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Background & motivation: Household chaos is an established risk factor for child
development. However, current methods for measuring household chaos rely on
parent surveys, meaning existing research efforts cannot disentangle potentially
dynamic bidirectional relations between high chaos environments and child
behavior problems.
Proposed approach: We train and make publicly available a classifier to provide
objective, high-resolution predictions of household chaos from real-world
child-worn audio recordings. To do so, we collect and annotate a novel dataset
of ground-truth auditory chaos labels compiled from over 411 h of daylong
recordings collected via audio recorders worn by N = 22 infants in their homes.
We leverage an existing sound event classifier to identify candidate high chaos
segments, increasing annotation efficiency 8.32× relative to random sampling.
Result: Our best-performing model successfully classifies four levels of real-world
household auditory chaos with a macro F1 score of 0.701 (Precision: 0.705, Recall:
0.702) and a weighted F1 score of 0.679 (Precision: 0.685, Recall: 0.680).
Significance: In future work, high-resolution objective chaos predictions from our
model can be leveraged for basic science and intervention, including testing
theorized mechanisms by which chaos affects children’s cognition and behavior.
Additionally, to facilitate further model development we make publicly available
the first and largest balanced annotated audio dataset of real-world household
chaos.
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1. Introduction

Household chaos—characterized by an environment high in noise and crowding and low

in regularity and routines (1)—is an established risk factor for child development, affecting

both brain and behavior development (2, 3). Households that have high levels of chaos are

associated with increased child behavior problems, including decreased self-regulation,

attention and arousal, and increased levels of aggression (2–4), each associated with

increased risks for child disruptive behavior disorders such as oppositional defiant

disorder and conduct disorder (5). Higher household chaos is also linked to worse child

cognitive performance, including lower IQ (3), lower academic achievement (6) and

poorer reading and language skills (7, 8). Finally, chaotic households also are associated

with harsher and less sensitive parenting practices (9–11) which can both lead to and

reinforce maladaptive trajectories of child development. Thus, objective, accessible, remote

measures of household chaos could be part of a preventative approach for identifying and

mitigating child development and behavior problems.

Research in developmental science typically measures chaos using surveys completed by

caregivers living in the home (2, 3). However, these measures are subjective, meaning that
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caregivers with different personalities or perceptions may have

different thresholds for making chaos judgements. Objective

markers of chaos, for example, markers automatically detected

from audio recordings, would allow for more systematic

assessments of this risk factor. Additionally, current survey

methods provide static measures of chaos, reflecting a caregiver’s

overall assessment of the chaos in their home. However,

household chaos is likely a dynamic feature of an environment

with dynamic effects on children’s behavior. Once mobile,

children play an active role in determining their sensory inputs

in real time (12, 13). For example, a highly reactive child may be

more likely to seek out spaces in the home that are quieter and

less stimulating. Alternatively, a highly surgent or ebullient child

may seek stimulation and indeed create it. Dynamic objective

measures of auditory chaos in real-world household settings

would allow researchers to develop and test more specific

mechanisms by which chaos is hypothesized to affect child

outcomes. This is critical in that much of the prior work cannot

disentangle to what extent high chaos environments are a cause

or consequence of child behavior problems. For example, the

temperamental factor of child surgency is also a risk factor for

later externalizing behaviors (14). Thus, the association between

household chaos and externalizing disorders could be in part

driven by the fact that more surgent children are likely to

contribute to increased levels of household chaos. Dynamic

measures of household auditory chaos could be used to

disentangle and clarify such complex possibilities. For example,

by examining real-time sequences of hypothesized predictors and

consequences of chaos in real-world scenarios, researchers could

test bidirectional influences between chaos and physiological

arousal, focused attention, or sleep (15–17), and whether

characteristics such as child temperament moderate these

relationships. However, there are no available models to detect

household chaos from auditory recordings collected in children’s

everyday environments.

A growing community of developmental scientists and

engineers are collaborating to develop algorithms to detect and

classify developmentally relevant activities from sensors worn by

children in natural everyday environments (18–20). These

include models that can detect parent and child sensory inputs,

emotions, behaviors, and contexts in order to understand

learning and development in everyday settings (21–25). Detected

behaviors have also been leveraged for early childhood
TABLE 1 Definitions and examples of types of sounds for the four levels of a

Chaos levels Definition Examples of types of so
No chaos (0) Silence or absence of

sounds
—

Low chaos (1) Soft daily or familiar
sounds

Conversation between parents at normal volum
calming music, distant wind chimes, walking, s
pouringwater, lowdishwasher/microwavehum

Medium
chaos (2)

Slightly stimulating
sounds

Commanding/raised voices, loud singing, bab
child playing/running around, low-volume T
shower, faucet, blow dryer, vacuum cleaner

High chaos (3) Highly stimulating,
scary, or jarring
sounds

Adults arguing, shouting,many children playin
TV, crashing sounds, loud dog barking, crows
swimming pools, cars honking, drums, trump
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interventions (26–29). In this paper, we contribute to this

broader effort by developing a multi-class classifier for auditory

chaos using daylong audio recordings collected by an infant-

worn audio sensor.

The major contribution of our paper is to build a multi-class

auditory chaos classifier that classifies input audio segments into

four levels of chaos. We define these classes based on

descriptions of chaotic environments in the developmental

psychology literature, specifically, using the gold-standard

questionnaire measures that are most commonly used to assess

household chaos (30, 31). Periods of silence and sounds that are

low in volume or contain only a single source of sound are

classified as relatively low auditory chaos (Chaos 0 or 1,

respectively). Time periods with sounds that are high in volume,

potentially jarring, or cacophonous in nature are classified as

high in auditory chaos (Chaos 3). Table 1 provides additional

examples and description of our four-level auditory chaos

spectrum, along with some examples on the types of everyday

sounds included in each category. From an engineering

perspective, this problem is distinct from typical auditory

classification tasks in that the task here is to classify the quality

of an environment in terms of relative degrees of auditory

stimulation rather than identifying distinguishing characteristics

between specific sounds or groups of sounds, as is the case for

traditional sound event or acoustic scene classification tasks,

respectively. Therefore, chaos classification poses a modeling

challenge insofar as the model needs to go beyond learning

individual sounds or groups of sounds, instead learning high

level representations of the overall soundscape, including the

proportion of overlapping sounds, number of sound sources, or

the jarring or cacophonous nature of sounds contained in an

audio recording.

In our aim to build a multi-class auditory chaos classifier, we

make the following contributions:

• We construct and evaluate a high chaos detector to efficiently

annotate data to train and test our classifier. Our detector

improves annotation efficiency of rare high chaos events by a

factor of 8.32, allowing us to annotate only 9.85% of 244.3 h

of raw daylong recordings and providing us with 4h of

ground truth high chaos data for model development.

• We develop and compare multiple real-world auditory chaos

classification models. Our best-performing model achieves a
uditory chaos. Note that the list of examples provided is not exhaustive.

unds Examples of YAMNet classes
Silence, Pulse, Heart sounds/Heartbeat, Breathing

e, low volume
troller on gravel,
,whitenoisemachine

Wind, Singing, Chime, Classical music, Piano, Raindrop, White
noise, Shuffling cards, Tearing, Drip, Purr, Microwave, Walk/
footsteps

y laughing, another
V, toy music, rattle,

Child speech/kid speaking, Toilet flush, Electric shaver,
Doorbell, Alarm clock, Hair dryer, Pop music, Acoustic guitar,
Violin/fiddle, Sink (filling or washing)

g, baby wailing, loud
cawing, restaurants,
ets, blender

Children shouting, Screaming, Car, Traffic noise/roadway
noise, Applause, Drum roll, Electronic music, Fire alarm, Tools,
Chain-saw, Drill, Inside/public space, Battle cry
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macro F1 score of 0.701 (Precision: 0.705, Recall: 0.702) and a

weighted F1 score of 0.679 (Precision: 0.685, Recall: 0.680)

across all four levels of chaos.

• Using a data ablation study, we determine the benefit of a large

training dataset (�55 h) for model performance. By varying the

amount of training data, we find that the model’s macro and

weighted F1 score increases by 4.0% and 4.6% respectively,

when the amount of training data increases from 5h to 40h.

• We make a subsample (39.4 h) of our human annotated

auditory chaos dataset publicly available,1 representing the

largest and the only dataset of auditory chaos currently

available. This subsample includes all audio data from only

those participants that consented to share their data with

other researchers; the rest of it remains private. We also make

our best-performing auditory chaos multi-class classifier

publicly available2 for research applications.

2. Related works

This study is a pioneer effort to build an auditory chaos multi-

class classifier, so there is no known benchmark for comparison.

However, in this section, we discuss the traditional approaches

used in developmental psychology to measure household chaos

and highlight how our current work differs from the previous

efforts, highlighting the value added of our work. Additionally,

we present relevant works in the domain of auditory

classification and in the creation of large annotated datasets.

These works inspired our modeling approach and the

development of the high chaos detector, a tool that we leveraged

to construct our large auditory chaos labeled dataset.
2.1. Measuring household chaos

Household chaos, characterized by noise, disorganization, and

lack of routines in the home, has been associated with adverse

outcomes for both children and caregivers. In the developmental

community, household chaos has typically been measured

through the Confusion, Hubbub and Order Scale (CHAOS) a

subjective survey completed by the caregiver (30). Some work is

based on trained observers making detailed observations of

participant’s homes through Descriptive In-Home Survey of

Chaos—Observer ReporteD (DISCORD) (31). Thus, most

previous research on household chaos (32–35) has relied upon

static or invariant measures that correspond to either an “overall”

level of chaos in the household, as perceived by the caregiver, or

a single snapshot of household chaos.

One recent publication (36) used volume of infant-worn audio

recordings as a minute-by-minute dynamic measure of household
1https://homebank.talkbank.org/access/Password/deBarbaroChaos.html
2https://github.com/dailyactivitylab/AuditoryChaosClassification
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chaos. However, our preliminary analyses and baseline models

suggest that volume is not a robust measure of household chaos

(see Section 5.1.1, Section 6.1). For example, an adult gently

speaking to an infant at close proximity may have a greater

volume and amplitude than a TV playing in the background. In

such situations, volume would provide erroneous measures of

household chaos. More broadly, as volume is directly

proportional to the distance from the audio sensor, volume alone

is not a good measure of chaos.

As such, we propose to train a real-world auditory chaos

classifier grounded in the existing developmental psychology

literature on chaos (30). Our classification of chaos is drawn

from the gold-standard CHAOS survey items relating to the

auditory components of household chaos. For example, items

including “You can’t hear yourself think in our home,” “I often

get drawn into other people’s arguments at home” and “The

telephone and the TV take up a lot of our time at home” were

used as the basis of our annotation scheme. Given the fact that

these questions are responded to by a caregiver living in the

home, we infer that auditory household chaos should include

sounds made by the target infant, children, and other family

members in the home.
2.2. Audio classification

We know of no existing models that aim to classify auditory

chaos. To gain insights into developing a model for auditory

chaos classification, we review recent work in sound event and

acoustic scene classification—two domains most related to

chaos classification. The auditory signal processing and

ubiquitous computing communities have made strong gains in

audio event detection and scene classification. Prior works in

the field of audio classification span a range of tasks. Many past

works do binary classification of specific individual sounds

including coughing, laughing, snoring, screaming, or infant

crying (22, 37–40). Other efforts have explored multi-class

classification, including classifying multiple individual types or

categories of sounds (41–44), for example, animal, natural

soundscapes and water sounds, human speech and non-speech

sounds, domestic, urban and source-ambiguous sounds. These

efforts typically leverage publicly available datasets including

e.g. ESC-10 and ESC-50 (45), UrbanSound (46), CHiME-home

(47) and Audio Set (48). Other multi-class classification efforts

have focused on classifying groups or combinations of sounds

in the form of scenes (49, 50), for example, training models to

detect that dishes clanking, water tap running, and cupboard

sounds typically occur in a home environment, or that car horn,

vehicle sounds, and breeze most likely indicate an busy street

environment. Multi-class sound and acoustic scene classification

are relevant to auditory chaos classification insofar as chaos

classification also requires the model to learn representations of

multiple sounds or groups of sounds in the environment to

determine the chaos level of that environment.

Many of these works have achieved good or very good

performance on multi-class classification, indicating that models
frontiersin.org
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can learn distinguishing acoustic features between individual

sounds or groups of sounds. Early models used traditional

machine learning techniques such as Support Vector Machines,

Gaussian Mixture Models and K-Nearest Neighbours with

extracted acoustic input features including mel-frequency

cepstrum coefficients (MFCC), temporal, spectral, energy and

prosodic features (51–55). However, currently, most state-of-the-

art models use deep learning techniques to classify sound events

or scenes (56–58). Given large amounts of data, deep learning

models can extract complex high-level features that can better

distinguish between sounds and scenes rather than the pre-

selected typically low-level features provided to traditional

machine learning algorithms. In the current paper, we test out

both—traditional machine learning and deep learning approach

—to auditory chaos model development as there is no previously

established baseline for the task of auditory chaos classification.

As auditory chaos classification is a complex task where

distinguishing between chaos levels depends not only on low-

level acoustic features such as MFCCs, loudness and energy but

also on high-level features such as proportion of overlapping

sounds, level of “cacophony,” etc., we hypothesize that the deep

learning approach might perform the best.

A key consideration for model application is whether models

are trained and tested on real world data. Models constructed

with data collected in “clean” laboratory environments have a

high performance on those datasets, but do not generalize to

real-world settings (22, 37, 38, 59, 60). Real-world data is more

unstructured and noisy than lab-based data, and typically

contains a more variable examplars of sound classes. Therefore,

real-world data is generally thought to pose a harder challenge

for models to learn from and maintain consistent performance.

As the ultimate goal of our auditory chaos model is to

understand the dynamic effects of chaos on child development as

it occurs in children’s everyday environments, it is essential that

our model works in real-world settings. We, therefore, undertake

the task of real-world auditory chaos classification.

Auditory chaos classification is different from these

aforementioned audio event and acoustic scene classification

works, but can likely draw from them. Similar to acoustic scene

classification, chaos classification depends upon considering

groups of sounds rather than identifying specific sounds.

However, the goal is to distinguish the quality of different

environments rather than sounds that can be used to distinguish

different types environments from one another. This is

challenging in that two highly chaotic instances of real-world

audio might not have any overlap between the characteristic

sound qualities that classifies them as highly chaotic. For

example, an audio segment could be classified as having a high

(level 3) level of chaos due to the presence of a single loud

sound, such as of a loud bang or dog barking, or a cacophony of

quieter sounds occurring over time, such as in a crowded

restaurant. Moreover, a given sound class can be highly chaotic

in one instance but not in another depending on its

characteristics in that instant. For example, the class speech can

be highly chaotic if a person is shouting or screaming but not

chaotic when gently speaking to an infant. Thus, the chaos
Frontiers in Digital Health 04
classifier must learn a high level representation that goes beyond

the individual sounds or even types of sounds.
2.3. Annotation of rare events

A supervised approach for auditory chaos classification

requires an annotated dataset to train and test the classifier.

However, creating a large enough dataset to build a successful

model for auditory chaos classification is challenging as instances

of high chaos are relatively rare in everyday life. For example,

annotation of 14.1 h of our raw audio recordings led to highly

imbalanced annotated dataset with only 1.02 h of high chaos

(Chaos 3). This feature is not unique to high chaos alone; other

everyday sounds, such as coughing or infant crying also occur

rarely during daylong recordings. To get enough ground truth to

train and test their models, some previous works have annotated

large volumes of audio data e.g. (22, 37). One strategy for

annotating large volumes of audio data is to outsource

annotation via crowdsourcing, which was employed to create

Audio Set (48) and OpenMIC-2018 (61). However,

crowdsourcing can fall short for annotation tasks that require

domain expertise. Additionally, for many datasets collected by

the developmental science community, incuding first-person

wearable audio datasets such as our own, crowdsourcing could

violate participant privacy and is therefore often not an option.

Moreover, issues have been raised about the quality of

annotations collected (62–64) as the primary motivation of the

online workers tend to be monetary (65).

Another domain dealing with the challenge of rare events is the

field of auditory anomaly detection. It is hard to collect data for

anomalies or abnormal events such as gunshots, screams, glass

breaking and explosions in the real world as their occurrences

are quite rare. To circumvent this problem, to obtain enough

data to develop classification models for abnormal events,

previous works have leveraged artificially curated datasets created

by superimposing the rare events on background noises from

different environments (66–68). Others have collected data by

having actors create and enact abnormal situations (40).

However, such artificially constructed datasets and data collected

in structured laboratory contexts do not reflect real-world

settings, and hence do not generalize to the real-world scenarios

that they are intended to function in (22, 37, 38, 59, 60).

We therefore undertake the task of collecting and annotating

real-world audio recordings to ensure that our auditory chaos

classifier works in real-world settings. Inspired by works dealing

with annotation of large real-world audio recordings (22, 48, 61,

37), we take the approach of identifying candidate sets for the

rare high chaos class for annotation instead of annotating the

entire dataset. Candidate sets represents a set of audio segments

that have a high likelihood of containing the class of interest.

Audio Set, a large-scale audio dataset containing 632 labeled

sound events, (48) followed a multi-modal approach to select

candidate sets prior to annotation via crowdsourcing. This

included leveraging other sources of information like metadata,

anchor text and user comments to predict events in videos.
frontiersin.org
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Videos with high scoring predictions were chosen as candidate

videos for annotation. Additionally, they used weak search

engines to select candidate videos with high confidence.

Other previous works have employed the use of specific

classifiers for candidate set selection. For example, OpenMIC-

2018, a dataset for multi-instrument classification, trained a

classifier on Audio Set classes specific to musical instruments to

select candidate audio samples for annotation. Similar

approaches have been used to select sound intervals of high

likelihood for snoring and infant crying (22, 39, 69).

We draw from these aforementioned works to design a high

chaos detector (detailed in Section 4) that also leverages an

existing classifier, YAMNet (41), trained on Audio Set (48) to

output a candidate set of high chaos audio segments to be

annotated. Our annotation task has distinct challenges relative to

those undertaken by previous works. In particular, we only have

one source of information at our disposal (audio), whereas Audio

Set had multiple (metadata, user comments, links, etc.). Next,

given that no prior models for auditory chaos classification have

been developed, we cannot use a direct one-to-one mapping

from existing classifiers. As such, there is a need for a creative

solution to map the predicted labels from an existing audio

classifier to our four levels of auditory chaos to select candidate

segments.
3. Modeling and data overview

Here, we outline our process for constructing an auditory chaos

classifier, as detailed in subsequent sections of our manuscript and

illustrated in Figure 1. First, we collect a dataset from real-world

infant-worn audio recordings. Next, to train and test our model

we obtain and annotate data via three primary pathways:

1) human annotation of unfiltered data, 2) by developing and
FIGURE 1

Flowchart of our auditory chaos classification model development.
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using a High Chaos Detector, and 3) human selection of

additional candidate segments. Finally, we combine data from

these three pathways to form the Annotated dataset, which we

use to train and test machine learning models for the real-world

auditory chaos classification task, detailed in Section 5.
3.1. Device

Our daylong audio recordings are continuously recorded in

naturalistic unstructured home settings using the LENA

(Language ENvironment Analysis) audio sensor (18) worn by

infants in a vest. LENA records all audio occurring within 6–10

feet of the infant and can record continuously up to 24 h on a

single charge. All audio is stored in PCM format one 16-bit

channel at a 22.05 kHz sampling rate (70).
3.2. Participants

88 families enrolled in the broader study and audio data was

collected from 78 participants. The broader study aimed at

utilizing wearables to characterize mother-infant interactions in

everyday home settings (22, 71). All participants lived in a mid-

sized urban city. All participants provided informed consent for

using the data in subsequent analyses, including the present

study. Due to the time-intensive nature of auditory chaos

annotation, 22 participants were selected from this larger set of

78 participants for the current study. These 22 participants were

selected based on the following criteria: English-speaking families

who shared at least one 12+ hour continuous LENA recording.

To ensure socioeconomic representation, we selected participants

with different levels of income and education. Table 2 depicts

sample characteristics.
frontiersin.org
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TABLE 2 Participant characteristics (n ¼ 22).

n (%) M (SD), range
Mother age, years 30.7 (5.5), 22–43

Infant age, months 5 (6.5), 0.87–33

Infant sex, female 11 (50%)

Race/Ethnicity

non-Hispanic White 13 (59.1%)

Hispanic 5 (22.7%)

More than one 2 (13.6%)

Black 1 (4.5%)

Maternal education

High school or less 2 (9.1%)

Some college or trade school 6 (27.3%)

College 7 (31.8%)

Graduate school 7 (31.8%)

Family status

Married 18 (81.8%)

Single parent 1 (4.5%)

Living with a partner without marriage 3 (13.6%)

Household income

Under $25k 2 (9.1%)

$25k–$49k 3 (13.6%)

$50k–$74k 6 (27.3%)

$75k–$99k 2 (9.1%)

Over $100k 9 (40.9%)

Number of other children in the home 1 (1.3), 0–5

Khante et al. 10.3389/fdgth.2023.1261057
3.3. Annotation scheme

To facilitate the training and testing of the auditory chaos

classifier, all 411.2 h of data collected from 22 participants were

segmented into 296064 non-overlapping continuous 5 s long

audio segments. As the primary reason to build this model is to

capture the dynamic changes in chaos, having an automated

measure that predicts chaos levels at a high granularity is

preferable. Additionally, if desired, outputs at a finer granularity

can be combined to obtain chaos measures over a larger

timescale i.e. a minute or an hour or even a day. As some high

chaos events can last only a couple of seconds, for example, a

loud bang or a bark, we chose the 5 s timescale to be able to

capture these changes. Furthermore, we follow previous works

who have used 0.5–5 s audio segments for sound event

classification (37, 22, 42) or acoustic scene classification (43, 44),

domains most related to our auditory chaos classification task.

A subset from these 296064 segments were annotated by

trained research assistants as detailed in Sections 4.2 and 5.2.

All annotations were done on a segment-level. Each segment was

annotated as one of four levels of auditory chaos, namely, no

chaos (0), low chaos (1), medium chaos (2) and high chaos (3),

with each segment having only one chaos label. Sample sounds

for each chaos level are described in Table 1 and the complete

auditory chaos annotation scheme can be found in

Supplementary Section 1. Annotators included all sounds

made by children and infants (e.g. laughing, yelling,

crying), including the target infant wearing the audio recorder in

their determination of the chaos levels for a segment. For

example, loud infant crying would be labelled as high chaos
Frontiers in Digital Health 06
(level 3). The gold-standard CHAOS questionnaire includes items

such as “It is a real zoo in here” and “I can’t hear myself think,”

which would certainly include sounds made by infants, children,

and other family members in the home. Given that this

particular measure of household chaos has been found to be

predictive of children and parents’ outcomes in the

developmental literature (32–35), it is essential to adhere to this

definition of chaos in developing an auditory chaos classification

model.

Typically, a segment was annotated with the max chaos

level of all the sound classes it contained. However, it is

important to note here that the chaos level assigned to a

segment did not always depend only on sound classes it

contained but was also labeled by taking into consideration

the overall cacophonous nature of the segment. This is also

consistent with the CHAOS questionnaire items, for

example, “There is often a fuss going on at our home”

which could refer to multiple ongoing events contributing to

high auditory chaos. For example, multiple medium (level 2)

chaos sounds happening simultaneously could lead the

segment to be marked as high (level 3) chaos even

though the max chaos level of all sounds classes is 2. We

include our detailed annotation scheme in the

Supplementary Section 1. Annotations were conducted

according to best practices in behavioral sciences (inter-rater

reliability kappa score (72): 0.76, corresponding to

strong agreement).
3.4. Datasets

To obtain a dataset to train and test our auditory chaos models,

we first constructed two separate datasets—the Unfiltered set and

the Filtered set. Table 3 summarizes the volume of data

annotated and the number of participants in each set.

Unfiltered set: The Unfiltered set is created by directly

annotating subsamples of daily audio recordings in two ways: 1)

by continuously annotating portions of the daily recordings

forming the Unfilt-Continuously Annotated set, and 2) by

randomly sampling segments from the recordings and annotating

those segments, forming the Unfilt-Randomly Sampled set. The

complete Unfiltered set is used in the development and

assessment of our High Chaos Detector, and is further detailed

in Section 4.2 below.

Filtered set: We also employ two filtering strategies, 1) our

High Chaos Detector and 2) Human Selection to more

efficiently generate a substantial training and testing dataset,

together comprising our Filtered set. As detailed in Section 4,

the detector is used to identify candidate segments likely to

contain chaotic sounds which are subsequently annotated by

trained research assistants. Similarly, human selection is used to

identify additional candidate no chaos/silence and high chaos

segments (Section 5.2.1) which are later annotated.

We combine the Unfiltered and Filtered sets into the

Annotated dataset that is used to train and test the auditory

chaos multi-class classifiers, as detailed in Section 5.
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TABLE 3 Summary of all annotated data.

Annotated dataset Participants Recordings Hours Segments
Unfiltered Continuously annotated 3a 3a 12.9 9,296

Randomly sampled 3b,c 3b,c 3.2 2,326

Filtered Detector selected 14b,d 14b,d 24.9 17,917

Human selected 12a,c,d 12a,c,d 13.6 9,779

Total 22 22 54.6 39,317

Bold is for emphasis.
aNote that 2 participants in the Continuously Annotated Unfiltered set were also included in the Human Selected Filtered set.
bNote that 3 participants in the Randomly Sampled Unfiltered set were also included in the Detector Selected Filtered set. The segments annotated for these 3 participants

in both sets differ but may have some overlap.
cNote that 1 participant in the Randomly Sampled Unfiltered set was also included in the Human Selected Filtered set.
dNote that 5 participants in the Detector Selected Filtered set were also included in the Human Selected Filtered set.

FIGURE 2

Step-by-step workings of the high chaos detector starting from a raw audio input segment to the predicted chaos classes.
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4. High chaos detector

Our first aim was to develop a high chaos detector to aid in

efficiently annotating rare high chaos (Chaos level 3) events

with the goal of creating a balanced training dataset for

modeling. Our detector selects candidate segments for manual

annotation. Candidate segments have an increased likelihood of

containing ground truth high chaos events as determined by

the presence of loud, jarring or otherwise stimulating sound

classes. To obtain candidate segments, we leverage an existing

everyday sound classifier that can detect 521 sounds classes of

various levels of stimulation (e.g. silence or white noise vs.

restaurant sounds or dishes clanking) which we use to map

audio segments to our four chaos levels (see Table 1). The logic

of the detector is that mapping a near-exhaustive list of

everyday sound predictions to chaos levels will aid in

identifying high chaos candidate segments. Identifying

candidate segments increases the annotation efficiency by

reducing the annotation set, as only those segments predicted

to contain high chaos are manually annotated for four levels of

auditory chaos. After annotating the candidate high chaos set,

we found that all four chaos levels including high chaos had
Frontiers in Digital Health 07
sufficient variability of chaos classes annotated to form a

balanced dataset to train and test our model. As such, we did

not label additional data for other levels of chaos.

Below we describe the development, implementation, and

evaluation of the detector. It is important to note here that the

main goal of the detector is to maximize the recall of high chaos

events while decreasing the size of the candidate set needing to

be annotated. The precision of the detector helps decrease the

size of the candidate set; given the complex nature of auditory

chaos, we define the detector to be successful as long as the size

of the candidate set is smaller than the original dataset and we

get a reasonably good amount of labeled high chaos segments.
4.1. Development and implementation

The high chaos detector leverages a publicly-available audio

classifier, YAMNet (Yet Another Mobile Network) by Google

(41), to sample candidate audio segments for high chaos.

Figure 2 illustrates the pipeline for our high chaos detector,

which we detail in the text below.
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4.1.1. Clustering YAMNet classes into high chaos
and non-high chaos groups

YAMNet is a pretrained classifier employing the MobileNetV1

depthwise-separable convolution architecture (73). It is trained on

Audio Set (48) and can classify 521 everyday audio events.

YAMNet takes as input raw audio segments of any fixed length

(minimum 975ms). Audio segments are resampled to 16 kHz

mono and then converted to mel-spectrograms before being

passed to the model. YAMNet then outputs 521 per-class output

scores of the predicted sound events for the entire input audio

segment.

To leverage YAMNet predictions to automatically sample

candidate high chaos segments, we first manually grouped the

individual YAMNet classes into two groups—highly chaotic and

not highly chaotic sounds. To reduce the rate of erroneous

predictions, out of the 521 YAMNet classes, we did not consider

those that had a quality estimate of 33% or below in Audio Set.

Quality estimates are provided by Audio Set as a measure of the

accuracy of their annotated labels. Furthermore, we also excluded

classes that we determined would be unlikely to be present in

our infant-worn daylong recordings (e.g. eruption, artillery fire,

motorboat/speedboat), leaving us with 368 YAMNet classes.

Next, we manually grouped each of these 368 classes into high

chaos and non-high chaos groups. These labels were determined

by common associations with the sound class, e.g children

shouting, shatter, bark, etc. were labelled as high chaos whereas

white noise, shuffling cards were labelled as non-high chaos.

Additional examples of Audio Set classes predicted by YAMNet

assigned to the different levels of chaos can be found in Table 1.

Chaos 0, 1, and 2 fall in the non-high chaos group and Chaos 3

represents the high chaos group.
4.1.2. Pruning YAMNet predictions
During qualitative assessment of the accuracy of YAMNet

predictions on our infant-worn audio data, we identified two

classes that were frequently incorrectly predicted by YAMNet.

First, YAMNet frequently misidentified positive or neutral infant

vocalizations or babbling as infant crying and vice-versa. Thus,

for any segment where YAMNet predicted both infant crying

and babbling, we applied a heuristic to determine which was

more likely. Specifically, given that crying typically has much

higher root-mean-square-energy (RMSE) values than non-cry

vocalizations, if any of the extracted RMSE values for that

segment were more than 3 times the mean RMSE for that

participant, we kept infant crying and dropped infant babbling

and vice-versa. RMSE values were extracted for each segment

using a sliding window approach with a window length of 512

samples with a hop length of 256 samples at the sampling rate of

22,050 Hz using the Librosa (74) library in Python, giving us a

total of 431 RMSE values for our 5 s audio segment. Mean

RMSE for a participant was calculated by taking the average of

all extracted RMSE values (using the above sliding window

approach) for all segments in the entire daylong recording from

that participant.
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YAMNet was also unable to distinguish between vehicles and

background white noise sounds commonly used to facilitate

infant sleep. As white noise sounds are typically quieter and have

a flatter waveform than vehicles, we used spectral flatness and

zero crossings to distinguish them. Similar to RMSE, we

extracted spectral flatness values for each segment using the

sliding window approach, giving us 431 spectral flatness values

for each 5 s segment. Zero crossings were computed at the

segment level as the total number of times the audio signal

crossed from positive to zero to negative or negative to zero to

positive during the five second duration of the segment. If any

segment had all spectral flatness values greater than 0.0001 or

the number of zero crossings were between 1000 and 4000

(corresponding to unvoiced noisy audio) and the segment had a

predicted label vehicles or similar, we dropped it.
4.1.3. Leveraging YAMNet predictions for
automatic high chaos detection

To automatically sample candidate segments for high chaos, we

first provided our raw 5 s audio segments to YAMNet to obtain

sound event predictions. YAMNet provides a confidence level for

each of its predictions. We only considered the top ten

predictions based on the confidence level and discarded all

predictions below 0.01% confidence. Next, we additionally

pruned these predictions using acoustic features as described

above. Finally, for each segment, all remaining YAMNet

predictions were assigned a high chaos or non-high chaos group

according to the groups created above. If any of the YAMNet

predictions for a segment were mapped to a high chaos group,

the segment was chosen as a candidate segment for high chaos

by the detector. Furthermore, to circumvent YAMNet’s missed or

erroneous predictions, and to ensure that we captured all high

chaos segments, we included all segments in the high chaos

candidate set irrespective of their YAMNet predictions if any

of their extracted RMSE values using the sliding window

approach were more than 7 times the mean RMSE for that

participant i.e. very loud segments. Qualitative trial-and-error

analyses were used to determine the threshold for identifying

very loud segments.
4.2. Dataset

We evaluate the performance and efficiency of the detector in

identifying high chaos events using both subsets of our unfiltered

annotated data: continuously annotated data and randomly

sampled data (see also, Figure 1, top pathway).
4.2.1. Unfiltered set: Continuously Annotated data
(Unfilt-CA)

To test the performance of our detector for identifying high

chaos events, we annotated continuous 2.6 to 7 h segments from

three unique participants’ daylong recordings, totaling 12.9 h of

annotated data (9296 5 s segments). This Continuously
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Annotated data is a good representation of the chaos present in

continuous daylong audio recordings. We also use this dataset to

assess the feasibility of obtaining a sufficient sample of rare high

chaos events using typical annotation strategies.

4.2.2. Unfiltered set: Randomly Sampled data
(Unfilt-RS)

To test the efficiency of the detector for identifying high chaos

events, we compared the proportion of ground-truth high chaos

annotated in high chaos candidates (identified by the detector)

with randomly sampled segments from the same participants. In

a sample of 3 participants, we matched the number of randomly

selected segments to the number of candidate high chaos

segments labeled by the detector for that same participant. For

example, if for one participant, the detector identified 100

segments as high chaos, we randomly sampled 100 segments of

raw audio data as a comparison from the same participant. In

total, 3.2 h of data (2326 5 s segments) were randomly sampled

from 3 participants and annotated by the trained research

assistants for four levels of chaos. These annotated segments

form the Randomly Sampled dataset.
4.3. Evaluation

Our detector had a recall of 0.653 and a precision of 0.267 for

the high chaos class (Chaos 3), as evaluated on the Continuously

Annotated data. This means that we missed 34.7% of high chaos

events present in the raw data. However, given that the goal of

our detector was to increase annotation efficiency of these

relatively rare high chaos segments, we find our detector’s

performance adequate. Specifically, the detector allowed us to

annotate only 9.85% (24.8 h) of the entire daylong recordings

from 14 participants (244.3 h) while providing about 4 h of

ground truth high chaos positive examples.

Next, we evaluated the extent to which the detector increases

annotation efficiency of the rare high chaos events. To do so we

compared the proportion of ground-truth high chaos segments

identified in randomly sampled data vs. segments identified as

high chaos by our detector. 16.8% of detector-identified high

chaos segments were labeled as high chaos in ground truth

annotation, vs. only 2.02% of the set sampled by random

sampling. Thus, the detector identified 8.32 times more high

chaos events in a matched volume of audio randomly drawn

from the same three participants’ recordings.
5. Auditory chaos classifiers

Distinguishing between levels of auditory chaos depends upon

many factors including the volume, quantity, and quality of

sounds, the source and type of sounds, and the extent of

overlapping sounds. We explored multiple different machine

learning models to solve this task. Given the complexity of chaos

classification, a deep learning approach where the model

identifies and learns the most distinguishing features, may
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perform better than a traditional machine learning model that

requires human feature engineering. When applied to a variety of

audio recognition tasks, deep learning models have repeatedly

shown superior performance in comparison to traditional models

(60, 22, 75). However, there is no prior work in the domain of

auditory chaos classification. Therefore, we evaluate and compare

the performance of a traditional machine learning model, namely

Random Forest (RF), trained using a range of classical acoustic

features, and a deep learning framework, Convolutional Neural

Network (CNN). Additionally, given that volume has been used

as a proxy for household chaos (36), to provide additional

justification for our work, we train a baseline model, a RF, using

audio volume features only.

Our goal is to train a model to classify a given input audio

segment into four levels of auditory chaos. To train our

classifiers, we used both filtered and unfiltered annotated data

(i.e. the Annotated dataset). As is standard, we tested our models

on the Annotated dataset as well in a leave-one-participant-out

cross-validation (LOPO-CV) fashion. Additionally, we tested our

models on subsets of our unfiltered ground truth data to evaluate

if model performance generalizes to real-world scenarios and

daylong audio recordings. Finally, we explored if human

annotation time and effort can be minimized by investigating the

relationship between size of training data with model performance.
5.1. Model development and
implementation

5.1.1. Baseline model with volume features only:
RF-3f

We developed a baseline model to test whether volume features

alone could be used to predict four ground truth levels of auditory

chaos. For each 5 s audio segment that was annotated for ground

truth auditory chaos (detailed in Section 5.2), we extracted the

peak amplitude and RMSE features, to represent the loudness or

energy of that audio segment. We evaluated if peak amplitude

and RMSE had the predictive power to successfully classify

ground truth chaos levels using a RF. For each audio segment,

RMSE was extracted using a sliding window approach for a

window size of 512 samples with a hop length of 256 samples

and the mean and standard deviation across the 5 s segment was

computed and used as features. Peak amplitude was computed

by taking the maximum amplitude in the 5 s audio segment.

These three features were fed as inputs to the RF (model referred

to as RF-3f) with 1000 estimators and the model performance

was assessed. All features were extracted using the librosa (74)

library in Python.

5.1.2. Traditional acoustic features model: RF-53f
In the traditional machine learning approach, we extracted a

broad range of classical acoustic features from the raw audio

segments and fed them as inputs to the RF. For each 5 s audio

segment, we extracted 27 features comprised of 20 MFCCs, zero

crossing rate, spectral features (flatness, rolloff, centroid,

bandwidth), RMSE and peak amplitude using librosa. These
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features were chosen as they have been successfully used in

previous works for sound event detection (22, 58, 54, 52) and

scene classification (51, 76, 77), domains most similar to auditory

chaos classification. Similar to our baseline models, all features

were extracted using a sliding window approach for a window

size of 512 samples with 50% overlap. Mean and standard

deviation for 26 out of the 27 features (except peak amplitude)

were computed across the 5 s segment, giving us a total of 53

(26�2þ 1) features. These 53 features were fed as inputs to the

RF (model referred to as RF-53f) with 1000 estimators and the

model performances were assessed.
5.1.3. Deep learning model: CNN
Our deep learning model is taken from a previously published

work in the sound event classification literature (42). We chose this

model because the previous work has showcased that it has good

performance when trained from scratch for multi-class sound

event classification—a domain most related to auditory chaos

classification. Moreover, the training dataset used to train the

model in (42) consists of 41.2 h of audio data, very similar to our

40 h of balanced chaos training data. This ensures that the model

complexity (in terms of number of convolutional layers) is

appropriate for the amount of chaos training data we have and

the model will not overfit or underfit our training data. We train

and test this network with our real-world first-person infant-

centric auditory chaos data.

The model employs a Convolutional Neural Network (CNN)

with three convolutional layers (5� 5 kernel), incorporating

Rectified Linear Unit (ReLU) activations. Two max-pooling

operations are interleaved with these convolutional layers.

Additionally, Batch Normalization (BN) layers are placed before

each convolutional layer, followed by ReLU activation. At the

network’s terminus, two fully connected (dense) layers are added.

To further enhance model performance, the established pre-

activation technique is implemented, where BN and ReLU

activation are applied before each convolution operation.

Figure S1 in the Supplementary Materials depicts the model

architecture along with it parameters. The model has �0.5M

weights. It uses the categorical cross-entropy (CCE) loss function,

a batch size of 64 and an Adam optimizer with an initial

learning rate of 0.001 along with Earlystopping applied with a

patience of 15 epoch based on the validation accuracy. All

hyperparameters mentioned above were kept exactly the same for

our chaos model except the input audio segment length was

changed to 5 s to match the length of our audio segments.

The 5 s raw audio segments are chunked into 2 s patches and

these patches are converted to log-scaled mel-spectrograms with

96 components (bands) using a window size of 40 ms with 50%

overlap, to be fed as input to the model. Patches which are

shorter than 2 s are replicated until the desired length of 2 s is

reached. Each patch retains the segment level ground truth chaos

label. The chaos model outputs segment-level predictions from

our four chaos classes (0–3) which are obtained by computing

predictions at the 2s patch-level and aggregating them using

geometric mean.
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5.2. Dataset

To train and test our classifiers, we combined our filtered and

unfiltered sets to create our Annotated dataset. In total, the

Annotated dataset comprised approximately 55 h of labelled data

across daylong recordings of 22 participants. Table 3 provides a

summary of the subsets of data that comprise the complete

Annotated dataset. For model training, we subsampled a

balanced set from the Annotated dataset, as detailed below.

5.2.1. Filtered set
The Filtered set combines two filtered sets, the Detector

Selected set (DS-Filt) and the Human Selected set (HS-Filt), (see

also Figure 1, pathways two and three). Together, the Filtered set

comprises a total of 38.5 h (27,696 5 s segments).

DS-Filt was created by manually annotating all candidate high

chaos segments identified by the detector in the daylong recordings

of 14 participants, including the 3 participants in the Randomly

Sampled set. The candidate set containing 17917 segments

(24.9 h) was annotated by trained research assistants for four

levels of chaos. While filtration successfully increased the

proportion of high chaos in the training dataset, overall the

filtered data was heavily biased towards low and medium chaos

segments, which made up 85% (20.4 h) of the annotated

segments. By contrast, high and no chaos segments comprised

approximately 12% (4.4 h) and 3% (0.14 h) of the filtered dataset,

respectively.

HS-Filt was created to further increase the amount of training

data, specifically for the high and no chaos classes. Human

annotators identified and annotated an additional set of audio

segments from recordings containing high levels of no chaos and

high chaos. We achieved this through various means, including

by selecting recordings where families shared with us that they

recorded at special events or locations that may be particularly

chaotic, including museums, restaurants, or daycare settings, as

well as by listening to parts of the recording to attempt to

identify extended periods of time (0.2–2.7 h) that contained these

classes of chaos. In this manner, we annotated 8.3 h of no chaos

and 5.2 h of high chaos. This gave us a total of 13.6 h (9779 5 s

segments) of annotated data from 12 participants (including

3 participants from the Unfiltered set and 5 participants from

DS-Filt).

5.2.2. Unfiltered set
The Unfiltered set combines the Continuously Annotated

(Unfilt-CA) and Randomly Sampled (Unfilt-RS) sets used to

evaluate the high chaos detector, as detailed in Section 4.2 above

(see also Figure 1, top pathway). In total, the Unfiltered set

comprised of 16.1 h (11622 5 s segments) of annotated data.

5.2.3. Creating a balanced dataset for model
training

As our Annotated dataset was imbalanced, prior to any and all

model training we subsampled this dataset to create a balanced

training dataset. Specifically, the complete Annotated dataset
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TABLE 4 Global macro and weighted model performance for our three models on different test sets.

Models Test data
Macro Weighted

F1 Precision Recall F1 Precision Recall
RF-3f Annotated (Unfilt. + Filt.) 0.267 0.269 0.266 0.284 0.291 0.278

Filtered (DS + HS) 0.265 0.267 0.267 0.269 0.269 0.271

Unfiltered (CA + RS) 0.240 0.279 0.333 0.338 0.448 0.295

Cry Set 0.352 0.357 0.368 0.411 0.451 0.394

Non-cry Set 0.249 0.253 0.247 0.264 0.271 0.259

RF-53f Annotated (Unfilt. + Filt.) 0.616 0.676 0.592 0.611 0.639 0.614

Filtered (DS + HS) 0.597 0.660 0.582 0.589 0.641 0.586

Unfiltered (CA + RS) 0.560 0.562 0.592 0.676 0.678 0.682

Cry Set 0.626 0.655 0.608 0.666 0.669 0.669

Non-cry Set 0.594 0.673 0.575 0.599 0.646 0.601

CNN Annotated (Unfilt. + Filt.) 0.701 0.705 0.702 0.679 0.685 0.680

Filtered (DS + HS) 0.710 0.725 0.701 0.697 0.708 0.693

Unfiltered (CA + RS) 0.539 0.510 0.674 0.665 0.706 0.647

Cry Set 0.646 0.657 0.644 0.680 0.687 0.681

Non-cry Set 0.692 0.696 0.694 0.681 0.690 0.680

Note: Models were trained using 40 h of balanced data across four levels of auditory chaos randomly sampled from the Annotated dataset and evaluated using LOPO-CV

on their respective test sets. Global macro and global weighted F1 score, precision and recall were computed using the chaos predictions and ground truth chaos labels for

the entire test set. Results for each analysis are separated using emphasis lines. Model performance in bold represents the highest F1 score achieved across all three models

for that particular test set.
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included: 8.7 h of no chaos, 16.3 h of low chaos, 19.0 h of medium

chaos, 10.7 h of high chaos totalling 54.6 h. Thus, the maximum

amount of balanced data we could use to train our auditory

chaos model was 40 h (10 h per chaos level), limited by the

amount of high chaos annotated minus the test set. We did not

want to sample with repetition for any of the chaos levels other

than no chaos. No chaos denotes complete silence or absence of

any sounds, so sampling with repetition is less likely to change

the nature of the class. To ensure that every no chaos segment

annotated was included in the training set atleast once, all the

annotated no chaos data from the non-test participants was

included in the train set and the amount of no chaos data

needed to make it 10 h was sampled with repetition. For chaos

levels, where more than needed data was available, the required

hours were randomly sampled.
5.3. Evaluation

We conducted five analyses to evaluate model performance

under different conditions. For each analysis, the models were

tested using LOPO-CV. For each fold of LOPO-CV, models were

trained with a set of data balanced across all four levels of chaos,

randomly sampled from the Annotated dataset (minus the test

participant’s data) as described in Section 5.2 and tested on the

test participant’s data. The participants as well as their data

included in the test set varied depending on the analysis as

detailed below.

As our datasets are highly imbalanced, we report both macro

and weighted evaluation metrics. We calculated both global

macro and global weighted F1 scores to assess the model’s

performance across the entire test set. Global performance

metrics take into account all instances in the test set, providing a
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single aggregated metric for the entire dataset. Additionally, we

computed participant-specific weighted performance scores in

order to statistically test the differences between pairs of models

on individual participants using paired t-tests. Given heavily

skewed chaos class distributions and small participant-specific

datasets, individual participants often had very few samples for

some chaos classes e.g. less than 60 5 s samples i.e less than

5 min of data. This led to highly noisy, non-representative

performance on these minority chaos classes, biasing the

overall evaluation metrics. As a result, we refrained from

computing participant-specific macro accuracy scores to ensure a

more accurate representation of our model’s real-world

performance.

Table 4 summarizes the global macro and weighted

performance of all three models on the different test sets.

Figure 3 provides the confusion matrices for our best-performing

CNN model on the Annotated dataset as well as its two

component sets, the Filtered set and the Unfiltered set.

Participant-specific weighted performance metrics, along with

complete results for paired t-tests are summarized in Table S1

and Section 2 of Supplementary Materials, respectively.
5.3.1. Model performance on Annotated dataset
On the Annotated dataset, the CNN model achieved the

highest F1 score across all three metrics, followed by the

Acoustic features RF-53f model. However, when the participant-

specific weighted F1 scores were compared using paired t-tests,

these two models were not statistically differentiated from one

another. The baseline model, RF-3f, had substantially worse

performance than the CNN and the RF-53f models across all

three metrics and the difference was significant in terms of

participant-specific weighted F1 scores.
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FIGURE 3

Confusion matrices for our best-performing auditory chaos CNN model (A) Trained and tested on the Annotated dataset across 22 participants. (B)
Trained on the Annotated dataset; tested on the Filtered set of 21 participants. (C) Trained on the Annotated dataset; tested on the Unfiltered set of 6
participants.
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5.3.2. Model performance on Filtered set
The pattern of results on the Filtered set mirrored those of the

Annotated dataset, with the CNN having higher performance than

the Acoustic features RF-53f model in terms of all three metrics,

with insignificant differences between CNN and RF-53f

considering participant-specific weighted F1 scores. Both these

models exhibited superior performance across all three metrics

compared to the baseline model, RF-3f, showing a significant

variance in participant-specific weighted F1 scores.

5.3.3. Model performance on Unfiltered set
To ensure that our models generalize to daylong recordings,

i.e. our domain of interest, we tested the above model

performances on unfiltered data, i.e. that was not sampled by the

detector or human sampling. This provides a truer representation

of the chaos present in daylong recordings. In contrast to the

prior results, the Acoustic features RF-53f model had higher

accuracy than the CNN model on global macro and weighted

metrics. However, the CNN had the highest participant-specific

weighted F1 score. Again, the CNN model was not statistically

differentiable from the RF-53f using the participant-specific

weighted F1 scores. As above, both the RF-53f and the CNN

substantially outperformed the baseline model, RF-3f in terms of
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all three metrics and their performance was significantly higher

with regards to the participant-specific weighted F1 score.

5.3.4. Model performance on Cry and Non-cry
sets

As infant crying is likely to occur in our infant-worn

audio recordings and could contribute a substantial proportion

of high chaos labels, we tested the performance of our models on

both cry and non-cry audio segments. Knowledge of our

model performance on the non-cry segments is important for

research questions examining impacts of chaos on infant crying

and vice versa, as well as more broadly for researchers who

want to distinguish chaotic sounds that originated from the

target child vs. those that originated elsewhere. We used the

YAMNet infant crying class to identify all segments that included

infant crying in the Annotated dataset. Cry labels were used to

split the Annotated dataset into two subsets—Cry and Non-cry

set. To ensure accurate evaluation, in the Cry set, we dropped

segments predicted as Chaos 0. The Cry set included no ground

truth Chaos 0 segments and less than nine predicted Chaos 0

segments, meaning we did not have sufficient segments to assess

performance in this class which would otherwise bias our global

macro metrics. Global evaluation measures were then computed
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across all 22 participants for the Cry and the Non-cry sets

separately. The CNN model again performed better than the

Acoustic features RF-53f model on both the Cry and Non-cry

sets. Both models performed substantially better than the

baseline model, RF-3f. Confusion matrices for the CNN model

can be found in Supplementary Figure S2.
5.3.5. Effects of training data ablation on best-
model performance

To examine model performance as a function of the size of

training data we conducted a data ablation study. As the CNN

model had the highest F1 scores on 4 out of 5 test sets including

the Annotated dataset, our largest test set, we used this model

to conduct our data ablation study. We ran 12 experiments

(3 runs � 4 training data sizes) varying the amount of training

data sampled from the Annotated dataset. We used a range of

exponentially decreasing balanced sets, specifically: 40, 20, 10 and

5 h. For all experiments, we trained and tested the CNN using

LOPO-CV across all 22 participants. When trained with 5h of

balanced data, the model achieved a global macro precision of

0.685, recall of 0.674 and F1 score of 0.674 and a global weighted

precision of 0.661, recall of 0.651 and F1 score of 0.649. Adding

35 additional hours of annotated training data (40 h total)

improved the macro precision by 0.020, recall by 0.028 and F1

score by 0.027. Similarly, the global weighted precision, precision

and F1 score were improved by 0.024, 0.029 and 0.030

respectively. Therefore, both global macro and weighted metrics

improved after the addition of more training data. Figure 4

showcases the effect of training data ablation on the CNN model

performance (exact model performance values can be found in

Table S2 in Supplementary Material).
6. Discussion

To facilitate research and intervention on the effects of

household chaos on child functioning (2–4, 7–11), we

developed and compared various multi-class classifiers for
FIGURE 4

Results of the training data ablation study for our best-performing CNN
model—global model performance on the Annotated dataset as a
function of training data (Unfiltered + Filtered set). The model
performance drops as we decrease training data.
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detecting auditory chaos in real-world settings. To efficiently

annotate rare high chaos events, we developed a high chaos

detector, which resulted in an 8.32� increase in efficiency in

identifying these events relative to baseline rates. Our best-

performing auditory chaos model—a CNN trained with 40 h

of balanced annotated real-world data– achieved a macro F1

score of 0.701 and a weighted F1 score of 0.679 in

challenging real-world settings.
6.1. CNN achieves best overall model
performance

We tested three different models for auditory chaos

classification. Our results indicate that the deep learning approach

using a CNN architecture achieved the highest performance in

terms of global macro and weighted F1 score in 4 out of 5 test

sets. The acoustic features model trained on 53 features (RF-53f)

had the highest performance in terms of global metrics on

the remaining test set, the Unfiltered set (see Discussion in Section

6.2, below). However, when participant-specific weighted

performance metrics were computed for all models, CNN had the

highest performance across all test sets. We note that while

performance values differed across the CNN and acoustic features

model, paired t-tests comparing participant-specific weighted

F1 scores, indicate that these differences were not statistically

significant (see Supplementary Section 2). That is, the CNN

and RF-53f appear to be statistically equivalent models for

classifying auditory chaos. However, as the CNN model

achieved the highest performance on the Annotated dataset,

our largest test set, and the majority of the test sets, we

recommend that future users interested in automated auditory

chaos detection use our CNN model. We, therefore, make the

trained CNN model publicly available on Github for future

applications.

Unsurprisingly, the baseline model trained with three

volume-related features had substantially and significantly

lower performance than both the CNN and the more

comprehensive acoustic features model, RF-53f (see

Supplementary Section 2 and Table S1 for t-test results).

Overall, it appears that volume alone cannot be used to

distinguish between the four different levels of chaos. Figure 5

additionally illustrates this point by visualizing volume features

and annotated chaos labels from 7 h of continuous audio

recording shared by one of our participants. These results

indicate the value of developing a model for the auditory chaos

classification task rather than relying on markers of audio

volume for characterizing auditory household chaos.
6.2. Model generalization from filtered to
unfiltered data

Training a model with filtered data can reduce the model’s

performance on raw or unfiltered recordings which provide a

“truer” or less biased representation of chaos found in real-world
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FIGURE 5

Peak amplitude (orange spikes), mean RMSE (green spikes) and ground truth auditory chaos levels (blue spikes) for each 5 s audio segment annotated
from one participant’s audio recording. The x-axis represents the audio segment number. Each hour has 720 5 s audio segments so the data
represented here is �7 h of continuous audio recording. The red boxed regions highlight sample regions of the recording where volume is high, as
indicated by high peak amplitude and/or mean RMSE values, but a segment is not annotated as high chaos (level 3) or vice-versa. This illustrates that
features representing audio volume are not consistently able to distinguish between the four levels of chaos, which we we also documented using
our baseline models.
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everyday recordings. However, assessing our model’s performance

on unfiltered real-world data is challenging due to the lack of a

large-enough, representative ground truth dataset, especially for

the rarer chaos classes. Thus, while we evaluate the

generalizability of our model on our unfiltered dataset, we

remind our readers that this dataset comprises 16.1 h of data

annotated from 6 participants and includes approximately 1 h of

high chaos data and less than an hour of no chaos data. Thus, it

is unlikely to capture the full distribution of chaos in everyday

settings, as we elaborate below.

All models showed worse global macro F1 performance on our

Unfiltered set relative to the Filtered set and the complete training

dataset including filtered and unfiltered data (Annotated dataset).

This suggests that our models, whose training data included

�70% filtered data, may not fully generalize to unfiltered data.

Our acoustic features model (RF-53f) showed relatively similar

global macro F1 performance on filtered and unfiltered data,

within .04 points of one another. However, our CNN model

showed a 17.1 point drop in global macro F1 score between

filtered and unfiltered data. This may reflect that the CNN model

overfit more to the training data compared to RF-53f. Due to its

higher model complexity, the CNN model may have overlearned

the characteristics of sound events contained in the filtered

segments with reduced generalizability to the Unfiltered set. By

contrast, the relatively less powerful RF may have less capacity to
Frontiers in Digital Health 14
learn more complex features to distinguish between the chaos

classes and thereby generalized better to the Unfiltered set.

Next, as illustrated by the confusion matrix in Figure 3C, our

CNN model had relatively low performance for the minority Chaos

0 (no chaos) and Chaos 3 (high chaos) classes in the Unfiltered set

in particular. This trend is also apparent in both RF models. The

models’ relatively low performance on high chaos and no chaos

classes in the Unfiltered set could be due to the fact that these

classes were by far the rarest classes in the unfiltered dataset. As

such, their ground truth training data was more likely to be

obtained through the use of filters, relative to more common

Chaos 1 and 2 classes. Incorporating filtered ground truth data

allowed us to efficiently provide the model with large volume

and variety of ground truth training data. However, these filtered

data may have some biases. For example, the high chaos samples

selected by the detector might not encompass all high chaos

sound events occurring in infant’s everyday environments.

Additionally, filtered high chaos segments selected by human

sampling may have been easier for the model to classify given

that they lasted many minutes (e.g. ambient sounds from a party

or daycare center), versus only a few seconds, e.g. a yell, a loud

bang, a bark, etc. Thus, one possibility is that the Unfiltered set

contained more “difficult-to-identify” high chaos events relative

to our Filtered set, contributing to challenges with

generalizibility. However, as noted above, the limited size of the
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Unfiltered set raises the concern that it does not provide an

accurate representation of real-world chaos. As such, while

potentially biased, our much larger Annotated dataset (54.6 h; 22

participants), which included over 7680 5-second high chaos

segments, is likely to be providing more robust performance

measures than our Unfiltered set, in particular for rare Chaos 0

and Chaos 3 classes.
6.3. Model performance is consistent with
other real-world models

All model results were achieved in completely unstructured,

real-world audio data from recordings worn by infants in their

everyday home environments. As this is the first published work

for developing an auditory chaos classifier, our work represents a

baseline model for future efforts. Relatedly, there is no

benchmark to compare our models with directly. We note that

published audio detection models trained on clean, lab-collected

dataset or synthetic datasets often achieve accuracies in the

0.90 s. However, it is well established that models trained on

such “clean” datasets do not generalize to noisy real-world

scenarios (22, 38, 37, 59). By contrast models trained and tested

on real-world audio data generally show substantially lower

accuracies, with F1 scores often around 0.6–0.7 (37, 38, 78). For

example, a recent analysis of LENA, a widely used platform for

speech detection and speaker classification from child-worn

audio recordings, reported precision and recall values ranging

from 0.27 to 0.60. Similarly, a real-world cry detection model

recently developed by Yao et al. (22) achieved an F1 score of

0.613. Thus, while not directly comparable to these models, our

CNN model performance falls in the range of recently published

real-world sound event detection models.

Additionally, we note that real-world models with accuracies in

the range of 0.60 have made real contributions to empirical

research in child development. For example, measures of

overheard speech derived from LENA’s speech classifier which

has an overall weighted accuracy of 67% (79) have predicted

various measures of language development in young children. A

review paper provides a summary of works that used LENA’s in-

built algorithms to detect aspects of the speech environment and

were found to significantly predict individual differences in child

language development as well as gold-standard laboratory

measures (80). These examples indicate that model results much

lower than those obtained in clean laboratory conditions can be

of value to the developmental psychology community.
6.4. High chaos detector increases
annotation efficiency

Our high chaos detector was able to identify 65.3% (recall) of

the ground truth high chaos segments in the unfiltered

Continuously Annotated set. Given that our goal was to

maximize the amount and variety of high chaos ultimately

annotated, a high recall value is optimal. Still, the detector
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missed 34.7% of the ground truth high chaos in the

Continuously Annotated set. This could be due to the strategy

implemented by the detector. The detector leverages a publicly-

available everyday sound classifier, YAMNet. The detector’s

ability to identify high chaos events is largely dependent and

limited to the variety and number of highly chaotic sound classes

that YAMNet can detect. Moreover, YAMNet’s performance on

each of the classes it can detect also largely drives the high chaos

detector’s accuracy. High chaos sound events outside of the

range of YAMNet’s output classes could also contribute to the

missed 34.7% of high chaos segments.

Next, the precision of our detector for the high chaos class was

relatively low (26.7% on Continuously Annotated set), meaning

that the detector over-identified candidate high chaos segments.

This precision is comparatively lower than precision of 36%–49%

reported in Audio Set’s original paper (48), the only prior paper

we are aware of that reports performance of their selected

candidates sets for audio annotation. This indicates that the

detector’s strategy of mapping a near-exhaustive list of everyday

sound classes from YAMNet to identify high chaos events was not

very precise, potentially owing to the fact that many individual

sound classes may be labelled as more or less chaotic depending

on their context. The detector’s low precision leads to increased

annotation time, counter to our goals. However, given that

occurrences of high chaos are highly rare, annotating the candidate

set identified by the detector provided a huge advantage over

annotating randomly sampled data. In particular, the detector

allowed us to annotate 8.32 times more ground truth high chaos

data than in a matched volume of audio randomly drawn from the

same three participants’ recordings. Overall, given that the detector

provided substantial reduction in annotation time and efforts, our

detector’s performance is adequate for our goal of reducing manual

annotation time and effort for the rare high chaos events.

While the high chaos detector increased the efficiency of

annotating high chaos segments, we also used “human filtration”

to supplement our chaos annotations. We note however that our

human filtration strategy does not supplant the high chaos

detector. First, we implemented this strategy mainly with

participants who shared with us that they had engaged in

activities or events that were particularly chaotic, meaning we

had additional information on these relative to other recordings.

Next, the sampled listening strategy implemented by our research

team identified only chaotic activities that were at least 10 min in

duration. As such, sampled listening is likely to miss shorter

chaotic events, e.g. a bark, plates crashing, a scream or shout, etc

and could lead to bias in the data. By contrast, the high chaos

detector was able to successfully identify high chaos instances

present in daily recordings irrespective of their duration.
6.5. Model performance across contexts
and populations

Infant crying is a high chaos event likely to occur frequently in

infant-worn daylong recordings and therefore our training data. As

such, model performance could rely on inadvertently training a
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“cry detector” rather than a chaos classifier per se. To test this, we

compared CNN model performance on datasets that did and did

not include infant crying. Model performance was similar

between Cry and Non-cry samples. Thus, our model successfully

classifies the chaos level of non-cry events.

Next, in attempts to understand the shortcomings of our

model, we sampled segments that the model erroneously

classified. We found that our model consistently misclassified

relatively loud sleep machine/white noise segments as medium

chaos rather than low chaos. This was likely a result of their loud

volume as sleep machines are typically kept close to the child

while sleeping. Moreover, some white noise machine sounds are

also acoustically very similar to high-frequency engine or

mechanical tool sounds and the model was not able to

differentiate between them and incorrectly identified them as

medium or high chaos. As sleep machine sounds/white noise can

comprise up to 12 h of an everyday recording collected via

infant-worn audio sensors, this has the potential to impact the

model performance significantly. Thus, we caution researchers

using our model outputs on audio collected during infant sleep,

in particular if families use sleep machines/white noise machines.

Alternatively, researchers can ask families directly to report if

they do use sleep machines.

Finally, we note that the data used to train and test this model

was collected mostly from 0- to 6.5-month old infants from

English-speaking families living in a mid-sized urban city and

�60% of our participants where non-Hispanic White. Models

are most likely to generalize well to populations similar to those

included in the training data (81–83). Therefore, we recommend

additional tests and validation before applying this model to

daily recordings collected from families differing in family

structure and dynamics, sociodemographic characteristics, and

language from the dataset used in this study.
6.6. Increasing training data boosts model
performance

Increasing the training data from 5 to 40 h provides a

meaningful boost to the CNN model performance. Large

volumes of training data are known to improve model

performance (84). This may be particularly true for models

designed to perform in real-world contexts with high levels of

variability in class representations. We note also that the scale of

the observed effect may be muted by the fact that training data

for all data ablation models was sampled from the 54.6 h of data

annotated from 22 participants in the Annotated dataset.

Sampling from such a large varied annotated dataset could

increase model performance relative to sampling from smaller

datasets drawn from fewer participants.
6.7. Future validation efforts

An important next step of this work is to assess the validity of our

auditory chaos model for predicting child behavior and functioning.
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Given the practical differences between subjective parent reports of

chaos and our objective real-time measure we may not expect to

see strong correlations between these two measurements. However,

these measures could provide complimentary insights into child

functioning. At the real-time timescale, we have shown in

preliminary work that our chaos predictions correspond to real-

time increases in infant heart rate (85), as predicted by previous

works that increases in volume leads to increases in infant arousal

(15, 36). Future efforts could also examine other real-time

indicators, including, e.g. child focus of attention or child

regulation, and how these relations differ according to child

temperament. In addition, prospective studies could examine how

objective measures of household chaos compare to parent reported

measures for predicting children’s longitudinal outcomes,

including infant negative emotionality (86), behavioral regulation

(87), cognitive outcomes (receptive vocabulary and attention),

behavioral outcomes (anxiety/depression and attention problems)

and effortful control (2).
7. Conclusion

In this paper, we developed a multi-class model for real-world

auditory chaos classification. To do so, we collected and annotated

a huge corpus of real-world auditory chaos, the first and largest

of its kind. Our pioneer effort to classify auditory chaos sets the

stage for exciting possibilities in developmental psychology.

Once validated, automated fine-grained measures of chaos

obtained from our model can provide a novel opportunity to

systematically and objectively assess household chaos as an

everyday risk factor for child behavioral development in

naturalistic settings.

For the engineering community, this work provides a

demonstration of model development challenges and solutions in

the domain of real-world audio classification. High auditory

chaos embodies typical real-world activities or environments

insofar that it is highly variable, complex, requiring domain

specific knowledge to obtain reliable judgements, and rare,

meaning that it requires strategies for filtering large volumes of

data to obtain a sizeable training dataset. Our work indicated

that annotation of such real-world events can benefit from

leveraging existing resources to reduce the total amount of data

annotated, thereby, reducing annotation time and efforts.
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