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Despite their long history, it can still be difficult to embed clinical decision support into
existing health information systems, particularly if they utilise machine learning and
artificial intelligence models. Moreover, when such tools are made available to
healthcare workers, it is important that the users can understand and visualise the
reasons for the decision support predictions. Plausibility can be hard to achieve for
complex pathways and models and perceived “black-box” functionality often leads
to a lack of trust. Here, we describe and evaluate a data-driven framework which
moderates some of these issues and demonstrate its applicability to the in-hospital
management of community acquired pneumonia, an acute respiratory disease
which is a leading cause of in-hospital mortality world-wide. We use the framework
to develop and test a clinical decision support tool based on local guideline aligned
management of the disease and show how it could be used to effectively prioritise
patients using retrospective analysis. Furthermore, we show how this tool can be
embedded into a prototype clinical system for disease management by integrating
metrics and visualisations. This will assist decision makers to examine complex
patient journeys, risk scores and predictions from embedded machine learning and
artificial intelligence models. Our results show the potential of this approach for
developing, testing and evaluating workflow based clinical decision support tools
which include complex models and embedding them into clinical systems.
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1. Introduction

The concept of clinical decision support (CDS) goes back to the 1960s (1) but it was only

when digitisation of patient data became a reality in the 1980s that CDS systems became

possible. The purpose of CDS is to facilitate optimised and standardised healthcare and as

a result modern CDS can vary in complexity from clinical risk score calculators, to

medication and patient pathway management and prognostic and outcome modelling.

However, options for what is possible within the hospital infrastructure depend on the

degree of integration of the electronic patient record (EPR). Where users routinely access

disparate or linked systems, CDS provision may become limited or unviable. From a

technical and cost standpoint, it can also be difficult to setup and maintain CDS tools. If

not embedded at the EPR design stage, CDS tools are often disease/discipline specific,

standalone and/or proprietary and not fully interoperable with other information systems

(2). Incomplete system integration necessitates duplicate data entry, which not only adds

to the healthcare workers’ workload but can introduce transcription errors. The resultant
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cognitive overload and trigger fatigue effectively prohibits pre-

emptive identification and stratification of patients according to

clinical risk. This occurs without considering the complexity

added by any data processing and lack of system interoperability.

Initially CDS were knowledge-based expert systems driven by a

defined set of logical rules to drive the decision making—essentially

a series of if/then steps. It is only more recently that non-

knowledge based CDS which utilise machine learning (ML) and

artificial intelligence (AI) models have been implemented (3). These

latter approaches use existing data as a basis for models which

identify patterns corresponding to specific predictions—patterns

which they can subsequently recognise in any new data presented

to them (4). For example, a CDS containing an ML model trained

from data containing markers of 30-day mortality for a particular

disease, could use this to identify which patients should be

prioritised when supplied with new data. However, the growing

complexity and scale of AI and ML models used for CDS means

they need access to multi-modal data sources such as images, omics

and longitudinal test results from separate systems. This requires

prior integration into EPRs to become relevant to clinical

management. Additionally, the increased use of non-knowledge

based CDS presents ethical concerns. The complexity of these

(often proprietary) models makes them appear to be a “black-box.”

Understanding these models is required to engender trust in

predictions, particularly how such models perform on local data, so

that users are encouraged to use the full potential of the system.

Perceived lack of transparency, plausibility and trust in accuracy

limits generalisability for clinical practitioners who then often prefer

to rely on years of knowledge and experience (5).

Here we describe an approach for developing CDS which

considers some of the concerns above. This is underpinned by a

generic software framework for creating and handling real-time

CDS called Embeddable AI and State-based Understandable Logic

(EASUL), built based on our experience with management of

community acquired pneumonia (CAP) admissions locally. CAP is

an acute lung infection, which is the leading cause of death in UK

hospitals, with mortality associated with admissions varying from

between 2% and 30% depending on disease severity, comorbidities

and age. In addition, it is estimated that annual healthcare costs to

the UK National Health Service (NHS) associated with CAP

exceed £1 billion. In our local hospital, CAP patients are managed

and supported by a specialist pneumonia intervention nurse

(SPIN) team and in our previous collaboration we showed that

prompt interventions are associated with significantly improved

outcomes (6). Here we demonstrate how enhancing CAP

management with our informatics approach could enable better

and more timely use of data and potentially further improve

prioritisation and care of patients with more severe disease.
2. Method

2.1. The EASUL framework

The proof-of-concept EASUL framework is based on a Python-

based library which enables data-driven CDS plans to be setup and
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subsequently executed. Figure 1 shows how the EASUL framework

can be configured in different ways to develop CDS tools. Key to

this are plans which contain the data sources, steps, algorithms,

states and visualisations representing potential patient journey.

Key to these plans are a series of determinative and connected

steps as shown in Figure 2. These support algorithms of different

modalities—varying from simple clinical risk scores and logical (if/

then) comparisons to advanced ML and AI models—to determine

a specific patient journey. To simplify the integration of scores and

models we also included data-related concepts in EASUL (schemas,

algorithms and data sets) which allow the quick implementation

and inclusion of new and existing models within plans. EASUL also

contains tools to serialize algorithms and calculate appropriate

metadata (including model performance metrics, model explainers

and other values) and specific result contexts which are used to

generate appropriate visualisations. To improve performance, the

library can pre-calculate and cache metadata and result context to

ensure visualisations are provided to the user in a timely fashion.

The visualisations are produced using HTML, MermaidJS (7), and

matplotlib (8). Information related to models such as area under

the curve, sensitivity, specificity and accuracy; and measures such as

explainers are generated using scikitlearn (9). For outputting

explainable elements, the LIME library is used to calculate patient-

specific explainers (10) and the results of the explanation are output

using plain HTML. The framework is designed to be data source

agnostic although data is converted internally into Python data

structures. The framework currently supports text-delimited files,

SQLite databases, and Redis-based messages (the demo admissions

data feed), but could be extended to handle other data sources such

as other database systems and biomedical data. Sources can also

include on-the-fly processing functions to transform data as

required. Furthermore, EASUL also has the capability to combine

multiple data sources into one collated data source. There is also

rudimentary support for handling missing data by including default

values if variables are missing.

A key advantage of EASUL is that through its use of adaptable

and flexible plans CDS tools can be initially defined, evaluated and

tested using static data sources, before they are adapted into

information systems driven through real-time data sources. This

latter ability is implemented through an optional web API (built

using the Django framework), which can serve outputs and

results (visualisations and data related to the plan), and a flexible

engine supporting use of different broker and client setups to

message other systems such as EPRs or databases as required.

This approach is generalisable and adaptable to different

scenarios and conditions, potentially enabling EASUL to support

decision making at any stage of the patient journey.

The current version of EASUL is available for download, along

with documentation related to its use and configuration at https://

github.com/rcfgroup/easul.
2.2. Data sources

To develop and evaluate the CAP management plan, individual

hospital episodes from adults (�16 years old) admitted between
frontiersin.org
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FIGURE 1

Schematic showing how EASUL-based tools were configured and utilised in two different ways. (A) For research, quality and service improvement using
static data sets and Python scripting and analytics. (B) Creation of a prototype CDS tool through integration of outputs/results into a clinical information
system. *ADT ¼ hospital admissions, discharges and transfers. In all cases, a Plan is initially defined using Python classes. These plans act as containers for
available re-usable components including DataSource, Algorithm, State and Visual classes. The main logic is encompassed within determinative Steps,
which support algorithms of different modalities—varying from simple clinical risk scores and logical (if/then) comparisons to advanced ML and AI
models. Data received by steps at particular points determine the specific patient journey undertaken. Once a Plan has been defined, it is executed
using an Engine - which encompasses a Client, Broker and Clock. The client handles the local storage of states and results, the broker provides/
receives data to drive the plan and the clock handles the temporal aspects of flows. For example, in (A) the client was a SQLite database which
stored information for later analysis, the broker was a static SQLite database which provided input data and the clock was setup to increment forward
hourly within each CAP admission to simulate progression. Clipart is from draw.io.
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April 2022 and June 2022 were extracted from the hospital data

warehouse as delimited text files. Alongside this, records of

patients reviewed by the SPIN team were extracted from a locally

run service database. The hospital data included demographics

(patient ID, admission ID, dates and times of admission/discharge

and the nature of the discharge) as well as International Statistical

Classification of Diseases and Related Health Problems version 10

coded primary and secondary diagnoses, blood test results, oxygen

records and drug records. The SPIN data included patient ID,

dates/times of admission and CURB65 severity calculated by the

SPIN team. Data files were de-identified prior to loading into a

SQLite database for subsequent evaluation.
2.3. Decision workflow plan development
and evaluation

An EASUL-based CAP management plan was defined in

Python containing the appropriate steps and associated

properties. The plan also included data transformations/processes

so that EASUL would convert and process data in non-standard

formats on-the-fly. This included date/time parsing and CAP
Frontiers in Digital Health 03
diagnosis based on an algorithm utilised previously (6) but

refactored into an EASUL compatible process. For this

development and evaluation, the SQLite database described above

was established as the main data source in this plan.

To evaluate the utility of the CAP management plan two data sets

were created. The first data set comprised data derived from executing

the EASUL plan across all the admissions in the SQLite database to

determine diagnoses, patient journeys, derived states and algorithm

results. The second data set was created by extracting the SPIN

review data from the SQLite database and linking it to the coded

admission records through an anonymised patient ID and date/

time matching algorithm, with admissions not reviewed by the

service identified and filtered out. This resulted in two sets of

delimited text files representing the CAP admissions: one

containing the EASUL-related data for all admissions, including

those determined to have CAP based on the above CAP diagnosis

algorithm and the other admissions reviewed by the SPIN service.

The two data sets were merged and then appropriate variables

compared using Python and the pandas library. The primary

comparison undertaken in our evaluation was between the level of

severity recorded by the SPIN team and that determined by

EASUL. As defined previously, in the UK CAP disease severity is
frontiersin.org
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FIGURE 2

Example components in data-driven algorithm steps. Steps act upon the results of algorithms. This figure shows steps containing (A) a “Score algorithm”

for CURB65 severity and (B) a “Predictive algorithm” for mortality prediction, and while many of the components utilised are the same there are also
differences. All algorithms use “Data Schemas” to define the input and output fields which are supported by an “Algorithm” and “Data Input.” This
allows data to be validated and/or converted before it is used for prediction and prevents a data set being used to make predictions using an
algorithm with an incorrect schema. The “Data Input” is collected through collating different sources into a single “Data Source” according to their
availability and the system setup. Which step is next in the patient journey is then determined by the results of the “Algorithm” and the “Decision.”
Decision types are algorithm agnostic, although in (A) there are three possible decisions (Low, moderate or high severity), whereas in (B) there are
two (Likely survival or Likely mortality). There is also flexibility in the event driven actions, which can be set to occur at particular points within the
step. For example, one type of action stores a new state value once a decision has been made but before it has been actioned. The main differences
between the two steps lie in how the algorithm is defined and, in the visualisations, available. The “Score algorithm” in (A) (essentially a risk score) is
built from “Risk factor” expressions, whereas the “Predictive algorithm” in (B) comprises a previously trained and serialized machine learning/AI model
—both powered by “Data Inputs.”
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classified using CURB65 a composite validated clinical risk score

which uses presence/absence of mental confusion; high blood urea;

high respiratory rate; low blood pressure; and age (at or over 65)

(11). Disease severity is then classified according to NHS guidelines

as low (CURB 0-1), moderate (CURB 2) or high (CURB 3-5) (12).

While EASUL was configured to automatically calculate CURB65

and the derived severity level for each hour of each CAP admission,
Frontiers in Digital Health 04
the SPIN data only contained a single record of a manually

calculated CURB65 score. Therefore, we used this score to

categorise severity and then compared it to the highest severity level

determined by EASUL during an admission. The frequency of each

severity pair (e.g. low-medium, high-high) was tallied. The plan did

not include an ML model at this stage—this was only added in the

prototype system.
frontiersin.org
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2.4. Proof-of-concept CDS prototype
system

Our CDS implementation utilised the Headfake library (13) as

the basis of a bespoke in-silico “simulated admissions” tool. This

output near real-time data matching the record/field formats

obtained from the hospital data warehouse and pertaining to

admissions/discharges and chest X-ray reports, pathology tests and

vital signs—with the records encoded as simple JSON structures

and being sent as messages at times during each “admission.” The

EASUL plan was also altered to accept near real-time data from

the broker and to embed an ML classifier from an ongoing project

which predicts whether patients had died in-hospital or within 30

days of discharge from CAP (14). This classifier, based on tree

gradient boosting and built using XGBoost (15) was wrapped as

an EASUL algorithm along with a data schema and encoder/

decoder designed to process routine hospital data into the correct

format of data for input into the model. Additionally,

visualisations were also defined representing this algorithm for

both the overall model (e.g. performance metrics) and the row

(e.g. breakdown of probabilities and other measures of

interpretability). Due to the headless nature of EASUL, to provide

an appropriate user interface for the CAP management system, we

used a local bespoke clinical data collection platform and built a

CAP data collection/management module and custom extensions

to handle near real-time data from the EASUL broker.
3. Results

3.1. Creating and evaluating EASUL for CAP
management

To demonstrate the potential utility of EASUL for CAP

management CDS we worked with local physicians and members
FIGURE 3

Number of admissions dichotomised into those seen/not seen by SPIN showin
calculated by EASUL with those manually calculated by the SPIN team. (B) Seve
*CURB65 was only recorded for 227 admissions seen by SPIN. Severity level is b
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of the SPIN team to identify the key steps and decision points in

the current person-driven service process (6) and used EASUL to

set this up as a data-driven workflow plan for CAP management.

The utility of this plan was assessed through a local quality

improvement (QI) project. This involved comparing the results

obtained from feeding retrospective admissions data into EASUL,

with the actual events and information recorded by the service team.

Essentially augmenting a manual process (performed by the SPIN

team) with data-driven informatics (driven by EASUL) to prioritise

patients for review. The admissions data set consisted of 52,471 adult

admissions, with 630 diagnosed retrospectively withCAP at admission.

Figure 3 shows that 283 (44.9%) of the CAP admissions were

reviewed by the SPIN team. Of these it was possible to compare the

CURB65 derived severity determined by EASUL and the SPIN

team for 227 (80.2%). Only 112 (49.4%) had the same severity

determined by both EASUL and the SPIN team, which meant

that over half did not match, with 57 (25.1%) of reviewed

admissions identified by EASUL as high severity but recorded

only as low or moderate severity by the SPIN team. Conversely,

5 (2.2%) of the admissions were classified as moderate severity

by the SPIN team, but deemed only low severity by EASUL.

Crucially for the approach, no patients were classified as high

severity by the SPIN team and as low severity by EASUL. To

confirm the comparison was correct, the raw input data from a

proportion of the patients who were classified differently by

EASUL and the SPIN team was examined manually by the main

author to ensure the algorithm was working correctly and

potential reasons for the observed differences were discussed with

clinical staff in the team. Based on this it appeared that some of

the patients had indeed been incorrectly scored by the SPIN

team. There are several reasons why this could be the case

including data missing/missed during the admission; results

arriving or being recorded later due to clinical pressures; short

lower/higher severity bursts calculated by EASUL but missed /

ignored for clinical reasons by clinical staff; or patients being
g calculated severity levels. (A) Cross-comparison of severity automatically
rity automatically calculated by EASUL. Underlined values match in severity.
ased on: Low = CURB65 0–1; Moderate = CURB65 2; High = CURB65 3–5.
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discharged prior to review. Additionally, exactly how and when

CURB65 is applied is not always systematic and can be based on

clinical judgement. For example, it may be calculated and

recorded before a patient deteriorates and severity increases.

Finally, it is also important to note that 347 (55.1%) of the CAP

admissions were not reviewed by the SPIN team, with 244

(70.3%) of these deemed to have had moderate or severe disease.
3.2. Embedding decision support into a
clinical tool

In addition to showing how it could improve prioritisation of CAP

admissions, we also wanted to demonstrate how our framework could

be used to develop embeddable CDS tools. Figure 4 shows a proof-of-

concept architecture for achieving this. A key component of this is a

“simulated admissions” tool which imitates patient flow by

generating near real-time synthetic data. This pushes appropriate

simulated data to the Broker at corresponding time points which

drives the Handler service, utilising the HTTP Client to progress the

patient journey accordingly. When no data is available at a particular

step in the plan, or the journey reaches completion (e.g. the patient

is discharged or dies) the Handler pauses and either awaits further

data or finalises the journey. During the process, EASUL outcome

data is sent back to the broker to feed the Receiver service in the

Clinical System. This leads to the creation of new or updated clinical

records according to where a patient is in their journey. The Clinical

Frontend can also access and display data and visualisations from

the Client related to specific journeys. The results of this are shown

in the screenshots in Figure 5 which demonstrates a prototype

Clinical Frontend based around a prioritisation dashboard with

embedded visual elements and results from the EASUL plan for

CAP management.

As part of our prototype, we also embedded an ML model

which predicted pneumonia outcome (14). This gave us the

opportunity to implement visualisations to improve on
FIGURE 4

High-level architecture of the proof-of-concept CDS system incorporating si
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interpretation of specific results output by the model (e.g. LIME-

based plots) and present explainable reasons for predictions,

along with metrics showing model performance, such as ROC

(including area under the curve), accuracy, recall and precision.
4. Discussion

We demonstrate here how our approach can effectively be used in

operations, research and decision support tool development. Through

our QI project we were able to show its utility for prioritising and

triaging patients who may not otherwise receive the care required

in a timely fashion. As we previously reported (6), patients not

reviewed by the SPIN service have notably poorer outcomes, most

likely because they are prioritised less effectively. Early identification

of the >200 high priority CAP admissions not reviewed by the

service suggests that better use of data through EASUL-type

approaches would improve this situation, particularly if used as a

triage to screen and exclude lower priority patients. Furthermore, in

the patients reviewed by the SPIN team there were clear

inconsistencies between the severity levels calculated by the SPIN

team and those derived through the EASUL-based tool—further

strengthening the case for using tools such as EASUL to support

the team’s decision making. We believe that tools like the prototype

CDS we demonstrate would have significant utility in clinical

practice and envisage many situations where they could benefit

patient outcome through automation and simplification of

straightforward data-driven processes in hospital patient

management to identify earlier treatment opportunities, reduce the

burden on clinical teams and enable more consistent clinical practice.

Our interest in pneumonia management was driven by a need

for equitable access to evidence based interventions across a large

multi-site healthcare organisation. Local QI priorities facilitated

access to appropriately granular severity data. The very

experienced and database enabled SPIN team played a key role

in recording and promoting the quality of this dataset as relevant
mulated real-time data.
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FIGURE 5

Screenshots of the prototype clinical frontend showing the features provided by EASUL. Admissions are added automatically to the system once a patient
is identified as having CAP according to presence of specific clinical codes (see Methods). The resulting dashboard contains links to several visualisation
options to provide support to the user: (A) results from CURB65 (severity) and CRP level stratification, along with an ML model to predict likelihood of
mortality; (B) visualisation of the journey so far for the selected admission, showing key decision points driven by the data. This can be customised to
include data sources and/or only show the direct route; (C) breakdown of the CURB65 severity score into individual risk factors; (D) explainable
visualisations to further explain the model predictions with a bar plot showing the prediction probabilities and outputs such as LIME plots showing
the variables and values which influence the prediction; (E) interpretable metrics in a model overview which provides key model performance
indicators including area under the curve, accuracy, predictive power, sensitivity and specificity.

Free et al. 10.3389/fdgth.2023.1237146
to outcome prediction. Additionally, the team’s collection of

secondary qualitative data facilitated this comparative quality

improvement project. Cognisant of more advanced pneumonia-

focussed decision support tools in active use (16) our main

objective here was to develop and evaluate a generic tool which

could be utilised in similar acute hospital trusts, and we are not

comparing our CAP solution with more fully featured single-

purpose CDS tools. While we considered using an existing freely

available dataset to demonstrate our concept, we were keen to

apply the tool to a local real-life acute respiratory emergency care

scenario and data set rather than a hypothetical one, thereby

accepting some additional complexities and limitations.

Existing generic approaches for implementing web-based

interfaces for statistical models and processes (e.g. RShiny) are
Frontiers in Digital Health 07
not focussed on data and system integration and generally entail

entering input data into a user interface. While our project does

have some similarities with other projects, there are key

differences. Leiner et. al describe a “vendor-neutral” AI

infrastructure although their solution is specifically targeted

towards imaging (17); while the creation and deployment of AI-

based models as CDS is a key focus of the KETOS platform (18).

Another similar project identified was DEPLOYR (19) which

deals more with deployment and continuous monitoring of

researcher-created ML models—with a key focus on a specific

EPR system; while EASUL focuses more on combining ML with

workflows, appears more data source agnostic and also includes

UI visualisations. There have also been other projects which

focus on knowledge-based CDS run as microservices (18) and
frontiersin.org
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semi-automation of multi-modal AI model development (20).

However, unlike EASUL these do not appear to include

workflow-driven approaches and customisable visualisations or

support different modalities of source data.

Our proof-of-concept clinical system allowed us to demonstrate

how algorithms of varying complexities could be embedded into an

information system in a re-usable way. Using EASUL we were able

to include both simple risk scores and a pre-existing ML model in a

real-time data-driven workflow and present it to the end-user. This

is significant since ML models can be effective, but are not always

simple to integrate into such workflows. Additionally, we included

support for both model-based and patient-based visual elements to

help with explainability, interpretability and accountability. By

supporting these types of visualisations we hope to increase levels

of trust in black-box ML models, by providing users with more

transparency—how and why models are making predictions—

and help to simplify the deployment of CDS tools containing

ML models with these features. There is a growing interest in

this field and we agree with others (2, 21) that transparency and

accountability around both the strengths and weaknesses of ML

and AI is crucial for gaining the trust of clinicians when using

CDS based on these models, particularly given the vast increase

in the number of published predictive models (22) and

continuing advances in the field. However, we acknowledge that

this must be done carefully to ensure that increased transparency

does not compromise the security of models/algorithms and lead

to potential increases in bias (23).

The flexible nature of our approach means it can be extended

to support different data modalities (e.g. omics data, imaging);

adaptive workflows including multi-tiered/decision models and

potentially mobile applications. Additionally, it could also be

used to support patient directed healthcare actions, such as

remote monitoring. From a technical perspective our use of

generic plans makes it straightforward to modify the approach

and allows parts of plans to be re-used, while other aspects

can be customised as needed in the same project (e.g. for

separate evaluation and implementation). The framework also

includes support for storage and re-use of previously trained

models, with input data validation based on a data schema and

different extraction-transform processes, including the ability

to collate different data sources together and to have custom

extraction-transform processes applied at the point records are

received. While this has some similarities to approaches such

as FIDDLE (24), our method is data source and format

agnostic. However, we recognise its current lack of support for

standards such as Health Level Seven and Fast Healthcare

Interoperability Resources (25) is a limitation and are keen to

add this due to a growing interest in the UK NHS and

elsewhere (26, 27).

The work presented here is preliminary research to establish

the potential of our approach and we fully acknowledge that

further development would be required to improve security,

resilience, and scalability. This also includes an important but

often overlooked aspect of CDS - handling missing data–in terms

of both determining optimal imputation methods and also in

terms of real-time practicalities. For instance, if all but one
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variable is available to run a predictive model, we would need to

determine how to handle the situation by waiting a certain

amount of time before imputing data; using previous data; and/

or triggering a notification that a test has been missed. Despite

these limitations, we believe that EASUL and similar approaches

are important steps in making better use of health data from

multiple sources and would help to strengthen trust and

accountability in complex ML and AI model enabled CDS.

Further research and development in this area is required to

evaluate and utilise the available data and models being

developed in clinical practice and produce digital health tools

which are fit for use in clinical settings.
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