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Introduction: Falls are one of the most common causes of emergency hospital
visits in older people. Early recognition of an increased fall risk, which can be
indicated by the occurrence of near-falls, is important to initiate interventions.
Methods: In a study with 87 subjects we simulated near-fall events on a
perturbation treadmill and recorded them with inertial measurement units
(IMU) at seven different positions. We investigated different machine learning
models for the near-fall detection including support vector machines,
AdaBoost, convolutional neural networks, and bidirectional long short-term
memory networks. Additionally, we analyzed the influence of the sensor
position on the classification results.
Results: The best results showed a DeepConvLSTM with an F1 score of 0.954
(precision 0.969, recall 0.942) at the sensor position “left wrist.”
Discussion: Since these results were obtained in the laboratory, the next step is
to evaluate the suitability of the classifiers in the field.
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1. Introduction

Falls are a major cause of emergency department visits in older adults (1).

Approximately 33% of community-dwelling older adults fall at least once a year, with

many becoming repeated fallers (2, 3). Falls reduce quality of life and increase mortality

and morbidity (4). About 14% of falls result in fractures and about 10% of falls result in

traumatic head injury (5, 6). Near-falls, which describe gait disturbances such as

stumbling or slipping without actually falling, are frequent in everyday life and may

precede actual falls. Therefore, it is important to identify near-falls, as these may present

one of the earliest signs of an increased fall risk (7) providing the opportunity to establish

treatment approaches as early as possible.

There is already plenty of work in the literature on fall detection. Most of the work

focuses on the detection of falls and activities of daily living. According to a systematic

literature review (8), wearable devices, depth-imaging cameras and radar-based systems

are mainly used for fall detection. Wearable devices include smartphones with built-in

accelerometers and gyroscopes. The authors describe that each of these methods has

advantages and disadvantages in terms of effectiveness, data collection, security and

privacy. In particular, camera-based solutions are rarely used due to privacy concerns.

The first promising methods for fall detection were the threshold-based methods (9).
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However, it is difficult to determine the appropriate threshold

without triggering false alarms: More complex movements with

high outliers in the sensor signals, such as climbing stairs, are

difficult to distinguish from falls or near-falls. Especially, the

detection of near-fall events (stumbling) is difficult with this

method, as no clear thresholds can be set that would not also be

reached during normal walking.

Besides the threshold-based methods, another major area of

research is fall detection using machine learning (ML) methods.

Wang et al. (8) distinguished between methods based on feature

engineering and neural networks. Feature engineering is used to

compute selected time and frequency domain features from raw

sensor data. However, according to Wang et al. (8), this

approach requires expert knowledge to ultimately decide which

features are most appropriate for the data and classification

methods. The computed features can then be used as input to

classifiers such as Support Vector Machines (SVM) or Decision

Trees. Neural networks have the major advantage over

conventional methods that they can learn to extract the features

relevant for classification from the raw data. In the literature,

convolutional neural networks (CNNs) and variants of

recurrent neural networks (RNNs) are mainly used for fall

detection (10, 11). Many studies use and train more complex

neural networks to achieve multi-class classifications to

distinguish between different activities of daily living and fall

types. Also a deep convolutional and LSTM recurrent neural

network (DeepConvLSTM) was used, which combines the

advantages of CNNs for feature extraction and LSTM neurons

for pattern recognition from the temporal sequence of the data

(12). Near-falls (such as tripping) are characterized by the fact

that they are intercepted by one’s own physical reaction and

thus do not result in a fall. The early detection of an increased

occurrence of near-falls can help to identify groups that are at

risk of falls. However, the detection of near-falls has been

studied by only a few research groups (13, 14), mainly due to

the lack of appropriate data sets. Therefore, we provoked near-

falls in older people on a perturbation treadmill in a study and

measured their reaction during near-falls with inertial

measurement units. Our goal was to develop a near-fall

detection algorithm for early detection of increased fall risk in

the future. Our research questions are:

† Which machine learning methods are suitable for near-fall

detection?

† How does sensor position influence detection accuracy?

† Is a single sensor sufficient for near-fall detection?

2. Materials and methods

2.1. Study design and applied sensor
systems

To answer the research questions, we examined the motion

sensor data from the SeFallED and the CareFall study recorded

in the gait laboratory of the geriatric department of the Carl

von Ossietzky University Oldenburg. The SeFallED study aims
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to identify long-term trajectories of older adults, presenting to

the emergency department without hospital admission after a

sentinel fall. For the purpose of this study, data from baseline

tests were used. A full list of inclusion and exclusion criteria

has been published elsewhere (15). The CareFall study

investigates cardiorespiratory fitness as a potential determinant

of increased fall risk and reduced gait safety in older adults.

Both studies use the perturbation treadmill to induce near-falls.

The experimental setup, sensors, sensor positions and

orientations, and the perturbation protocols are identical.

Therefore, the data of these studies are comparable and the

main difference is the medical objective of the studies

The perturbation treadmill (Motek Medical B.V., Amsterdam,

the Netherlands) induces a total of nine different disturbances in

addition to the normal gait mode (see Figure 1). The

perturbations include anterior–posterior, medio-lateral and

pitch perturbations. The integrated split-belt of the treadmill

with separate force plates (sampling rate: 300 Hz) allows to

perturb either both legs or just one leg during walking. The

perturbations were designed to simulate typical fall situations

and to measure the subjects’ reactions. During the gait

recordings, the subjects were secured with a harness to prevent

them from falling to the ground. Motion sensor data was

collected in both studies by six wirelessly synchronized inertial

measurement units (IMU) (Opal V1, Mobility LabTM, APDM,

Inc., Portland, OR, USA) and one activPAL sensor (activPAL©,

PAL Technologies Ltd, Glasgow UK). The APDM Opal sensors

record at a sampling rate of 128 Hz and contain an

accelerometer and a gyroscope. The activPAL sensor has an

accelerometer that samples at 40 Hz. Figure 1 shows the

positioning of the sensors during the measurements. The sensor

placements were selected based on commonly used positions in

the literature (8). The sensors are always attached at the same

position with the same orientation. The activPAL sensor has a

long battery life is additionally worn in everyday life for a week

after the laboratory visit. In the future, we also want to detect

near-falls and thus an increased risk of falling with this sensor

in everyday life. In addition to the IMUs, the subjects were also

recorded by depth cameras (Azure Kinect DK, Microsoft,

Redmond, WA, USA) during the measurements. Once the

sensors were in place, first the individual preferred overground

and treadmill gait speed were determined. All participants then

completed a perturbation protocol with a duration of about

4 min and 30 s. The perturbation protocol starts with 30 s of the

preferred treadmill walking speed, followed by 9 perturbations

randomly presented to the participants. Time between

perturbations will vary between 20–30 s. Additional functional

assessments such as the short physical performance battery

(SPPB), Short Falls Efficacy Scale International (Short-FES-I),

and maximal grip strength of the dominant hand were

performed. The test procedures were approved by the local

ethics committee (ethical vote: Carl von Ossietzky University

Oldenburg No. 2021-120 and 2021-026) and conducted in

accordance with the Declaration of Helsinki. In total the data of

87 participants (44 male, 43 female) were included in this work.

All participants provided written informed consent to
frontiersin.org
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TABLE 1 Characteristics of the entire study population with mean, median, standard deviation (SD), minimum (min), maximum (max), 25th percentile (Q1)
and 75th percentile (Q3) values.

N Mean Median SD Min Max Q1 Q3
Age [years] 87 73.5 73.0 6.4 62.0 87.0 68.0 79.0

Height [cm] 87 171.3 172.0 10.6 145.0 192.0 162.0 179.0

Body mass [kg] 87 77.0 75.4 14.1 43.9 119.7 67.2 87.0

BMI [kg m�2] 87 26.2 25.3 4.2 19.6 42.7 23.4 27.8

SPPB [score] 84 10.5 11.0 1.8 4.0 12.0 10.0 12.0

Short-FES-I [score] 87 8.8 8.0 2.5 7.0 20.0 7.0 10.0

Number of diagnoses 87 3.1 3.0 2.2 0.0 10.0 1.0 4.0

Max grip strength [kg] 86 32.8 32.1 10.6 10.0 66.1 24.4 40.3

GS overground [km h�1] 87 4.4 4.5 0.9 1.8 6.4 3.9 5.0

GS treadmill [km h�1] 87 3.5 3.6 0.9 0.8 5.7 3.0 4.2

GS treadmill to overground [%] 87 78.6 80.0 12.7 30.0 108.0 70.0 88.0

BMI, body mass index; SPPB, short physical performance battery; Short-FES-I, short falls efficacy scale international; GS, preferred gait speed.

FIGURE 1

Perturbation treadmill (left) and IMU sensors and their position (right). The positions of the APDM sensors (green circle) are foot (left/right), wrist(left/right),
sternum, and lumbar. The position of the activPAL sensor (blue box) is the right upper thigh.
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participate in the study. Table 1 shows the characteristics of the

study population. Of the 87 subjects, eleven reported the use

walking aids in their daily lives and 42 reported no treadmill-

experiences at all.

After data acquisition, the sensor data were processed as shown

in Figure 2. The processing includes preprocessing steps, training,

and classification, which were described in the following section.

We focused on acceleration data only for all analyses.
2.2. Data preprocessing

The treadmill and the IMU-computers, both APDM and

activPAL, are synchronized using Network Time Protocol. The

treadmill and APDM are also synchronized by an external

trigger so that these measurements start at the same time. In
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addition to NTP, we use event identification to synchronize the

activPAL sensor (change between static and dynamic activity,

response to disturbance). For synchronization, the data from

both IMU-sensors (activPAL and APDM) was adjusted to the

sampling rate of the treadmill. Subsequently, the data was

labeled automatically, distinguishing between walking and

perturbations. The classification was based on the treadmill

data, which included timestamp and duration of the

perturbations. All gait recordings without perturbations are

directly classified into 2 s windows using the sliding window

method. The duration of the perturbation does not necessarily

represent the response to the perturbation, as individual

response times must be considered. Thus, the perturbation

windows are determined using the following methodology.

Based on the time window of the perturbation, the method of

Liu et al. (16) is used to calculate the maximum value of the
frontiersin.org
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FIGURE 2

Overview of the methods used to preprocess, train and classify the sensor datasets.
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norm from the three axes of the sensors using the formula (1).

maxnorm ¼ max (
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
) (1)

The maximum is assumed to be the center of the perturbation

response. Then a 2 s window is cut around the maximum.

Figure 3 shows such an impact window. In the area between the

two green lines, the treadmill has triggered a perturbation. The

found maximum of the norm (negative peak) is marked with the

blue line. The cut window is the area between the two red lines.

This procedure must be repeated for each sensor position since

the position of the respective maximum and thus the reaction

time of the extremities can be different. The windows created and
FIGURE 3

Creating a perturbation window around the maximum of the norm, which
perturbation, blue: Maximum, red: Selected 2s perturbation window.
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assigned to the two classes are then randomly divided into

training, validation, and test data sets. The training data set

receives 60%, the validation data set 20% and the test data set the

remaining 20% of the windows. To ensure a comparable

evaluation of all methods used, the division into the three data

sets remains identical for all machine learning approaches.
2.3. Training

We used different machine learning algorithms to identify the

best method for our application. The selection of the algorithms

was based on the present literature in the field of fall detection

(8). The classification algorithms include support vector
represents the maximum reaction to a perturbation. Green: Treadmill
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machines (SVM) (17), AdaBoost (18), one- and two-dimensional

convolutional neural networks (1D- and 2D-CNN) (19), and

bidirectional long short-term memory (LSTM) networks (20).

The improvement in bidirectional LSTM is that the current

output is not only related to previous information but also to

subsequent information and therefore captures a longer temporal

relationships to enhance the recognition rate (21). For the SVM

and AdaBoost classification, we selected features according to Liu

et al. (22) and calculated them for each time window. For each

axis of the accelerometer data (x, y, z) as well as Norm xyz,

Norm xy, Norm xz following features are calculated:
† mean, median, standard deviation

† interquartile range, variance, minimum, maximum

† max-min (range), kurtosis, skew, energy

† Pearson correlation coefficient of the axes
All neural networks were created using tensorflow and keras

modules. The optimization of the hyperparameters was done

with hyperband for the neural networks and GridSearchCV for

SVM and AdaBoost. Table 2 shows the search parameters for

GridSearchCV and Hyperband. To compensate for the

imbalance of classes (6238 gait windows and 1107 perturbation

windows), we used weighted classes (23) as well as data

augmentation (24).
TABLE 2 Search parameters for GridSearchCV und Hyperband.

Model Search
method

Investigated parameters

SVM GridSearchCV kernel (linear, rbf, poly)

C (0.01, 0.1, 1.0, 10.0)

gamma (1, 0.1, 0.01, 0.001)

degree (2, 3, 5, 7)

Data augmentation (True, False)

Class weights (True, False)

AdaBoost GridSearchCV max_depth (2, 4, 6, 8, 10)

min_samples leaf (2, 5, 10)

n_estimators (10 , 25, 50, 100, 250)

learn_rate (0.001, 0.01, 0.1, 1)

Data augmentation (True, False)

Class weights (True, False)

1D-CNN/CNN Hyperband Hidden_Layer 1-3 (32, 64, 96, 128, 160, 192,
224, 256)

kernel_size (3, 5, 7)/(3� 3, 5� 5, 7� 7)

L2_kernel_regularization (True, False)

learn_rate (0.0001, 0.001, 0.01)

batch_size (64, 128, 256)

Data augmentation (True, False)

Class weights (True, False)

DeepConvLSTM Hyperband CNN_Layer 1-4 (32, 64, 128, 256)

LSTM_Layer 1-2 (32, 64, 128, 256)

L2_kernel_regularization (True, False)

Learnrate (0.0001, 0.001, 0.01)

Batchsize (64, 128, 256)

Data augmentation (True, False)

Class weights (True, False)
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3. Results

To answer our research question “Which machine learning

methods are suitable for near-fall detection?,” we divided our

results into classical ML approaches (SVM and AdaBoost) and

neural networks. The results are also sorted by sensor position to

answer the question “How does sensor position affect detection

accuracy? Finally, we investigate the question” Is a single sensor

sufficient for near-fall detection? To do this, we examine whether

the combination of all six APDM sensors provides better results

than a single sensor.
3.1. SVM and AdaBoost

For each sensor and sensor position, the GridSearch procedure was

used to find the best classifier with the optimal hyperparameters in each

case. For AdaBoost, GridSearch showed for example that DecisionTrees

with max_depth=8 and min_samples_leaf=10 should be used as weak

learners. It also showed that a total of 250 weak learners should be

used. Table 3 shows the GridSearch results for SVM for each sensor

position. The results of the different sensor positions of the SVMs and

the AdaBoost classifier are presented in Table 4.

Data augmentation did not lead to any significant improvement in

results and is therefore not listed here. The results show that we

achieved similar results for SVM and AdaBoost for the activPAL

sensor on the “upper thigh.” Adaboost achieved a precision of 0.952

and SVM a recall of 0.790 and an F1-Score of 0.862. For the APDM

sensor the sensor position “wrist right” achieved the best results for

SVM and AdaBoost with a precision of 0.707 (AdaBoost), a recall of

0.860 (SVM), and an F1-Score of 0.722 (AdaBoost).
3.2. Neural network

For each sensor and sensor position, the optimized

hyperparameters for each evaluated network architecture was

determined. Table 5 lists the results for the hyperparameters.

For the following analyses, we calculated the test results as the

mean of 10 test runs and the standard deviation for each metric.

Table 6 shows the results for each network architecture and sensor

position. All data sets were tested with and without data

augmentation (DA). The best result is listed. While the

bidirectional Long Short-Term Memory (Bi-LSTM) networks

produced weaker results for the precision and correspondingly also
TABLE 3 Results of the GridSearch with SVM for each sensor position.

Sensor position C Degree gamma kernel
activPAL (upper thigh) 1 linear

APDM (sternum) 0.1 linear

APDM (lumbar) 1 0.001 rbf

APDM (wrist right) 10 3 0.01 poly

APDM (wrist left) 10 linear

APDM (foot right) 0.1 2 0.01 poly

APDM (foot left) 0.1 5 0.01 poly
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TABLE 5 Optimized hyperparameters for each evaluated network
architecture.

Parameter 1D_CNN CNN DeepConvLSTM Bi-LSTM

Class weights Yes Yes Yes Yes

Augmentation Yes No No No

Overlap No No No No

L2 Yes No No No

Hidden layer 1 96
(Conv1D)

96
(Conv2D)

64 (4 �
Conv2D)

128
(Bi-LSTM)

Hidden layer 2 128
(Conv1D)

128
(Conv2D)

128 (2 � LSTM) 64
(Bi-LSTM)

Hidden layer 3 64
(Conv1D)

32
(Conv2D)

32 (Dense)

Kernel size 5 (5� 5) (5� 1)

Batchsize 64 128 128 64

Learnrate 0.001 0.001 0.001 0.001

Dropout 0.2 0.2 0.2 0.2

Trainable parameters
(activPAL)

145,793 433,377 948,545 303,681

Trainable parameters
(APDM)

227,713 474,337 2,259,265 303,681

TABLE 6 Comparison of the test results for all sensor positions and
classification architectures.

Sensor position Architecture Precision Recall F1

activPAL
(upper thigh)

Bi-LSTM 0.549 + 0.042 0.860 + 0.061 0.669 + 0.044

DeepConvLSTM 0.743 + 0.097 0.814 + 0.058 0.773 + 0.063

CNN þ DA 0.749 + 0.112 0.837 + 0.043 0.785 + 0.072

1D-CNN þ DA 0.838 + 0.081 0.867 + 0.042 0.851 + 0.054

APDM
(sternum)

Bi-LSTM 0.474 + 0.121 0.755 + 0.130 0.563 + 0.071

DeepConvLSTM 0.803 + 0.082 0.938 + 0.025 0.862 + 0.045

CNN þ DA 0.768 + 0.117 0.897 + 0.043 0.823 + 0.077

1D-CNN 0.840 + 0.079 0.943 + 0.018 0.886 + 0.042

APDM
(lumbar)

Bi-LSTM 0.496 + 0.139 0.848 + 0.062 0.613 + 0.118

DeepConvLSTM +
DA

0.872 + 0.050 0.934 + 0.027 0.900 + 0.021

CNN þ DA 0.863 + 0.084 0.959 + 0.335 0.904 + 0.040

1D-CNN 0.829 + 0.040 0.963 + 0.025 0.890 + 0.020

APDM
(wrist right)

Bi-LSTM + DA 0.715 + 0.143 0.837 + 0.056 0.765 + 0.096

DeepConvLSTM +
DA

0.956 + 0.026 0.845 + 0.040 0.896 + 0.014

CNN þ DA 0.913 + 0.053 0.935 + 0.029 0.922 + 0.028

1D-CNN 0.902 + 0.042 0.882 + 0.044 0.891 + 0.031

APDM
(wrist left)

Bi-LSTM 0.728 + 0.111 0.929 + 0.024 0.810 + 0.068

DeepConvLSTM +
DA

0.969 + 0.011 0.939 + 0.192 0.954 + 0.010

CNN 0.959 + 0.028 0.935 + 0.026 0.946 + 0.014

1D-CNN + DA 0.951 + 0.026 0.942 + 0.021 0.946 + 0.013

APDM
(foot right)

Bi-LSTM 0.583 + 0.094 0.754 + 0.072 0.651 + 0.067

DeepConvLSTM 0.873 + 0.077 0.941 + 0.028 0.904 + 0.049

CNN 0.947 + 0.041 0.874 + 0.103 0.906 + 0.068

1D-CNN 0.920 + 0.047 0.950 + 0.027 0.934 + 0.025

APDM
(foot left)

Bi-LSTM 0.744 + 0.037 0.888 + 0.061 0.808 + 0.024

DeepConvLSTM 0.925 + 0.047 0.944 + 0.034 0.933 + 0.025

CNN 0.926 + 0.017 0.974 + 0.016 0.949 + 0.009

1D-CNN 0.938 + 0.026 0.902 + 0.064 0.918 + 0.035

The test results are listed as the mean of 10 test runs + standard deviation. The

best results for each sensor position are written in bold type.

TABLE 4 Classification results of the different sensor positions with the
SVM classifier and AdaBoost.

Sensor position Classifier Precision Recall F1 Training
duration (s)

activPAL (upper
thigh)

SVM 0.947 0.790 0.862 <2

AdaBoost 0.952 0.784 0.860 32

APDM (sternum) SVM 0.240 0.748 0.364 <2

AdaBoost 0.200 0.685 0.310 30

APDM (lumbar) SVM 0.390 0.688 0.498 <2

AdaBoost 0.553 0.696 0.616 30

APDM (wrist right) SVM 0.579 0.860 0.692 <2

AdaBoost 0.707 0.737 0.722 31

APDM (wrist left) SVM 0.560 0.734 0.635 <2

AdaBoost 0.599 0.664 0.630 31

APDM (foot right) SVM 0.254 0.842 0.391 <2

AdaBoost 0.269 0.828 0.406 34

APDM (foot left) SVM 0.411 0.783 0.539 <2

AdaBoost 0.338 0.765 0.469 34

The best results for activPAL and APDM sensor are written in bold.

Hellmers et al. 10.3389/fdgth.2023.1223845
for the F1-Score, good results were obtained for each of the other

architectures. For the activPAL sensor with the position upper

thigh the 1D-CNN with DA achieved the best results with a

precision of 0.838, a recall of 0.867 and an F1-Score of 0.851. For

the APDM sensor, the left wrist shows the best precision of 0.969

with DeepConvLSTM þ DA. The best recall of 0.974 was achieved

with the CNN and the left foot as sensor position. The best F1-

Score was 0.954 with DeepConvLSTM þ DA on the left wrist.
3.3. Single sensor vs. multi-sensor system

We also examined whether the combination of all six APDM

sensors provides better results than a single sensor. Therefore, we

realized two approaches. Firstly, we trained the models on all APDM

acceleration data, and therefore the combination of all sensor
Frontiers in Digital Health 06
positions. Secondly, we used the best classifier for each sensor

position (Table 6) and developed a majority vote classification

algorithm. So the class with the majority of the six single votes is

selected. The confusion matrices are presented in Figure 4.

For the first approach, the combination of all sensor positions,

best results are obtained with the DeepConv2DLSTM model and

optimized hyperparameters. The F1-Score was of 0.932, precision

0.956, and recall 0.909. The majority vote classification approach

resulted in an F1-Score of 0.995, precision of 0.994 and a recall

of 0.996. There was no significant difference in classification time

between these approaches when using pre-processed data.
4. Discussion

4.1. Influence of machine learning method

In this work, machine learning methods were used to classify

near-fall events in motion sensor data. For this purpose, the

suitability of different machine learning methods was evaluated.
frontiersin.org
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FIGURE 4

Confusion matrix of DeepConv2DLSTM model and optimal hyperparameters based on data of a multi-sensor system (left) and confusion matrix of the
majority vote classification of a multi-sensor system (right).
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We included feature-based ML classifiers like SVM and AdaBoost

as well as neural networks like 1D- and 2D-CNN, and LSTM

networks. For the feature-based classifiers, we obtained good

results for the activPAL sensor on the right upper thigh

(Table 4). Here, the SVM classifier achieves an F1 score of 0.862

and the Adaboost classifier achieves an F1 score of 0.860. The

precision and recall values of both classifiers are also close to

each other. For both classifiers, the achieved precision is

relatively high (>0.9), while the recall is significantly lower (<0.8).

The low recall shows that a higher number of perturbations are

falsely classified as gait data (false positives). To improve the

results in the future, we may test more features in combination

with the features already used. These could be, for example,

features from the frequency domain, which are also widely used

in the literature (25, 26).

The classification of the data was also investigated using neural

networks (Table 6). While the bidirectional Long Short-Term

Memory networks produced weak results for the precision, better

results were obtained for each of the other architectures. The best

architecture for the activPAL is the 1D-CNN+DA with an F1

score of 0.851. Another important point to compare is the

training and testing time. To compare the resources required, it

is assumed that the data are already prepared for the respective

classifier. Training and testing the SVM classifier takes less than

2 s. Training with the 1D-CNN requires a graphics card. This

training takes an average of 13.9 s without data augmentation

and 25.1 s with data augmentation. After the model is trained

once, it can be loaded for further classifications of test data

without a new training. Loading the saved model and testing it

with new data then takes about 3 s. For comparison of the

evaluated methods it is also important to consider how they can

be implemented for the actual use for the early detection of fall

risk in private homes. Depending on the available hardware the

size of the neural networks may be a factor in deciding which

method should be used. From the comparison of the tested
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methods, it can be seen that the DeepConvLSTM model achieves

the best result when the focus is on the correct classification of

perturbations with few false positives (high precision). The

DeepConvLSTM model however requires the most hardware

resources of all evaluated methods. When less hardware

resources are available, the SVM classifier can also give good

results. When using the SVM classifier, it must then be weighed

how to handle the higher number of false positives.
4.2. Influence of sensor position

We also investigated the influence of the sensor position on the

classification results. Especially, we wanted to examine whether an

alternative sensor position is better for classification compared to

the positioning on the thigh, which is used in our studies for the

activPAL sensors to detect near-falls in everyday life. Compared

to the results with the activPAL sensor data, the classifications

with the APDM sensors and the SVM and Adaboost classifiers

achieve worse F1-Scores (Table 4). The APDM sensors on the

right wrist achieves the best F1-Score among the APDM sensors

with 0.722. But, it is noticeable that the precision is significantly

smaller for all classifiers with the APDM data than in the

experiments with the activPAL data. The classifiers that only

achieve a small precision value can therefore not distinguish well

between gait data without perturbations and those with

perturbations and would thus trigger many false alarms. The best

results for the neural networks (Table 6) were obtained with a

DeepConvLSTM model on the left wrist with an F1-Score of

0.954 as well as a CNN on the data of the left foot with an

F1-Score of 0.949. This work shows that the sensor position

influences the classification. We achieved the best results with the

sensor position “left wrist.” But F1-Scores above 0.85 could also

be obtained with all other positions and they are therefore also

suitable. Our dataset was created under laboratory conditions.
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Disturbances were provoked externally by the treadmill, but the

subjects still knew they were going to stumble at some point and

were therefore able to prepare for it. Thus, the best sensor

position in real life may differ from laboratory conditions.
4.3. Influence of sensor number

We also investigated if a multi-sensor system achieved better

results than a single sensor and analyzed two approaches: training

on a combined data-set of all six APDM sensors and a majority

vote classification based on the best classifier for each APDM

sensor. As already discussed, satisfactory results could be reached

by using only the accelerometer data of one sensor. For the

trained classifier with data from all APDM sensors, we found that

the best model was the DeepConvLSTM with an F1-Score of

0.932. For the majority vote classification, the F1-Score is 0.995.

Thus, the multi-sensor system with majority vote performs slightly

better than a single sensor (F1-Score 0.954). However, it is also

important to note that a near-fall detection system for older adults

that requires wearing six sensors is not suitable for everyday use.
4.4. Potential for fall prevention

As the data were recorded under laboratory conditions with

participants being equipped with a total of 7 sensors, transfer of

the results into everyday life is limited. Nevertheless, the results

are promising that sensor-based near fall detection may be

possible in the future warranting further research to design

translational methods. In the next step, we will analyze the

activPAL data recorded over one week in the participants’

everyday life. Here we will work with a hierarchical classifier to

first identify the gait phases and then use the algorithm

presented in this article to search for near-falls in these gait

phases. The participants kept a near-fall/fall log. This allows us

to evaluate our results. In this context, the similarity between real

and treadmill induced near-falls should be investigated.

However, if it was possible to validly identify individuals at a high

risk for falls by them wearing a sensor on their thigh, it would provide

the opportunity to refine preventive treatment approaches by

identifying individuals at risk as early as possible. Early

identification is crucial to establish effective falls prevention (27)

and, thus, avoid a fall-and all the associated negative outcomes-

itself. The potential of e-health, technology and sensor-based data

in falls prevention has been acknowledged in the world guidelines

for falls prevention published in 2022 (28). However, the guidelines

further support the notion that more research is needed to fully

unlock the potential of such technology-based approaches.
5. Conclusion

Early detection of a fall risk is important in order to initiate

interventions. We developed an algorithm to detect near-falls

and investigated the suitability of different machine learning
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methods. We obtained the best results with a DeepConvLSTM

based on data of a single sensor on the left wrist. However,

promising results were also reached at other sensor positions. A

multi-sensor system with majority vote performs slightly better

than a single sensor. Since these results were obtained in the

laboratory, the next step is to evaluate the suitability of the

classifiers and sensor position in the field.
6. Outlook

As an outlook, our system can also be adapted to a fall detection

system with an alarm function. Therefore, the dataset and the

machine learning algorithms need to be extended in an appropriate

way. Transfer learning could be a relevant approach for this

adaptation (29, 30). Another important use case for transfer

learning could be the individualization of the machine learning

model for people with specific movement patterns (due to certain

diseases or disabilities) to reduce the rate of false positive alarms.

More advanced machine learning methods, such as graph neural

networks (31) and evolutionary analysis (32), should also be

considered for future work, since they could improve the

performance of the (near-)fall detection systems. Another

commonly used technique in modern machine learning research is

the attention mechanism. Li et al. (33) implemented an improved

attention mechanism together with a CNN-BiLSTM network to

further identify important regions in the data. An implementation

of this method in combination with the already used

DeepConvLSTM network could be an improvement to our current

approach. A fall detection system also requires the implementation

of a continuous recording and analysis of the motion data. This

could enable the proposed system to react to falls in real time and

raise an alarm for potential emergencies. Many systems already

have a long battery life of for example one week, but even

recharging once a week can be a challenge for this group of older

people at high risk of falling. For continuous measurement systems,

a self-powered sensor could therefore be an interesting development

to reduce data loss due to battery life (34). Developments regarding

multi-sensor systems are also interesting to record and link for

example vital parameters such as breathing patterns in addition to

activity data to identify emergency situations (35, 36).
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