (SLPA) was anything below 0.110 g. Additionally, time in

bouts (26, 32) were computed for various bout lengths.

While there is much research surrounding the appropriate cut-

points to use to segment activity levels (33, 11, 10, 12–15), there has

also been some research on moving away from cut-points and time

spent in various activity levels. One such method is intensity

gradient (16), which instead creates much smaller evenly spaced

bins (0.025 g), and summarizes the time in each bin. Taking the

natural log of both the mid-point of the bins and the time in

each bin allows a linear relationship to be estimated, which gives

the intensity gradient (IG), as well as the intercept and r-value

for the linear estimation.

Additionally, a series of fragmentation metrics - transition

probability, average duration, Gini index, average hazard, and the

power law distribution, were computed. While conventional

metrics such as sedentary or MVPA times focused on evaluating

the total volume of different activity types, these fragmentation

metrics, as a general explanation, attempt to evaluate the time

accumulation strategy by showing how likely it is for a
Frontiers in Digital Health 04
participant to remain in a particular activity state. Previous work

has shown that these metrics were associated with lower

mortality risk (34). Definitions for all metrics are included in

Activity Endpoint Definitions (Appendix 1).

All processing for this method was performed using Scikit

Digital Health (19), a Python package for wearable inertial sensor

data processing, version 0.11.2.
2.5. Statistical methods

Physical activity metrics generated by SKDH were compared to

reference metrics generated by GGIR and GENEActiv macros.

Specifically, the analyses focus on metrics that are shared across

the platforms. For such comparisons, both mean metrics across

days and the repeated days of measurements were considered. To

compare the mean across days, pairwise t-tests, intra-class

correlation coefficients (ICC), and Pearson correlation

coefficients were calculated. Furthermore, to incorporate day-to-

day variability in daily physical activity, repeated measures

correlation was also computed, which accounts for non-

independence among observations using analysis of covariance to

statistically adjust for inter-individual variability (35, 36). The

difference between each pair across repeated days was fitted into

a mixed effects model as response and subject as the random

effect. The estimated mean differences were reported for each pair.

The relationship between age and SKDH-generated physical

activity metrics was explored from two aspects. Activity metrics

were averaged across days for each participant. First, to

investigate the overall between-group difference in each of the

activity metrics, two group t-tests were performed. The

standardized effect size (Cohen’s d) was computed to quantify

the difference between the two age groups. As a convention,

Cohen’s d can be used to classify effect sizes as small (d ¼ 0:2),

medium (d ¼ 0:5), and large (d � 0:8) (37).

In gerontology, trajectories of measurements of interests are

typically fitted as a function of age to study the measurements

across the lifespan (38). Therefore, for each activity metric, we

fitted two separate linear regressions with age as the fixed effect,

one for each age group. The estimated age effects (i.e. the

estimated slope coefficient for age) between the two groups were

then compared based on calculated t-statistics.

All statistical analysis was performed in R version 4.2.1 with the

following packages: “nlme” for mixed model with repeated

measures (MMRM), “rmcorr” for repeated measure correlation,

and “psych” for ICC. The group analysis p-values were corrected

for multiple comparisons using false discovery rate correction.
3. Results

3.1. Comparison between SKDH and GGIR/
GENEActiv macros

We assessed the reliability of activity metrics derived using

SKDH algorithm, by comparing them with activity metrics
frontiersin.org
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TABLE 1 Comparisons of mean activity metrics across days between SKDH and references (GGIR/GENEActiv Macros) for selected activity metrics.

Package Metrics ICC (95% CI) Mean diff. (p-value*) Corr. (p-value)
GGIR Intensity gradient 0.941 (0.048,0.986) �0.083 (<0.001) 0.989 (<0.001)

MVPA time 0.997 (0.991,0.999) 1.900 (<0.001) 0.998 (<0.001)

Sedentary time 0.550 (0.356,0.699) �2.299 (0.8162) 0.547 (<0.001)

Light time 0.995 (0.991,0.997) 0.968 (0.0315) 0.995 (<0.001)

Moderate time 0.997 (0.996,0.998) 0.748 (0.0472) 0.998 (<0.001)

Vigorous time 1.000 (1.000,1.000) �0.001 (0.9393) 1.000 (<0.001)

GENEActiv macros Sedentary time 0.530 (�0.056, 0.793) �76.517 (<0.001) 0.733 (<0.001)

Light time 0.469 (�0.032, 0.813) �45.040 (<0.001) 0.957 (<0.001)

Moderate time 0.618 (�0.067, 0.880) 48.954 (<0.001) 0.947 (<0.001)

Vigorous time 0.697 (0.452,0.828) 3.233 (<0.001) 0.812 (<0.001)

Max. acc. 15 min —† —† 0.967 (<0.001)

*p−values were computed from pairedt−tests.
†Incompatible units: the acceleration summaries are different in units therefore the ICC and mean difference are not appropriate to be calculated.

Max. acc.,maximum acceleration.
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provided by GGIR and GeneActiv macros. Table 1 displays

the comparison of averaged activity metrics across days derived from

SKDH, with respect to the GGIR and GeneActiv Macro through

ICC, mean difference and correlation. The ICC and correlation

between SKDH and GGIR showed great agreement for most activity

metrics (ICC . 0:75), except for sedentary time, possibly due to

slightly different definitions of sleep in these two algorithms. On the

contrary, metrics generated from GeneActiv macros algorithm were

classified based on different threshold definitions for varying

activities, thus presented high correlation with SKDH algorithm but

with large discrepancy in ICC values.

The results of comparisons based on repeated measurements

were presented in the Supplemental Data, which are consistent

with the results Table 1 based average metrics.
3.2. The relationship between age and
SKDH-generated activity metrics

Table 2 shows relationship between selected physical activity

metrics and age, ordered by the absolute values Cohen’s d, which
TABLE 2 The association between age and selected SKDH-derived physical a

Group mean (SD)

Younger Older
SLPA trans. prob. 0.04 (0.01) 0.02 (0.01)

Intensity gradient �2.32 (0.18) �2.58 (0.23)

MVPA time [min] 98.37 (36.56) 57.63 (30.88)

Moderate time [min] 93.08 (35.76) 55.58 (28.96)

Max. acceleration 6 min [g] 0.32 (0.14) 0.20 (0.09)

IG intercept 13.48 (0.79) 14.25 (0.76)

Max. acceleration 15 min [g] 0.24 (0.11) 0.16 (0.08)

Vigorous time [min] 5.29 (7.61) 2.05 (3.26)

MVPA trans. prob. 0.43 (0.11) 0.51 (0.20)

Sedentary time [min] 708.40 (82.29) 732.94 (86.79)

Light time [min] 118.27 (25.36) 118.89 (41.09)

Group mean (SD): the group means and the corresponding standard deviations; Cohen

(d ¼ 0:2), medium (d ¼ 0:5), and large (d � 0:8); p value (mean): the p values for the two

for the comparison of the age effects (slope coefficient of age in regression models) b

MVPA: moderate & vigorous physical activity; SLPA trans. prob.: Transition probability

probability out of moderate/vigorous to sedentary/light states.
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measures the effect size of the difference between two means. The

results for all derived metrics can be found in Supplemental Data.

Statistically significant differences between younger and older age

groups were observed for multiple physical activity metrics. In

particular, large effect sizes (Cohen’s d . 0:8) were observed for

SLPA transition probability, intensity gradient, MVPA, moderate

activity time, IG intercept, andmaximum15-minwindowaccelerations.

Notably, the fragmentation metrics SLPA transition probability

(interpreted as the transition probability out of sedentary/light

states to moderate/vigorous states) shows the largest between-

group difference. Time spent in moderate activity and MVPA

showed strong evidence of a group difference (Cohen’s

d . 1:17), while vigorous time alone along with sedentary and

light activity showed no significant differences between younger

and older age groups (Cohen’s d , 0:56).

Regarding the difference in the age effects (i.e. slope

estimation) between the two groups, among the metrics listed in

Table 2, it was observed that the age effects for intensity gradient

(p-value 0:017) and MVPA transition probability

(p�value , 0:001) are different. The effects can be observed in

Figure 1. A clear “hockey stick” shape can be observed where
ctivity metrics.

jCohen’s dj p-value (mean) p-value (slope)
1.68 <0.001 0.409

1.27 <0.001 0.017

1.22 , 0:001 0.130

1.17 <0.001 0.167

1.04 <0.001 0.185

1.00 <0.001 0.153

0.87 0.001 0.076

0.56 0.030 0.332

0.54 0.038 <0.001

0.29 0.247 0.095

0.02 0.942 0.180

’s d: a measure of effect size of the difference. Cohen classified effect sizes as small

group t-tests to compare the group mean difference; p-value (slope): the p values

etween the two age groups (see Figure 1); SLPA: Sedentary & light physical activity;

out of sedentary/light to moderate/vigorous states; MVPA trans. prob.: transition
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FIGURE 1

Age group comparison for three features with high Cohen’s d effect size. (Top left) Boxplot of the sedendary/light to moderate/vigorous physical activity
(SLPA) transition probability. Group mean t-test p-value = 7.36×10−9. (Top right) Scatter plots for SLPA transition probability for each age group with
regression lines. (Mid left) Boxplot of the intensity gradient. Group mean t-test p-value = 4.98×10−6.(Mid right) Scatter plots for intensity gradient for
each age group with regression lines.(Bottom left) Boxplot of the moderate∕vigorous to sedendary∕light physical activity (MVPA) transition probability.
Group mean t− test p�value ¼ 0:0384.(Bottom right)Scatter plots for MVPA transition probability for each age group with regression lines. In the
right graphs, R is the Pearson correlation coefficient and pis thep− value for regression slope coefficient.
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the younger age shows a stable pattern but the older age shows an

accelerated change. In contrast, even though there is significant

difference in SLPA transition probability between the two age

groups, the age slopes between the two groups show difference,

and thus we observe a rather “linear” decline instead of a “hockey

stick” shape. Among all the metrics generated by SKDH

(Supplemental Data), additional metrics showing evidence of age

slope differences between groups include MVPA accumulated in

10min bout time (p-value 0:038), SLPA average duration (p-value

0:001), and SLPA average hazard and power law distribution.
4. Discussion

We introduced the open-source Python package, Scikit Digital

Health (SKDH) (19), and how it can be used to generate physical

activity metrics. We provided a comparison between the SKDH-

generated metrics against existing methods, i.e. GGIR and

GENEActiv Macros using data collected from a study in healthy

adults. We further examined the association between the

generated activity metrics with age, which is crucially related to

epidemiological and health-related research (39).

When comparing SKDH-generated metrics with the references,

correlations were generally strong. For both reference algorithms,

relatively larger bias and lower correlation were observed for

sedentary activity time. One possible explanation for this

discrepancy is due to the use of slightly different sleep

algorithms, which potentially cause over- or under-estimation of

sedentary time since they share similar patterns, impacting these

comparisons. Specifically, there is excellent agreement between

SKDH and GGIR. This is primarily because that the SKDH and

GGIR shared the same list of algorithms to generate the metrics,

namely using ENMO as an acceleration aggregation metric, and

the use of the same thresholds for the defined activity levels.

Between SKDH and the GENEActiv Macros, we observed

moderate ICC values and larger biases, which presumably is

driven by a different acceleration accumulation algorithm, and

different thresholds for the sedentary, light, moderate, and

vigorous activity levels used. It is worth mentioning that, neither

of GGIR and GENEActiv macros should be considered as

“ground truth”. Therefore, our comparison is technically not a

“analytical validation” according to the V3 framework (40).

However, what is shown in this paper is still extremely valuable

as they demonstrate that SKDH’s results agree with other widely

accepted tools. It deserves to be highlighted that in this work, as

opposed to most of other validation works which typically

average the repeated measurements across days, we incorporated

the day-to-day variation using repeated measure regression

models. Even though the results are consistent in this population

who are healthy, it is still highly recommended to consider the

repeated measure design for future analyses.

Significant differences between the younger and older age

groups were found for several metrics including sedentary to

active transition probability, intensity gradient, moderate and

vigorous physical activity time, and maximum 6-min

acceleration, which all showed Cohen’s d over 1:0. Since age is a
Frontiers in Digital Health 07
key risk factor for a wide variety of diseases and health

conditions (39), there is potential to deploy these digitally

measured physical activity metrics as novel digital endpoints in

clinical trials as they may be able to provide large effect sizes

with smaller sample sizes than typical for these clinical trials.

While metrics such as MVPA, sedentary, and light physical

activity time are threshold based, with thresholds changing from

study to study (10–15), and changing between children and

adults (14, 11, 10), the intensity gradient (16) method does not

rely on these thresholds. The observed between-group differences

for intensity gradient, therefore, provides evidence that non-

threshold activity metrics can be utilized in future studies with

fewer challenges to interpreting results based on a common set

of thresholds for potentially diverse participant groups. Future

work could focus on exploring additional non-threshold-based

methods for calculating activity endpoints.

Even though there are significant between group differences for

metrics such as the transition probability from sedentary/light to

moderate/vigorous states, over the life span, those metrics are

monotonically increasing or declining. On the contrary, we

identified the difference in the age effects (i.e. slope estimation)

between the two age groups for a variety of activity metrics such

as intensity gradient and MVPA transition probability. We

observed a “hockey stick” shape over a lifespan—the trajectories

tend to be stable and flat in younger ages and suddenly come

with steeper and accelerated change in older ages. Take MVPA

transition probability, which indicates the likelihood to transition

from MVPA to light activity or sedentary behaviors (i.e. to break

up high-intensity activity), as an example. We observed that,

between the ages of 23 to 39, participants’ likelihood to break up

high-intensity activity tends to stay stable, while between the ages

of 65 to 85, the likelihood drastically increases, which indicates a

serious decline in the ability to sustain high-intensity activity.

The “hockey stick” trajectories we identified are consistent with

previous publication on the age-caused decline in mobility and

cognitive function and is a key concept in gerontology to study

the biology of aging and the determination of biomarkers to

track these effects (41–43). Notably, the difference in the age

effects (i.e. slope estimation) between the two age groups was

majorly identified for metrics that quantify activity

fragmentation, which is a relatively new concept since most

research is still focused on the use of metrics to quantify total

activity volumes such as MVPA and total sedentary time. Such

findings are consistent with growing literature demonstrating the

value of using fragmentation metrics that explore the pattern to

accumulate active and sedentary time. These metrics have been

shown to be associated with functional measurements of

mobility, all-cause mortality, and hearing loss (44, 34, 45–49).

There are a few limitations with this work, namely that the

sample size was relatively small compared to large cohort studies

that quantify physical activity measurements. It is aligned with

our goal to eventually apply SKDH to large cohort studies in the

future. Additionally, even slightly different sleep algorithms

potentially resulted in a biased estimation of sedentary and light

PA due to the misclassification of sedentary activity. Future work

may be needed to increase the specificity of the sleep detection
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algorithm. The analyses were conducted only in healthy adults, and

future work should focus on incorporating pathological

participants who may have different patterns of physical activity.

While this work focused on the wrist location, which is

commonly used for physical activity estimation due to ease and

comfort of wearing (50), exploring the lumbar sensor available in

this study is a potential avenue for future work as well. Finally,

while we present two different reference methods, there are other

commonly used algorithms to assess physical activity, such as

algorithms based on ActiGraph’s activity counts, the algorithms

for Axivity, and the Philips Actiwatch. Actigraph’s recent move

to publicize its proprietary activity counts algorithm (51)

increases the possibility of applying their algorithms and analytic

platforms for other devices, which remains an avenue of

exploration for future work.
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Appendix 1. Activity endpoint
definitions
Intensity gradient A measure of the decrease in time spent as intensity of activity increases. Calculated by taking the log of time spent in 25 mg bins and finding the slope
of these points (16).

Maximum
acceleration

A measure of the maximum mean acceleration in a window of time. Calculated by taking the mean acceleration in windows through a day, and taking
the highest mean acceleration for that day.

Bout time A modified accounting of time spent at a particular activity intensity level, where only time spent in bouts of a minimum length (typically 1, 5, or
10 min) is counted.

Average duration The average duration spent in a particular intensity of activity. Calculated by obtaining the bout lengths of an activity intensity and taking the mean of
these bout lengths (34).

Transition
probability

A measure of the likelihood to transition out of a particular activity intensity. The computation for this, through some manipulation ends up being the
inverse of the Average Duration (34).

Gini index A measure of the variability of the bout lengths. Normalized from 0 to 1, such that values near 1 indicate that the total time was accumulated mostly
due to a small number of large bouts, while values near 0 indicate that the total time was accumulated through a large number of relatively similar
length bouts (34).

Average hazard A measure summarizing the frequency of transitioning from one state to another. Higher values indicate higher frequency in switching between states
(34).

h(tni ) ¼
n(tni )

n� nc(tni�1 )
(A1)

ĥ ¼ 1
m

X
t[D

h(t) (A2)

where h(tni ) is the hazard for the bout of length tni , n(tni ) is the number of bouts of length tni , n is the total number of bouts, nc(tni ) is the sum bumber
of bouts less than or equal to length tni , and t [ D indicates all bouts up to maximum length D.

Power law
distribution

The a from the power law distribution. Larger values indicate that the total time is accumulated with a larger portion of short length bouts, i.e. more
frequent transitions. Computed by

a ¼ 1þ nP
i log ti=(min (t)� 0:5)

(A3)

where n is the number of bouts, ti is the duration of the ith bout, and min (t) is the length of the shortest bout (34).
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