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Background: In sickle cell disease (SCD), unpredictable episodes of acute severe
pain, known as vaso-occlusive crises (VOC), disrupt school, work activities and
family life and ultimately lead to multiple hospitalizations. The ability to predict
VOCs would allow a timely and adequate intervention. The first step towards this
ultimate goal is to use patient-friendly and accessible technology to collect
relevant data that helps infer a patient’s pain experience during VOC. This study
aims to: (1) determine the feasibility of remotely monitoring with a consumer
wearable during hospitalization for VOC and up to 30 days after discharge, and
(2) evaluate the accuracy of pain prediction using machine learning models
based on physiological parameters measured by a consumer wearable.
Methods: Patients with SCD (≥18 years) who were admitted for a vaso-occlusive
crisis were enrolled at a single academic center. Participants were instructed to
report daily pain scores (0–10) in a mobile app (Nanbar) and to continuously
wear an Apple Watch up to 30 days after discharge. Data included heart rate (in
rest, average and variability) and step count. Demographics, SCD genotype, and
details of hospitalization including pain scores reported to nurses, were
extracted from electronic medical records. Physiological data from the wearable
were associated with pain scores to fit 3 different machine learning classification
models. The performance of the machine learning models was evaluated using:
accuracy, F1, root-mean-square error and area under the receiver-operating
curve.
Results: Between April and June 2022, 19 patients (74% HbSS genotype) were
included in this study and followed for a median time of 28 days [IQR 22–34],
yielding a dataset of 2,395 pain data points. Ten participants were enrolled while
hospitalized for VOC. The metrics of the best performing model, the random
forest model, were micro-averaged accuracy of 92%, micro-averaged F1-score
of 0.63, root-mean-square error of 1.1, and area under the receiving operating
characteristic curve of 0.9.
Conclusion: Our random forest model accurately predicts high pain scores during
admission for VOC and after discharge. The Apple Watch was a feasible method to
collect physiologic data and provided accuracy in prediction of pain scores.
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1. Introduction

Sickle cell disease (SCD) is the most common severe red blood

cell disorder affecting 20 million individuals worldwide (1). In

SCD, a mutation in the β globin gene leads to the formation of

sickle hemoglobin (HbS). Deoxygenated HbS polymerizes into

long chains changing the shape of red blood cells into a stiff, rigid

and sickle shaped form. These sickled red blood cells can obstruct

the microvasculature easily resulting in acute and chronic

complications such as vaso-occlusion, hemolytic anemia, and

multi-organ damage (2). Due to its broad range of complications,

SCD is associated with increased morbidity, premature mortality,

and impaired health-related quality of life (3, 4).

The most common complication of SCD are recurrent, acute

episodes of severe pain, also called vaso-occlusive crises (VOCs).

VOCs are the manifestation of vaso-occlusion along with tissue

infarction, ischemic-reperfusion injury, and inflammation (5, 6).

VOC pain is often located in the back, abdomen, or extremities,

but any part of the body may be affected. A VOC usually lasts for

7 days and is often preceded by a prodromal phase of 1–2 days

(7). VOCs may be elicited by dehydration, fever, cold temperatures,

exertion, lack of sleep and stress. They usually occur unexpectedly

and form an unwanted interruption of planned activities of the

person with SCD. The unpredictability of VOCs profoundly affects

school or work activities and family life.

Currently, treatment of VOCs begins at home and is focused

on symptomatic pain control with hydration and analgesia. In

case home management fails, evaluation within the emergency

department and subsequent hospitalization for administration of

opioids is often required. VOCs account for over 70% of acute

care visits (8), and are the primary cause of hospitalization in

approximately 95% of admissions of patients with SCD (9).

Recurrent VOCs may progress to SCD-related chronic pain (10),

as the prevalence of chronic pain increases with age. Chronic

pain refers to pain that is present on most days for at least 6

months (11). By adulthood, over 55% of patients experience pain

on greater than 50% of days (12).

Currently, there are no reliable tests to diagnose or predict VOCs

in individuals with SCD. The gold standard for pain assessment and

diagnosis is self-reported, leading to healthcare providers

interpretation of pain reports, patient presentation, and medical

history. Further, pain assessment tools such as the visual analog

scale are limited by the momentary assessment of pain. There are

laboratory parameters that have been associated with the severity of

a VOC (13, 14), but they do not predict a VOC before it occurs

(15, 16). Prediction or early recognition of pain is crucial, as it

would potentially allow a timely intervention that possibly shortens

a VOC and the development of complications. This unmet need to

predict a VOC before it occurs may be approached by using

mobile health applications that provide the opportunity to

continuously monitor changes in physiological parameters. In order

to develop clinical applications of VOC prediction by physiological

parameters collected through mobile health applications, we need

to first establish the feasibility of mobile monitoring in the

outpatient setting and also refine the development of machine

learning models to predict momentary pain scores.
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Our recent efforts described by Stojancic et al, detailed our

development of a machine learning model that was able to

predict pain scores in SCD patients hospitalized for a VOC with

an accuracy of 86% (17). However, during hospitalization the

pain scores are expectedly higher than after discharge, when the

pain subsides, scores are lower as they return to baseline levels.

Therefore, to address prediction of pain scores in both the

inpatient and outpatient setting, the present study aims to: (1) to

evaluate the feasibility of extended monitoring up to 30 days

after discharge from the hospital, and (2) to refine the

development of machine learning models to predict pain scores.
2. Methods

2.1. Data collection

In this prospective cohort study, patients with SCD aged 18

years and above, who received care at Duke University Hospital,

were eligible for enrollment. Patients were included if they were

admitted for a VOC to the SCD day hospital or to Duke

University Hospital between April and June 2022. The study

protocol was approved by the institutional review board of Duke

University Medical Center (IRB Pro00068979) and was

conducted according to the Declaration of Helsinki. Following

written consent, participants were enrolled for the duration of

their hospitalization, and up to 30 days after discharge. They

were provided: (1) the mobile app (Nanbar Health) on their

personal Apple iPhone or provided with an iPhone series SE;

and/or (2) an Apple Watch series 3 if patients did not have their

own. Participants were instructed to report their pain score at

least once daily in the Nanbar Health app. They were also asked

to wear the Apple Watch as often as possible, removing it only

to charge. The study team contacted the participants once a week

by telephone or email to remind them to wear the Apple Watch

and to report in the Nanbar Health app.
2.2. Study measures

Demographics including age, sex, SCD genotype, and ethnicity

were collected from the electronic medical records (EMR). Details

from the hospitalization were also collected from the EMR

including pain scores reported to nurses. During hospitalization

for VOC, pain scores were reported to nurses several times a

day, and documented in the EMR. Self-reported pain scores were

reported in the Nanbar app on a visual analog scale ranging

from 0 to 10, with 0 accounting for no pain, and 10 being the

most intense pain. Physiological data collected from the Apple

Watch included heart rate, heart rate variability, average heart

rate, resting heart rate and step count. Heart rate was collected

by the Apple Watch every 3–7 min in rest, and periodically more

frequently based on the activity level of the participant (18).

Heart rate variability was calculated by using the standard

deviation of beat-to-beat measurements that were captured by

the heart rate sensor of the Apple Watch. Daily resting heart rate
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was calculated while inactive by the Apple Watch by correlating

background heart rate readings with accelerometer data (18).

These data were analyzed for association with the pain scores

collected via the app and from EMR. The performance of the

machine learning models was evaluated using the following

metrics: accuracy, F1-score, area under the receiving operating

characteristic curve (AUC) and root-mean-square error (RMSE)

(Table 1) (23). F1-score was calculated using precision and

recall. Refer to the Supplementary Table S1 for the formulas.

Calculation of AUC was done for each class and the average

value was reported.

We also compared the machine learning models to two null

models, random model, and mode model. These models do not

take in any physiological data to train, rather use the frequency

information of each pain score in the training data set to define

a rule. Random model assigns probability of each pain score to

occur proportionate to their frequency in the training data. On

the other hand, the mode model predicts the pain scores to be

the equal to the most frequent pain score in the training data.

These null models have no clinical significance but are useful to

assess the validity of the created machine learning models as

their predictive value can be compared to the results of these

models based on chance. Null models also help establish a

baseline against which we assess performance of ML models. The

physiological data was collected through the Apple Watch.

However, due to infrequent self-reporting of pain on the app, we

combined these self-reported pain scores with the pain scores

from the EMR. Physiological data were solely collected by the

Apple Watch.
2.3. Analyses

All data were analyzed using Statistical Package for the Social

Sciences (version 28.0; SPSS) or Python (version 3.9.6; Python

Software Foundation). Descriptive data was generated for all

variables to describe the study population. Categorical variables

were presented as absolute numbers with corresponding

percentages. Means and standard deviations (SDs) were calculated

for continuous variables that were normally distributed. Medians
TABLE 1 Definition table of the used metrics to evaluate the performance
of each model.

Accuracy (19) The proportion of correct data points
predicted by the machine learning
algorithm out of all the data points.

F1-score (20) Considers not only the accurate recall of a
model but how close together predicted
values are to each other (“1” is considered a
perfect model).

Area under the receiving operating
characteristic curve (AUC) (21)

Determines how well our model picks
between different pain score classes. In our
model, each numerical pain score is a class
(“1” is considered a perfect model).

Root-mean-square error
(RMSE) (22)

Refers to how far the true values are from
values predicted by our model. Larger
values represent the further distance
between predicted and true values.
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with interquartile ranges [IQRs] were calculated for values that

were not normally distributed. The submitted pain scores were

associated with the physiological data using the nearest-neighbor

approach. As the pain scores were discrete pain values ranging

from 0 to 10, three classification machine learning models were fit

to our data: multinomial logistic regression, random forest, and

gradient boosting model. The hyperparametric values for all the

models were set to be the default value set in the scikit-learn

library for Python. Post the initial fit, we tuned the maximum

depth of individual trees in the random forest model, to avoid

overfitting and underfitting. To increase the amount of data for

the machine learning models, we adopted an oversampling

scheme, where it was assumed that the pain score remained the

same for up to 15 min prior to and after each pain score was

recorded. The metrics chosen to showcase the performance of

each model were accuracy, F1-score, area under the ROC curve

(AUC) and root mean squared error (RMSE). Out of these

metrics, accuracy and F1-scores were micro-averaged. Micro-

averaging is a method used to calculate certain performance

metrics which enables us to consider each data point individually

and not individual classes. Using this method helps avoid minority

classes from skewing the metrics and gives us a more realistic

reflection of the model performances. For the best performing

machine learning model, we calculated a feature importance score

for the physiological variables to determine which variable

contributed the most to the prediction of the machine learning

model. To further assess the model performance, instead of the

random split approach, we used 10-fold cross-validation and

presented the mean accuracy and its standard deviation (SD).

Cross-validation allows us to make use of all the data by dividing

it in equal parts (or “folds”) and then train and test the models on

different folds on different iterations. The accuracies are reported

using the average value with the standard deviation over all 10-

folds. It is important to note that the average is the unweighted

mean (macro-average), and not micro-averaged.
3. Results

Our study included 19 patients with SCD with the median age

of 30 years [interquartile range (IQR 22–34)], of which the

majority had HbSS. The demographics are presented in Table 2.

The median length of stay of the hospitalized participants was

5 days [IQR 2–9.8]. All patients were treated with opioids.

During hospital admission, no patients developed an acute chest

syndrome, and only 1 patient required oxygen support. Within

the 30 days post-discharge period, 14 participants received

subsequent medical care for pain (74%). There was no

collinearity between any of the data elements recorded by the

Apple Watch.
3.1. Dataset

The median number of pain data points per participant was 79

[IQR 16–142]. After combining the pain scores from the app and
frontiersin.org
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TABLE 2 Demographics of the included participants.

Participants Median [IQR] or n (%)
Age (years) 30 [IQR 22–34]

% Female 11 (58%)

African-American 19 (100%)

SCD genotype
HbSS 14 (74%)

HbSC 5 (26%)

Place of enrollment
Hospital 10 (53%)

Day Hospital 9 (47%)

Time wearing watch (days) 28 [IQR 22–34]

IQR, interquartile range; n, number.

Vuong et al. 10.3389/fdgth.2023.1285207
those recorded in EMR, our dataset consisted of 2,395 pain data

points. In our dataset, there were no 0s or 1s reported, therefore

we used 9 classes in which each class represented pain scores

ranging from 2 to 10. In Figure 1A, the number of pain data

points are shown for hospitalization and the period after

discharge; 2,273 pain data points were derived from the EMR,

and 122 data points came from the Nanbar app. The distribution

of the reported pain scores after oversampling are shown on a

scale from 0 to 10 in Figure 1B. The pain score seven was the

most frequently reported in our dataset.
3.2. Performance of models

The performance of each machine learning model is shown in

Table 3. F1-scores were calculated using precisions and recalls,

which are reported in the Supplementary Table S2. As

demonstrated in Figure 2, all three machine learning models

outperformed the null models. The random forest model was the

best performing machine learning model based on the metrics, as

shown in Table 3 and Figure 3 with an accuracy of 92%, micro-

averaged F1-score of 0.63, AUC of 0.9, and a RMSE of 1.1. The

cross-validation accuracy and SD of the three machine learning

models are shown in Figure 4A. The cross-validation demonstrates

that the random forest model had the highest cross-validation

accuracy (62%) with the lowest SD (0.7%). These cross-validation

accuracies are macro-averaged averaged and hence get skewed by

the class imbalance. However, regardless of the difference in macro

and micro-averaged accuracies, these values indicate that this model

is most likely to outperform the rest of the models in an

independent dataset in terms of both performance and robustness.1

Among the five physiological variables used in the random forest

model, step count had the highest feature importance score

followed by resting heart rate as shown in Figure 4B.
1Our choice of method is not necessarily the best-performing one across all

possible machine learning models but rather shows that we can use machine

learning to predict pain with a fairly high degree of ‘accuracy’.
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4. Discussion

Physiological data can be feasibly collected by a consumer

wearable and be used to build machine learning models that

successfully predict self-reported pain scores in patients with

SCD admitted for VOC and up to 30 days after discharge.

Despite the fact that the random forest model is not the most

interpretable machine learning model, it did outperform the

other machine learning models. The random forest model was

most accurate in the prediction of the higher pain scores,

particularly those greater than 6. The random forest model had

also the highest cross-validation accuracy. Accurate pain

prediction is key in the management of a VOC, as it is often

depending on how much pain the patient is experiencing.
4.1. Related works

These findings are in line with the previous studies performed

with patients during treatment for VOC, while admitted to the day

hospital (17, 24). In the study from Stojancic et al, the random

forest model was also the best performing machine learning

model (17). Although our machine learning model achieved a

slightly higher accuracy (92% vs. 85%), the model from Stojancic

et al. performed considerably better given the other metrics such

as the F1-score (0.63 vs. 0.85). Even though data collection

continued after discharge in our study, we found a high

reutilization of care rate 30 days post-discharge indicating that a

substantial proportion of the patients were still in pain during

follow-up after the hospitalization. It is also possible that patients

who were feeling well after discharge did not feel the need to

continue to report if they had no or low levels of pain,

introducing an additional bias towards higher pain score

reporting. The class imbalance was less pronounced in the study

by Stojancic et al, because of the regular pain reporting to nurses

reflected by the higher F1-score. Also, the Apple Watch was put

into exercise mode during the previous study, which allowed

continuous data collection with data acquisition every minute.

This was not feasible in our outpatient study due to the resulting

shortened battery life. All the above contributed to a higher data

density and a better performing machine learning model in

Stojancic et al.

Another study that focused on the prediction of acute pain in

patients with SCD presenting to the day hospital was conducted by

Johnson in 2019, but with the Microsoft Band 2. Similar machine

learning analyses were performed showing an accuracy of 73% on a

4-level pain score with the machine learning model the support

vector machines for regression (24). In this study, 27 patients

were included at the day hospital for the average duration of

3.8 hours. In contrast to previous studies at the day hospital, we

had a higher accuracy most probably because of the longer

duration of follow-up outside the hospital, the applied machine

learning techniques, and the improved technology of wearable

devices over time.

Instead of using physiological data from a wearable device,

Panaggio et al. used physiological data from medical records for
frontiersin.org
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FIGURE 1

(A) Split between the size of electronic medical record (EMR) data and Nanbar data before oversampling. We had 2,395 data points after combining the
pain scores from the application, and those recorded in the EMR. (B) The final distribution of reported pain scores numerical values after oversampling,
where pain scores were assumed to remain the same for 15 min prior to and after each pain score was recorded.

Vuong et al. 10.3389/fdgth.2023.1285207
estimating pain in 46 patients with SCD (25). They used two

probabilistic classification models, and used three classes to

approach the pain level (low, medium, high). Similar to our

study, their machine learning models outperformed null models,

showing that physiological measures should be used to infer

subjective pain levels and changes in pain levels. However, our

best model performed better on multiple metrics compared to

the best model in Panaggio et al.

While within the walls of the hospital, the prediction of pain

works sufficiently, there have been other efforts that used

technology to understand SCD-related pain outside the hospital.

In the study conducted by Fischer et al, data was collected from

an actigraph device during sleep in a study among children with

SCD (26). They found that worse sleep efficiency was associated

with the next-day pain and more severe pain (26). In another

study by Ji et al, the authors used finger photoplethysmogram

and heart rate measured overnight to successfully build a

machine learning model that was able to predict future VOCs by

correlating peripheral vasoconstriction to experiencing future

VOCs in patients with SCD (27).

Interestingly, in our study, step count was found to be the most

important feature in the random forest model. In the ELIPSIS

study, the authors also found a statistically significant reduction

in average daytime activity during VOC compared to the days

without pain in the home setting (28). In Tsai et al, daily step

count was a unique predictor for pain intensity and pain

interference in patients with chronic pain (29). This potentially
TABLE 3 The performance of each model including the two null models.

Prediction
model

µ-averaged
accuracy (%)

µ-averaged
F1-score

AUC RMSE

Null model 1:
random

19.7 0.20 0.5 2.2

Null model 2: mode 26.7 0.27 0.5 1.6

Multinomial
regression model

84.6 0.31 0.7 1.6

Gradient boosting
model

87.0 0.41 0.7 1.5

Random forest
model

91.9 0.63 0.9 1.1

µ, micro; AUC, area under the receiving operating characteristic curve; RMSE, root-

mean-square error.
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can be explained by the fact that patients who were in pain are

often less active due to the pain (30). The second most

important feature we found for prediction of pain was resting

heart rate. Physiologically, acute pain is associated with a stress

response, increasing the heart rate (31). Although four out of five

features were derivatives of heart rate, all features were not

correlated with each other. In our machine learning model, heart

rate variability was the fourth most important feature. Previous

research shows that heart rate variability is a more sensitive

marker of stress, compared to resting heart rate (32). Changes in

heart rate variability, a marker for autonomous nervous system,

have been found to be associated with a VOC. For example, in

the study by Adebiyi et al, heart rate variability was found to be

significantly different between patients with SCD during a VOC

and patients in steady state (33). Stress reduces the heart rate

variability and previous research in patients with diabetes

mellitus type 1 has demonstrated that reductions in heart rate

variability precede hypoglycemia by hours (34). Similarly, VOCs

in patients with SCD may also be identified by changes in vital

parameters preceding a VOC.

It should be recognized that we only evaluated five features in

our machine learning model, therefore other possibly relevant

physiological features that can be measured by a wearable device,

such as sleep, should be considered as well as in future feature

selection. Although prediction of pain score using wearable

device is the first step, the ultimately goal is to detect deviations

of patterns in physiological data indicative for VOC as described

by the anomaly detection framework (35). Correlating

physiological data to the prodromal phase of a VOC may allow

for early patient notification of an upcoming VOC, and timely

administration of medication and fluids. This could potentially

reduce the severity of the VOC, avoiding the need of a

hospitalization, and the development of complications which

occur during VOCs, such as the acute chest syndrome. We

believe that wearable devices, including consumer wearables, have

the ability to increase the availability of personalized healthcare

to underserved communities. In the last decade, wearable devices

have advanced rapidly, are more readily available and accessible,

which increases the opportunities for remote caregiving. Access

to this type of information may allow patients to be remotely

monitored and managed, a concept being adapted for other
frontiersin.org
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FIGURE 2

Bar graph comparison of the evaluation metrics for each machine learning model, along with two null models. These were calculated from a single
random split of the dataset. The symbol µ is being used to represent the word “micro”. Accuracy and F1-score were micro-averaged. The horizontal
black rule indicates the upper bound for accuracy, F1 score and AUC, the extended scale only applies to RMSE. AUC, area under the receiver
operating characteristic curve; RMSE, root-mean-square error.
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chronic diseases. Continual availability to personalized health

information can increase awareness and decrease the amount of

time patients spend admitted in a hospital thereby increasing

their health-related quality of life and decreasing the cost of care.

The ability of machine learning algorithms to predict the

occurrence of pain with real-time wearable data allows a more

personalized treatment in the management of pain in SCD.

Other advancements with machine learning in SCD are

summarized by Elsabagh et al. (36).
4.2. Strengths and limitations

Study strengths include the follow-up period of the study after

discharge from the hospital, as patients are often not entirely free of

pain when discharged. Data collection continued in the home

setting for 30 days, while recovering from the VOC, and leading
FIGURE 3

Scatter plots of the three machine learning models used. The size of the mark
straight line represents where the predicted score = actual score.
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to more pain scores from participants not in significant pain.

This allowed us to collect a higher variety of pain scores

compared to our previous studies, that were conducted within

the hospital. By combining the data from the Apple Watch,

Nanbar application and the EMR, we were also able to create an

optimal and personalized machine learning model for the

prediction of the higher pain scores, comparable to the real-life

setting and applicable to outside the walls of the hospital. We

expect that as the use of wearable devices becomes more

common, such as the use of fitness trackers during exercise,

patients will wear and report more often for their disease as well,

improving the machine learning models.

Even though we combined the collected data from multiple

sources, the leading limitation of the study stems from the

relatively small number of self-reported data points within the

mobile app. For this reason, we could not perform sub-analyses

stratifying for SCD genotype or type of pain (acute, daily and
er is proportional to the number of data points at the same grid point. The
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FIGURE 4

(A) Bar graph comparison of the 10-fold cross-validation accuracy of the three machine learning models. The reported value is the macro-average
(numerical mean) and the error line is the standard deviation of the accuracies achieved across all 10-folds. (B) Bar graph comparison of the
importance of the features showing step count was the most important. HR, heart rate; HRV, heart rate variability.

Vuong et al. 10.3389/fdgth.2023.1285207
chronic). However, our study is a first step towards digitalizing the

complete process of data collection and management. Moving in

this direction would lead to taking away the reliance on data

acquired only in-person and potentially pave the way for

machine learning applications for pain prediction. Future efforts

should focus on providing more information about the

physiological data in steady state, as machine learning models

perform better with higher variety of and larger quantities of

data. Nonetheless, the performance of the machine learning

models for pain prediction in our pilot study was satisfactory

and promising given the small number of patients. Furthermore,

we believe future efforts with data on medication could

significantly improve the pain prediction as shown in the study

by Padhee et al. (37).

In future studies, to ensure that the participants remember to

report pain and symptoms on a regular basis, which is important

for a robust data collection, we will use daily push notifications

within the app to remind participants to report and strategies

such as a badge reward system. Additionally, routinely quality

checks on the patient-reported data through a dashboard to

confirm that patients are logging regularly without technical

issues should improve the quality of the data. By allowing

participants to use their personal devices, the quantity of data

collection should improve and has led to efforts to build an

Android version of the Nanbar Health app.
5. Conclusion

Consumer wearable devices such as the Apple Watch

are useful, non-invasive, and patient-friendly methods for

continuous data collection in- and outside the hospital. They

are a valuable source of data for machine learning analyses

and show promise in accurately predicting pain. This type

of healthcare can benefit both patients with SCD and

clinicians, enabling early detection of VOC and timely

intervention by providing personalized health care. Given the

increased accessibility of technology worldwide, the use of

mobile health may be able to transform healthcare in rural

areas not only in a more convenient, but also in a more

affordable manner.
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