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Introduction: Intelligent ambulatory tracking can assist in the automatic detection
of psychological and emotional states relevant to the mental health changes of
professionals with high-stakes job responsibilities, such as healthcare workers.
However, well-known differences in the variability of ambulatory data across
individuals challenge many existing automated approaches seeking to learn a
generalizable means of well-being estimation. This paper proposes a novel
metric learning technique that improves the accuracy and generalizability of
automated well-being estimation by reducing inter-individual variability while
preserving the variability pertaining to the behavioral construct.
Methods: The metric learning technique implemented in this paper entails
learning a transformed multimodal feature space from pairwise similarity
information between (dis)similar samples per participant via a Siamese neural
network. Improved accuracy via personalization is further achieved by
considering the trait characteristics of each individual as additional input to the
metric learning models, as well as individual trait base cluster criteria to group
participants followed by training a metric learning model for each group.
Results: The outcomes of the proposed models demonstrate significant
improvement over the other inter-individual variability reduction and deep neural
baseline methods for stress, anxiety, positive affect, and negative affect.
Discussion: This study lays the foundation for accurate estimation of psychological
and emotional states in realistic and ambulatory environments leading to early
diagnosis of mental health changes and enabling just-in-time adaptive interventions.

KEYWORDS

metric learning, Siamese neural network, healthcare workers, well-being, mental health,

ambulatory monitoring

1. Introduction

Healthcare workers often experience significant job strain as a result of high physical,

mental, and emotional workloads with low decision latitude and extensive responsibilities (1).

These job characteristics can lead to high burnout rates, which can be the source of stress,

anxiety, and depression (2). In light of the 2019 novel coronavirus (SARS-CoV-2) pandemic,
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commonly known as the COVID-19 pandemic, the importance of the

well-being of healthcare workers has become a primary concern (3).

There has been a wide array of interventions at the institutional

and personal level attempting to combat burnout of healthcare

workers (4). Many medical schools and hospitals have shifted their

focus on institutional policies that promote healthy work

conditions, including hiring additional staff for administrative

duties, introducing counseling services, mental health awareness

campaigns, mentoring meetings, and group discussions with faculty

and staff (5–8). Apart from these, mindfulness training and social

cohesion wellness programs (e.g., mandatory wellness retreats) have

been particularly important in promoting personal and social well-

being (9–14). Such initiatives can create safe spaces for healthcare

workers to share their experiences and help hospital workers

become more aware of their thoughts and feelings, thus effectively

reducing the adverse effects of burnout and promoting a healthy

and supportive work environment. Yet, there is no “one-size-fits-

all” approach to these interventions, which rather need to be

tailored to the population of interest and its corresponding

capabilities and characteristics. Moreover, attending the

aforementioned programs and training sessions after long work

hours often becomes burdensome for healthcare workers, rendering

these initiatives ineffective in many cases.

Just-in-time adaptive interventions (JITAIs) are an emerging

new intervention design for mental health that aims to provide

the right type and amount of support at the right time,

depending on a user’s emotional state and other contextual

factors (15–17). JITAIs leverage ambulatory devices, such as

smartphones and wearable sensors, offering the means to track

the moods and emotions of healthcare professionals in a

personalized manner. They can assess one’s behavior in a

manner that is often inaccessible in standard clinical settings,

providing ecologically valid data of complex cognitive, affective,

and psychological processes over time for a particular individual,

and potentially contributing to the early detection of health

degradation (18, 19). Ambulatory data can provide a foundation

for personalized interventions for healthcare workers that can

potentially mitigate negative mental health outcomes, augment

their work performance, and improve the overall care received by

the patients in the hospital (20). Ambulatory data can further

offer an alternative to self-reports (21), which are prone to

response bias and recall bias, often resulting in under-reporting

or over-reporting symptoms (22). Previous studies indicate that

with proper prior testing and troubleshooting of the deployed

ambulatory systems, healthcare workers overall respond positively

to utilizing ambulatory sensors for monitoring wellness (23).

Several challenges affect ambulatory monitoring in the wild.

Ambulatory data are collected in uncontrolled real-world

environments and might be affected by various confounding

factors, such as co-occurring activities (e.g., exercise),

interpersonal relationships (e.g., conflict with co-workers), and

environmental conditions (e.g., indoor ventilation, outdoor

weather conditions) (24). The signals recorded by ambulatory

sensors are further prone to non-standardized factors in the data

collection process, including sensor misplacement and non-fixed

physiological baseline (25), which result in highly variable data
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distributions (26). Finally, inherent individual differences (e.g., in

terms of demography and psychological factors) often influence

the collected human behavioral data and can be manifested

across various signal modalities (27, 28). These impose

significant challenges to the design of machine learning

methodologies that can reliably quantify facets of psychological

and emotional outcomes from ambulatory data.

We may address the inherent individual differences in signals

collected through ambulatory sensors by constructing models that

reduce the evidence of person-specific information on the data

while preserving information about the behavioral outcome of

interest (29). Toward this end, personalized and group-specific

models have recently been the focus of multiple research efforts,

since they provide tailored estimates of behavioral constructs for

each participant or group of participants. Personalized models are

tailored to a specific participant via learning their individual

behavioral patterns (30), as well as integrating their demographic

and anthropomorphic characteristics (31, 32). Such approaches

usually involve the learning of separate models for each

participant (33), which entails the risk of over-fitting or

inadequate training due to the lack of enough data from a given

subject. Group-specific models cluster participants according to

clinically and theoretically relevant characteristics and are usually

implemented through hierarchical and adaptive learning methods

(34–36). Such methods use a portion of data from a target entity

to fine-tune the decisions of a machine learning model adaptively

(37, 38). Increasing the amount of target data used for fine-tuning

the models tends to improve their performance (39). Metric

learning techniques, such as Siamese neural networks (SNN),

require a small amount of data to fine-tune such models as they

model the relative distance between samples, rather than the

absolute class-wise patterns (40). Thus, metric learning methods

are a promising solution to personalized and group-specific

models when the labeled samples from a target entity are scarce.

In this study, we propose a metric learning technique for

estimating the well-being of healthcare workers in a personalized

manner. Metric learning is implemented with an SNN

architecture that learns a multimodal signal transformation that

models the pairwise similarity between similar and dissimilar

samples from each participant. The proposed pairwise similarity

approach does not require the separate estimation of the data

distribution for each class, therefore it can be more robust to

outliers and more forgiving to small datasets (41). We have

further examined the effect of including an increasing number of

labeled samples from the target participants to fine-tune the

SNN. Finally, as an additional personalization step, we have

integrated participants’ trait characteristics in two ways: (1) as an

input to the models; and (2) as a clustering criterion to group

participants, followed by training separate models for each group.

Our proposed approach is evaluated on a dataset collected in a

real-world hospital environment over time, including data from

139 healthcare workers with constructs related to well-being (i.e.,

anxiety, stress, positive/negative affect) (42). Our findings suggest

that the proposed approach preserves the variability attributed to

the behavioral outcome of interest yielding promising results in

terms of estimating behavioral constructs while minimizing user-
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dependent variability. The proposed metric learning approach

further outperforms non-personalized models, such as a

feedforward neural network (FNN) trained on all participants

using the original ambulatory-based features, as well as

conventional distribution-based adaptation methods, such as the

maximum independence domain adaptation (MIDA), that

attempts to mitigate inter-individual differences by aligning

feature distributions from all participants. Implications of this

study result in the accurate longitudinal tracking of well-being in

highly demanding job settings and help lay a foundation to apply

JITAIs for mental health (17).
2. Prior work

Ambulatory devices can unobtrusively collect data from

participants in their daily lives, providing us with informative

insights regarding daily activities, physical outcomes, and

behavior patterns, therefore informing treatment and

intervention procedures (43, 44). Smartphones are widely used

devices that provide an effective way to quantify behavior via the

various in-built sensors, while at the same time integrating

the computational power to analyze the signals captured by the

sensors in a meaningful manner (45). In a study conducted by

Hunasgi et al. (46) aiming to recognize stress in dental students,

an Android smartphone app called “S-HEALTH” has been used

to detect heart rate, oxygen saturation, and stress levels via

smartphone sensors. The authors collected ambulatory-based

data before and after a stressful event, during which physiological

recordings have been collected by asking participants to touch a

specific sensor of the smartphone device. Apart from collecting

physiological data, smartphones have been also used to collect

other behavioral metrics, such as user feedback data, overall

phone activity, speech, location, and physical movement, which

play a key part in detecting stress (47–49), anxiety (50), negative

affect (51), unusual activities (52), and mood (53). Wearable

devices can further enable physiological recording in a real-world

setting (i.e., “in-the-wild”). Data collected through activity

trackers, such as Fitbit (54), have been used to predict health and

wellbeing status (55), detect daily stressful events (56) or predict

future mood (57–59). Schmid et al. have used wearable sensors

to track healthcare workers’ heart rate variability (HRV) during

mindfulness exercises (60). Sano et al. have used wrist-based

sensors to record the physical activity and autonomic physiology

of college students over the span of a month with the goal of

assessing stress and mental health (61). Smartphones in

combination with wearable devices have been used in several

other studies to detect stress and depression (47, 62, 63).

Gaballah et al. proposed a context-aware speech stress detection

model using the TILES-2018 dataset (42), which is the same

dataset we have used in our study. Gaballah et al.’s study utilizes

audio, location, and circadian rhythm signals extracted from

different ambulatory devices, for example, smartphones,

smartwatches, and smart garments, from 144 healthcare workers

working for 10 weeks to detect stress in the wild. Their proposed

bidirectional long short-term memory (LSTM) model reached a
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classification F1 score of up to 65%, while environmental sensor

data acted as the context for the model (64). Another study uses

physiological, physical, sleep, and context features from TILES-

2018 and the TILES-2019 datasets (65) to develop personalized

models to predict future affect. They achieve personalization by

developing individual-specific random forest and mixed-effect

random forest models. These models were trained using the data

collected per individual during the first 2–8 weeks of the total

10-week data collection period and predicted future affect

reaching correlation coefficients up to 0:8 for positive affect and

0:5 for negative affect (66). Multi-modal signals collected using

an assortment of ambulatory devices from a large (N ¼ 606)

number of individuals, were used to detect stress in the wild in a

separate study. Through a regression analysis, this study reached

a Spearman correlation of 0:25 using a combination of random

forest and state-trait anxiety inventory to detect stress (67).

The data collected through ambulatory devices often

demonstrates high-inter individual variability, which can be

addressed via the design of personalized models that can

accurately model physical and behavioral outcomes while at the

same time eliminating the evidence of inter-individual variability

in the data attributed to behaviorally non-relevant information

(51, 68, 69). Personalized machine learning models are popular in

various domains, such as in computer vision where models have

been used to capture the inherent individual diversity in detecting

facial expressions and gestures from unlabeled data (37) or to

generate automatic tags for a video based on a user’s comments

and preferences (70). Personalized models implemented with

multitask learning have been also employed to recognize human

activity from multimodal sensor data (71, 72) and in the detection

of unusual events pertaining to a user’s activity using speech data

recorded via smartphone devices (52). Similarly, De Santos et al.

have utilized personalized models to increase bio-metric system

security via detecting deviation from normal behavior for accurate

person identification (73). While studying the impact of meal

consumption on one’s glucose response, Zeevi et al. have opted to

use personalized models given the high inter-individual variability

of the glucose response signal (69). Personalized models have been

also employed to develop treatment regimens, where such models

have been trained to optimize a target criterion, such as

maintaining blood glucose at a healthy level (74, 75). They have

been further utilized to detect momentary negative affect of

undergraduate students via incorporating contextual data (e.g.,

location, movement, phone usage) collected from smartphone

devices (51), and have been found to outperform generalized

models for the same task (58, 76).

Personalized models may be developed following various

procedures, for example, via modeling data separately for each

individual (30), via transfer learning (by fine-tuning a general

model using data from a target individual) (37), or via

integrating individual factors to the model input, such as

anthropomorphic, psychological, and cognitive characteristics

(32, 69). Psychological studies have found several individual

factors, such as coping styles and current life conditions (e.g.,

poor family relationships), to be related to stress moderation, and

physiological and affective responses (77–79), motivating the
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integration of such factors into the design of personalized machine

learning models. A relatively small number of studies have

considered individuals’ trait characteristics when modeling

behavioral outcomes. Gupta et al. and Yadav et al. have leveraged

individuals’ trait characteristics, such as trait anxiety, personality,

and attachment variables, to form clusters of participants, based

on which they have designed population-specific models of

behavior (36, 80). In supporting sleep health, Nguyen et al. have

utilized personality traits and chronotype characteristics (i.e.,

one’s morning or evening preference) to develop personalized

feedback for sleep interventions (81). Tondello et al. have further

used five gaming traits that reflect participants’ gaming

preferences in developing a personalized gaming platform (82).

Individual characteristics, such as ideology, dominant emotional

sentiments, and personality have been further utilized to develop

a personalized psychological intervention system to promote

inter-group relations (83). This evidence suggests that

considering individuals’ characteristics is an important design

factor toward personalized behavior detection models and

subsequently, effective JITAIs.

Data collected from ambulatory devices are prone to errors

related to ambient noise and sensor misplacement. In addition, it

is usually difficult to obtain labels from all samples during

ambulatory monitoring studies, therefore labeled data are not

always sufficient for modeling absolute patterns in data

distributions for each participant (24). Few-shot learning

techniques that are commonly based on metric-learning

approaches model the relative distance between samples, thus can

be trained with a small amount of data (40). These models have

the ability to naturally rank data samples based on sample pair

similarity and have shown promising results in image recognition

(84), visual tracking (85), and detection of the continuous

spectrum of disease severity (86). Siamese neural networks

(SNNs) have also found applications in speech-based emotion

recognition (87, 88) and gait-based user identification (89).

Although SNNs have been employed extensively for classification

purposes, regression analysis using SNNs is a field that is not

extensively studied (90). Moreover, none of the previous works

have formulated such techniques in the context of personalized

learning of behavioral outcomes.

The contributions of this paper are the following: (1) we

introduce a novel metric learning approach implemented with an

SNN regressor to learn personalized representations of multimodal

signals and their association with behavioral outcomes; (2) we

investigate additional ways to personalize our models by utilizing

the participants’ trait characteristics and fine-tune the models

using a portion of the data collected from the target participants;

and (3) we evaluate these methods on ecologically valid data

collected in situ from healthcare professionals with variable job

responsibilities and high-pace work conditions.
3. Data description

Our data is part of the TILES-2018 dataset (42), which was

collected from 212 full-time hospital workers, aged between
Frontiers in Digital Health 04
21–65 years, over 10 weeks. Participants engaged in their typical

daily activities while being equipped with ambulatory wearable

devices and sensors to collect vocal acoustic and physiological

signals throughout the period of data collection. A Fitbit Charge

2 was used to measure sleep activity and exercise, an OMsignal

garment collected heart rate and breathing rate, and the Unihertz

Jelly Pro smartphone, a small and lightweight phone worn on

the lapel, was programmed to obtain vocal acoustic features from

statistically sampled egocentric audio recordings (91).

Participants completed several surveys during the enrollment

and data collection period. Initial ground truth battery (IGTB)

surveys were collected once during the enrollment period to assess

participants’ trait characteristics related to job performance,

cognitive abilities, and health. Cognitive IGTB constructs include

participants’ organization citizenship behaviors (OCB), which were

measured using the Organization Citizenship Behavior Checklist

(OCB-C) (92) via 20 items on a scale ranging from 1–5, and

cognitive ability, which was captured using both the Shipley

Abstraction Test (93) assessing fluid intelligence (25 items on a

scale of 0–25) and the Shipley Vocabulary test assessing

crystallized intelligence. In the Shipley Vocabulary test,

participants would match words with their synonyms from a list

of 40 items, and the score is calculated from the correctness of the

matching between the words. Psychological IGTB constructs

include personality traits (i.e., extraversion, agreeableness,

conscientiousness, emotional stability, openness), assessed via the

Big Five Inventory-2 (BFI-2) (94), trait affect (i.e., the participants’

overall affect that does not depend on momentary factors)

captured with the Positive and Negative Affect Schedule Expanded

form (PANAS-X) (95) using 60 items on a scale of 1–5, and trait

anxiety measured by the Trait-Form of the State Trait Anxiety

Inventory (STAI) (96). Apart from this, we have utilized the

tobacco usage data, collected through the 3-item Global Adult

Tobacco Survey (GATS) (97) and sleep quality data, collected

through the 19-item Pittsburgh Sleep Quality Index (PSQI) (98)

for our experiments. The IGTB measures are used as an additional

input to the machine learning models, as well as a clustering

criterion to group participants, followed by training separate

models for each group.

Momentary ground truth (MGT) surveys of well-being

constructs were collected once per day through a smartphone

app using ecological momentary assessments (EMAs) related to

participants’ anxiety, stress, positive affect, and negative affect. To

make the daily self-reporting more accessible to the participants,

the number of assessment items is reduced while following the

prior standard scaling format with significant reliability (42).

Daily measurement of anxiety and stress was conducted by

asking two questions (i.e., “Please select the response that shows

how anxious you feel at the moment” and “Overall, how would

you rate your current level of stress?”) and were both assessed on

a 5-point Likert scale. Affect was obtained through the Positive

and Negative Affect Schedule-Short form (PANAS-S) (99), which

includes 10 items, 5 items each for positive and negative affect.

Each item of this questionnaire was scaled from 1 (very slightly

or not at all) to 5 (extremely), resulting in a label value ranging

between 5–25. This study uses the MGT constructs of anxiety,
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stress, positive affect, and negative affect as the behavioral

constructs of interest, that represent participants’ well-being

outcomes. The corresponding distributions of these constructs

are presented in Figure 1, where each x-tick represents the

discrete values of the construct (e.g., self-reported anxiety MGT

is labeled between 1–5, thus there are 5 representations in

Figure 1A) and y-tick represents the total count of some

particular label present in the full dataset.

Much effort was spent before and during the data collection to

maximize the quality and ecological validity of the data (100).

Despite this effort, some of the participants had missing data from

one or more sensors as well as missing ground truth information

from the self-reports. For this study, 73 participants had less than

13 days of self-reported data out of the 10-week study period,

where 13 is an empirically chosen minimum number of days for

which participants require self-reports. Since self-reports act as a

ground truth for the proposed machine learning methods and

proper ground truth information is necessary for supervised

learning, we removed these participants from the total pool,

resulting in 139 participants with on average 3-week data that were

included in the experiments. From these 139 participants, around

10% of feature values on average per participant were missing.

These feature values served as the input to the machine learning

models and were replaced using linear interpolation Section 4.1.
FIGURE 1

Distribution of momentary ground truth (MGT) data used as outcomes.
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4. Methodology

This section delves into details of processing the data, designing

the proposed models, and evaluating our approach. Section 4.1

contains details on how we pre-processed our data and extracted

features. The loss functions to achieve personalization through

metric learning and the models developed for different experiments

are documented in the Section 4.2. Section 4.3 describes the details

of our experimental framework and Section 4.4 refers to the

baselines used to compare the performance of our proposed models.
4.1. Data pre-processing and feature
extraction

The input features of the different models included both

ambulatory measures and participants’ trait characteristics. We

used 69 ambulatory features available as part of TILES-2018

dataset, which include 25 measures of physiology and daily activity

from Fitbit Charge 2, 29 acoustic features from Unihertz Jelly Pro,

and 15 physiological features from OMsignal garment (42)

(Table 1). We accounted for the missing values at the sample level

of the features by replacing the missing data points through linear

interpolation using the data points before and after the missing
frontiersin.org
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TABLE 1 Description of ambulatory features recorded continuously over 10 weeks via wearable devices.

Device Feature description # Features
Fitbit charge 2 Upper/lower threshold of cardio activity range (CAR)�/fat burn activity range (FBAR)�/peak activity range (PAR)�/out of zone activity

range (OORAR)� , number of minutes and calories burned in CAR/FBAR/PAR/OORAR, number of steps, minutes awake, minutes in deep/
light/REM/non-REM sleep, minutes asleep, minutes in bed, sleep efficiency

25

Unihertz Jelly
Pro

Jitter, jitter 1st-order derivative, shimmer, fundamental frequency (average, average of smoothed contour, average of smoothed contour
envelope), harmonic-to-noise ratio, voice probability, signal norm, signal norm computed with RelAtive SpecTrAl (RASTA)-Perceptual
Linear Predictive (PLP) methodology, energy, zero-crossing rate, intensity, loudness, Fast Fourier transform (FFT) magnitude (250–650,
1000–4000 Hz), spectral roll-off of interquartile range (0–25%, 25–50%, 50–75%, 75–90%), FFT magnitude spectral flux, FFT magnitude
spectral centroid/entropy/variance/skewness/kurtosis/slope, FFT magnitude sharpness/harmonicity

29

OMsignal
garment

Breathing rate, heart rate, intensity, average heart rate, average X/Y/Z acceleration, root mean square of first R-R interval difference, total
power, very low/low/high frequency power, low to high frequency power

15

�OORAR/FBAR/CAR/PAR/: 0–50/50–69/70–85/85–100% of maximum heart rate.

Paromita et al. 10.3389/fdgth.2023.1195795
data. We further calculated the daily average of these features for our

analysis. Figure 2 depicts the distribution of two example features,

namely, the resting heart rate and the minimum number of

burned calories, for each participant. We observe large inter-

individual differences in these features’ range and distribution

shape, providing evidence of the need to design personalized models.

Furthermore, as an additional input to the proposed

personalized models, we have considered 14 IGTB features that

are indicative of participants’ trait characteristics, as described in

Section 3 and summarized in Table 2. All the samples used in

our experiments are independent over time. Also, we conducted

min-max feature normalization to these ambulatory features

using the minimum/maximum value of the corresponding

training set’s participants to ensure uniformity while using them

for training our proposed models.
4.2. Metric learning for personalized models

The metric learning approach, which we implement via SNN,

learns the relative distance between two items in a pair based on
FIGURE 2

Histograms of feature distributions measured from the ambulatory data color
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whether the items are similar or dissimilar. So, we form pairs of

samples to train our proposed model. The pairs could be formed

using two similar or dissimilar instances of input (x) as

described in Section 4.2.1. One of the ways we achieve

personalization in this study is by rigorously following a

participant-wise format while forming the pairs. The metric

learning is achieved via equation 1. Here we calculate the relative

distance between the transformed embeddings (fW(xnm) and

fW(xnm0 )) and the normalized ground truths (ŷnm and ŷnm0 )

among the pairs we formed for our SNN structure. Subsequently,

the transformed embedding (fW(xnm)) is used in the regression

analysis, where through another layer of transformation (gV), the

learned embedding helps in predicting the constructs considered

in this study. The regression loss, described in equation 2, helps

in updating the whole structure for better performance. In the

following, we will describe the metric learning formulation that

has been used to implement the proposed personalized models.

Let Dn ¼ {xnm, ynm} be the set of data obtained from

participant n, where xnm and ynm represent the feature vector

and MGT label of the mth sample from participant n. Let ŷnm
represent the ‘2-normalized version of ynm. Metric learning
-coded by participants.
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TABLE 2 Description of initial ground truth battery (IGTB) features
collected once during the enrollment period.

IGTB type IGTB description # features
Cognitive Organization citizenship behaviors, fluid

intelligence, crystallized intelligence
3

Psychological Extraversion, agreeableness, conscientiousness,
emotional stability, openness, trait positive affect,
trait negative affect, trait anxiety

8

Health Tobacco use (Yes/No), Tobacco quantity, sleep
quality

3
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learns a transformation (or embedding) fW of the input feature,

parameterized through W, such that pairs of samples

corresponding to proximal levels of the MGT outcomes are

projected to the same neighborhood of the feature embedding,

while the opposite occurs for samples with a distinctively large

difference in the MGT outcome. This is implemented via the

following loss function:

lF ¼
X

n

X

m=m0
j(kfW(xnm)� fW(xnm0 )k2 � kŷnm � ŷnm0 k2)j (1)

where (1) defines the difference between the distance of samples m

and m0 of participant n with respect to the transformed feature

space fW and the MGT label space. The distance with respect to

both the embedding and label space is measured via the

Euclidean distance, where k � k2 represents the ‘2-norm.

In order to impose additional supervision and achieve a

reliable estimation of the MGT outcomes, the feature

embedding fW is further transformed to the final MGT
FIGURE 3

Schematic representation of metric learning implemented with Siamese neur
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outcome via gV, parameterized through weights V. The

parameters included in V are learned using the following loss

function, which minimizes the mean square error between the

actual and estimated MGT output:

lR ¼
X

n

X

m

kgV(fW(xnm))� ynmk22 (2)

The above optimization problem can be implemented via an SNN

(Figure 3A). The SNN takes as an input pair of samples from the

same participant and projects those into a feature embedding via

the transformation fW in the shared fW layer of the schematic

diagram (Figure 3), which minimizes the feature loss lF . The

output of the SNN is an MGT outcome resulting from

transforming the feature embedding via the transformation gV,

which minimizes the regression loss lR.

Utilizing this formulation, we conducted an ablation study

comprising three models: (1) metric learning with ambulatory

features (ML-A): this model takes the ambulatory features as

input to the model (Section 4.2.1), (2) metric learning with

ambulatory and trait features (ML-AT): this model takes IGTB

features representing participants’ trait characteristics, along

with the ambulatory features as input to the model (Section

4.2.1), and (3) separate metric learning models with

ambulatory and trait features for each IGTB cluster of

participants (ML-C): after developing clusters of data based on

IGTB values, this model applies the ML-AT model on separate

clusters (Section 4.2.2). A detailed description of each of these

is provided below.
al networks.
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4.2.1. Metric learning with ambulatory features
(ML-A)

As the first model of our ablation study, ML-A incorporates

personalization through personalized pair formation (Section 4.2)

and transfer learning. We study this model to understand how

personalized models using only the ambulatory features performs

in predicting different job constructs. ML-A was implemented

with an SNN whose input includes the 69 ambulatory features

described in Table 1. For training the SNN, the original dataset

was divided into 10 stratified folds with each fold containing

around 14 participants. We conducted the “participant-

independent cross-validation” process for training and testing our

models, thus there was no participant overlap across folds. Among

the folds we developed, one fold is utilized for validation, one fold

for testing, and the remaining were used to train the model in a

looping fashion ensuring we have tested all the folds using

separate models. We ensured that no overlap exists among

training, validation, and testing folds, thus allowing us to explore

the generalizability of the models to unseen samples. Moreover, all

the model parameters were removed after each loop for testing

each of the folds to avoid data leakage.

In order to form thepairs to train themodel, wedefined two labels of

the instances to form the pair as being similar if ja� bj � 1 8a, b [

labels, and the rest dissimilar given the condition is not met

empirically. Although positive affect and negative affect have a

considerably different range of labels than anxiety and stress,

outcomes of experimentations, while changing the threshold for

similarity from 1 to 5, did not show a significant difference in

performance. Moreover, this has helped us tackle the problem of the

four target constructs having different ranges of labels (anxiety: 1–5,

stress: 1–5, positive affect 5–25, negative affect: 5–24).

To further personalize ourmodel, we utilized the transfer learning

process by taking 0–90% of testing data (i.e., including a percentage of

samples between 0–90% from the target participants in the test fold),

referred to as “fine-tuning data,” and included that in training fold for

the purpose of fine-tuning our model. This part was done after the
Algorithm 1 Algorithm Describing the Metric Learning with Ambulatory Fea
features (ML-AT) model.

Input = folds (F ), participants (N ), features X and labels ðYÞ
Output = Predicted label ð�YÞ

1: {Creating folds from participants, one fold for testing, one fold for validation, remainin
early stopping are done using the validation set. During each for loop for fold, testin

2: for f  1 to F do
3: for n 1 to N do
4: xnm; xnm0  formed pairs within each participant ðsimilar=dissimilarÞ with m a
5: ynm; ynm0  original labels for m and m0 samples
6: ŷnm; ŷnm0  normalized labels for m and m0 samples
7: end for
8: W randomly initialize weights for f W layerðsÞ
9: V randomly initialize weights for gV layer
10: while not early stopping do
11: update W &V based on lF & lR where;

lF ¼
P

n

P
m=m0 ðk f Wð xnmÞ � f Wð xnm0 Þk2 � kŷnm � ŷnm0 k2

�� Þj
lR ¼

P
n

P
m gVð f Wð xnmÞÞ � ynm
�� ��2

2

where xnmincludes ambulatory features for ML-A both ambulatory and tr
ML-AT

12: end while
13: end for
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hyper-parameters were set via the hyper-parameter tuning process

(explained in Section 4.3) for the given fold and at the beginning of

the SNN training. We removed the “fine-tuning data” from the

target participants’ data of the testing folds to ensure that any data

leakage is completely avoided during the training and testing of the

models. Algorithm 1 outlines the training process of the ML-A

method. It depicts one single iteration of the algorithm which has

the outer loop looping through F folds. Inside the outer loop, there

are two separate loops, the first loop helps in preparing the pairs,

and the second loop trains the model until the necessary condition

for the early stopping is met. With random initialization, we run

this algorithm 20 times for this model.

subsubsectionMetric learning with ambulatory and trait

features (ML-AT)

In the secondmodel,ML-AT, of our ablation study, we introduced

personalizing our models through additional features as input to the

model. These additional features are the trait characteristics (IGTB)

(Table 2) features, which were included along with ambulatory

features as an input to the SNN architecture of ML-AT. Although

the ambulatory features are recorded daily in the dataset, every

participant recorded a single value for each IGTB in the overall

study (Section 3). So, we duplicated the IGTB features for each

input sample of the model per participant in order to implement

the model. To avoid biasing the models’ performance and address

any data leakage while detecting positive and negative affect, we

have removed both trait positive affect and trait negative affect

among the trait characteristics during the implementation of both

of the detection models. The training process of ML-AT has

followed the same steps and number of iterations as the one in ML-

A and is also outlined in Algorithm 1.

4.2.2. Separate metric learning models with
ambulatory and trait features for each IGTB cluster
of participants (ML-C)

To further explore ways to personalize the model, we developed

clusters based on IGTB values recorded by the participants. IGTB
tures (ML-A) model and theMetric Learning with Ambulatory and Trait

g for training. Samples are taken from the training set. Hyper-parameter tuning and
g is done.}

nd m0 samples where m = m0

ait features for
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questionnaires capture participants’ trait characteristics, therefore

this type of clustering stratifies participants based on their

psychological characteristics, which are likely to impact the bio-

behavioral recordings conditioned on the considered outcomes

(36, 77–79). Since the dimension of IGTB is high (14 IGTBs), we

reduced the dimension by finding the first 3 principal

components of the IGTB feature space through principal

component analysis (PCA) (101). Following that, clustering was

performed via the K-means algorithm (102), where we decided

upon the value of K by optimizing cluster distortion and inertia

via the elbow method per (103). Here, distortion is the average of

the Euclidean squared distance from each sample to the centroid

of its assigned cluster, and inertia is the sum of squared

distances of samples to their closest cluster center. The K value
FIGURE 4

The Elbow method to select value of K in K-means algorithm to for clusters f
based on inertia.

FIGURE 5

Clusters formed using the K-Means clustering method based on IGTB values w
component 2 (PCA2).
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corresponding to the elbow (i.e., “corner”) of the graph is taken

as the optimum K , where the distortion and inertia values do

not change significantly for higher K values. Since the clustering

algorithm does not show a clear elbow pattern in Figure 4 for

our dataset, we found the optimal K to be K ¼ 4 for our data

empirically after experimenting with different K values ranging

from 2–4 based on the performance of the validation set. The

clusters were formed using only the training data to avoid

biasing the output of the model as well as avoiding any data

leakage. The K-means model fitted on the training data was used

to extract the clusters for validation and test data, and the

ML-AT models (Section 4.2.1) were trained on each cluster

separately. Figure 5 depicts PCA1 and PCA2 of the 4 clusters in

different colors formed using the training dataset developed
or the Siamese Model for Clustered IGTB. (A) Based on distortion and (B)

here x axis is the principal component 1 (PCA1) and y axis is the principal
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while iterating through the 10 cross-validation folds. We refer to

the new cluster-based models as the separate metric learning

models with ambulatory and trait features for each IGTB cluster

of participants (ML-C), whose basic algorithm is described in

Algorithm 2. The main difference between Algorithms 1 and 2

is, one additional loop is introduced inside the outer loop

looping through F. This additional loop loops through the

clusters C, and inside the cluster, similar to Algorithm 1, two

loops are formed to develop pairs (cluster based in this case) and

training the model.
4.3. Experimental framework

The SNN, as shown in Figure 3A, has two parts: the shared fW
layers and the gV layer. The number of layers in fW is a

hyperparameter with values 3–5, each layer containing 64

neurons, where gV contains a single layer with a single node. We

used ‘2 regularization (regularization value ¼ 0.0001) on each

layer and dropout between two layers for the purpose of proper

regularization. The dropout value is another hyperparameter in

our model with values ranging from 0.1–0.3. To avoid overfitting

the model, we utilized early stopping based on the Pearson

correlation coefficient of the validation data with patience as a

hyperparameter (range: 3, 5, 10). The other hyperparameter we

considered is the batch size (128, 256, 512). We optimized our

models using stochastic gradient descent (SGD) (104) algorithm.

We used Bayesian optimization using Gaussian processes for

hyperparameter tuning. The gp_minimize class of the scikit-

optimize library was used for this purpose. The algorithm was

run 200 times to ensure convergence while keeping the

function to minimize over the gaussian prior at negative

expected improvement. The whole process was repeated for all

the folds developed for each of the constructs, keeping the
Algorithm 2 Algorithm Describing the Separate Metric Learning Models with
(ML-C).

Input = folds (F), participants (N), clusters (C), features ðXÞ and labels ðYÞ
Output = Predicted label ð�YÞ

1: {Creating folds from participants, one fold for testing, one fold for validation, remainin
early stopping are done using the validation set. During each for loop for fold, testin

2: forf  1 to F do
3: forming 4 clusters based first 3 PCA derived from IGTB values of the training dat
4: for c 1 to C do
5: for n 1 to N do
6: f xnm; xnm0 gc  formed similar=dissimilar pairs from samples m and m0ðm =

7: fynm; ynm0 gc  original labels of samples m and m0 of participant n from clust
8: fŷnm; ŷnm0 gc  normalized labels of samples m and m0 of participant n from c
9: end for
10: Wc  randomly initialize weights for f W clayerðsÞ of model corresponding to
11: Vc  randomly initialize weights for gV c layer of model corresponding to clu
12: while not early stopping do
13: update Wc Vc based on lFc lRc where;

lFc ¼
P

n

P
m=m0 jðk f W cð xnmÞ � f W cð xnm0 Þk2 � kŷnm � ŷnm0 k2Þj

lRc ¼
P

n

P
m kgV cð f W cð xnmÞÞ � ynmk22

where xnm includes both ambulatory and trait features
14: end while
15: end for
16: end for
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random seed fixed to a constant (constant = 42) for a fair

comparison across different runs.

After we fixed the participants and tuned the hyperparameters

for each fold of the cross-validation loop on a fixed random seed,

we saved this information and used it to build models, as well as to

develop the train, validation, and test datasets for all the folds of the

cross-validation loops separately. We ran these final models 20

times each with non-fixed random seeds ensuring that the model

parameters were initialized differently during each run. As a

result, we could explore different outcomes of the models for

different initialization, thus understanding the overall

performance potential of our models. Finally, we report the

average of those outcomes and present the average correlation

along with the standard deviation of the average value in

Figure 6. It is important to note that, we removed the negative

affect and positive affect IGTB features while training the ML-AT

and ML-C models for the negative affect and positive affect

constructs to avoid any data leakage (Section 4.2.1), reducing the

number of IGTB features for these two constructs to 12 while

producing the Figures 6C,D.

For both ML-A and ML-AT models, we have around 34

thousand pairs for training purposes. The number of similar and

dissimilar samples is unbalanced among these pairs. To mitigate

the effect of unbalanced pairing while training the models, we

weighted the loss function based on the weight of similar and

dissimilar pairs of a given cross-validation setting, which gave

more weight to the set with fewer pairs. For the ML-C model, we

have around 10k pairs for each cluster.
4.4. Baseline methods

We used two baseline methods to compare the performance of

the SNN model-based ablation study described in Section 4.3. To
Ambulatory and Trait Features for Each IGTB Cluster of Participants Model

g for training. Samples are taken from the training set. Hyper-parameter tuning and
g is done.}

a

m0Þ of participant n from cluster c
er c
luster c

cluster c
ster c
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FIGURE 6

Average Pearson’s correlation coefficient computed over 20 iterations of the considered models, each obtained with a different random restart. The
x-axis corresponds to the different percentages of data from the target participants used for fine-tuning the models. The shaded shape around the
solid line represents the standard deviation from the 20 iterations. Different colors representing different models as- Orange: ML-AT, Blue: ML-A,
Green: ML-C, Red: Baseline1, Black: Baseline2.
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train and evaluate the baselines, we followed the 10-fold stratified

cross-validation method with the same 10 folds used in our

proposed methods, following the same participants in each fold,

the same hyperparameter for the neural network model

construction and training, a similar number of trainable network

parameters as the metric learning models (around 12k), and the

models were fine-tuned with the same transfer learning

technique as used for the proposed models. The ambulatory

features were used as the input to the models of the baselines.

The first baseline, named Baseline1, uses a feed-forward neural

network (FNN), similar to the gV layer of the SNN we propose,

except Baseline 1 uses the number of layers equivalent to our

proposed SNN models instead of the 1 layer gV. This baseline

represents a non-personalized model where the ambulatory

features serve as the input to the model, instead of the

embedding learned through the metric learning process. Our

objective in developing such a baseline is to examine whether the

learned embedding outperforms the original feature space in

predicting different constructs as well as how effective the

personalized models are over the non-personalized models in this

particular dataset.

As our second baseline, named Baseline2, we utilized the semi-

supervised maximum independence domain adaptation (SMIDA)

algorithm (105). The SMIDA algorithm proposes a way to

reduce the discrepancy between data distribution of different
Frontiers in Digital Health 11
domains. Domain discrepancy arrives in different forms, such as

data collected using different devices, in different scenarios. In

our case, all the participants’ data were collected using the same

types of devices and in a similar scenario. But, inter-individual

variation in the data prompted us to design the SMIDA model

by considering each participant as a different domain and

reducing the domain discrepancy in the feature space through a

projection matrix. The algorithm proposes an unsupervised and

semi-supervised method of reducing domain discrepancy. We

followed the semi-supervised method by keeping the test

participants’ data masked while learning the projection matrix.

Among the kernels developed for creating the projection matrix,

we opted for the linear one in our experiments. The projected

matrix has been used as input to a linear regression model that

estimated the MGT output.
5. Results

Although our highly skewed dataset is very suitable for

classification experiments (Figure 1), instead of forming a

classification problem from our dataset, we focused on doing a

regression analysis to predict the original labels through our

model. Because performing regression analysis on the constructs

has given us the ability to avoid artificially discretizing the
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predicted labels. Moreover, this improves the resolution of

detection of the constructs thus making the models better

suitable for designing JITAIs. We have used Pearson’s correlation

coefficient to evaluate our proposed models and baselines. In this

section, we report the average and standard deviation of

Pearson’s correlation coefficient between the original and

predicted MGTs across 20 iterations (i.e., different random

initializations of the models) when using an increasing

percentage of samples from the target participants for fine-tuning

(Figure 6). Different colors in Figure 6 represent the different

models described in Section 4. According to our findings, the

ML-AT model works the best in all the constructs we examined

except for anxiety. This finding demonstrates that introducing

trait information helps in improving the performance of the

models and yields better accuracy when estimating daily

constructs. Trait characteristics were not employed as sole

predictors, because our goal is to estimate participants’ states at

the daily level. This requires behavioral information recorded via

physiological and acoustic signals, allowing to capture of

momentary fluctuations that cannot be recorded via the trait

scores. Although our proposed models do not outperform

baselines while predicting anxiety, the performance of the models

is not significantly lower compared to the baseline methods for

anxiety (Table 3). Apart from positive affect, all other constructs

have severely skewed distribution (Figure 1), which might also

affect the overall performance of the models. The second-best

performing model for positive and negative affect is the ML-C

(Figures 6C,D), while ML-C and ML-A perform similarly in the

case of stress (Figure 6B). We have performed experiments

keeping all 14 IGTB features for the positive and negative affect,

which produces similar graphs as in Figures 6C,D. We further

observe an increasing trend in performance for all the models

when using more data from the target participants for fine-

tuning. Such a trend is expected as models trained using a

portion of the data from the target participants learn their

unique distribution, thus performing better in the test samples.

The varying performance of the clustering algorithm (i.e., some
TABLE 3 Results from one-tailed paired-sample t-test evaluating
significant differences between the predicted values from ML-AT, ML-A
and Baseline 1 in the form of average Pearson’s correlation coefficient
over 20 iterations between true momentary ground truth (MGT) and
predicted values of different constructs utilizing different percentage
(%) of target data for fine tuning purpose.

MGT Percentage
(%)

ML-AT vs ML-A ML-AT vs Baseline1

0 t(19) ¼ �0:15, p . 0:05 t(19) ¼ �2:5, p . 0:05

Anxiety 40 t(19) ¼ �0:6, p . 0:05 t(19) ¼ �3:79, p , 0:001

90 t(19) ¼ 0:86, p . 0:05 t(19) ¼ �1:6, p . 0:05

0 t(19) ¼ 4:33, p , 0:001 t(19) ¼ 8:89, p , 0:001

Stress 40 t(19) ¼ 2:72, p , 0:001 t(19) ¼ 8:36, p , 0:001

90 t(19) ¼ 1:32, p . 0:05 t(19) ¼ 10:44, p , 0:001

Positive
effect

0 t(19) ¼ 8:6, p , 0:001 t(19) ¼ 21:5, p , 0:001

40 t(19) ¼ 7:61, p , 0:001 t(19) ¼ 16:74, p , 0:001

90 t(19) ¼ 5:39, p , 0:001 t(19) ¼ 17:42, p , 0:001

Negative
effect

0 t(19) ¼ 8:95, p , 0:001 t(19) ¼ 13:27, p , 0:001

40 t(19) ¼ 11:58, p , 0:001 t(19) ¼ 15:38, p , 0:001

90 t(19) ¼ 8:54, p , 0:001 t(19) ¼ 9:76, p , 0:001
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clusters are better separated in some folds compared to other

folds in Figure 5) appears to affect the overall performance of

the ML-C model. For example, the Pearson’s correlation

coefficient for the positive affect construct for fold 1, which has

separable clusters, is 0:28 (p , 0:001), while the same value

decreases to 0:04 (p . 0:05) for fold 3 with less separable clusters.

Next, we perform one-tailed paired-sample t-tests between the

ML-AT, ML-A, and ML-AT, Baseline1, to examine the statistical

significance between the proposed approaches and the baseline

methods (Table 3). Results are reported for three different

percentages of samples from target participants in the training

data (i.e., 0%, 40%, and 90%). The ML-AT model’s performance

for stress, negative affect, and positive affect is significantly

higher (p , 0:05) compared to the ML-A and Baseline1 models.

Baseline1 performs the best for anxiety, although the

performance among different models becomes similar as we

increase the percentage of data taken from our test dataset for

fine-tuning the model.

Through our proposed metric learning approach, we train the

network by learning the relative distance between features with

respect to the behavioral constructs of interest. In this way, the

embeddings learned through this process should be able to

reliably estimate the behavioral constructs (Figure 6, Table 3),

while they should not retain person-specific information. To test

this hypothesis, we have used the original features and the

embeddings learned by the ML-A to classify the different

participants of the dataset. We have utilized a logistic regression

(LR) model for this person identification task and have

considered embeddings learned from the different percentages of

samples from the target participant used for fine-tuning. The

average accuracy is calculated across 20 iterations that

correspond to random initializations of the LR models (Table 4).

The embedding features learned by the ML-A model appear to

retain less participant-dependent information compared to the

original features, as reflected in the lower participant

classification accuracies of the first model (e.g., 41.92%)

compared to the second (e.g., 83.21%). The fact that the

embeddings learned by the ML-A models depict reduced

variability across participants might also be a potential reason

why the proposed metric learning approaches outperform

conventional models, which might not be able to fully

disentangle participant-dependent and construct-dependent

information.

We explored the effect of the different IGTBs on constructing

the PCA dimensions. For this purpose, we plotted a correlation

circle plot showing the correlation between different IGTB values

with the first two PCA dimensions (Figure 7). PCA 1 and PCA

2 explain 31.96% and 16.61% of the total variance of the data,

respectively. The large inter-individual differences played a

significant role in reducing the amount of variability explained

by the first two principal components. Through the unit circle, it

is easy to compare the effect of different IGTBs on developing

the PCA dimensions. From the figure, we can find that Tobacco

use (Yes/ No), which reflects whether the person uses tobacco or

not, has the largest contribution to building the PCA dimensions,

but contributes almost equally to both the first and second PCA
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TABLE 4 Person identification accuracy in percentage (%) over 20 iterations using original features and embedding learnt from the Siamese Model (ML-A)
for different percentage of fine tuning data from different momentary ground truths (MGT).

MGT Features 0% 10% 20% 30% 40% 50% 60% 70% 80% 90%
Anxiety Original 83.21 81.28 79.66 77.96 76.11 74.61 71.29 60.78 53.93 15.86

Embedded 41.92 38.71 36.44 35.06 30.79 28.63 27.13 18.86 17.75 10.06

Stress Original 83.15 80.96 79.60 77.18 76.99 73.93 67.68 58.96 49.59 17.20

Embedded 53.31 50.83 48.28 47.46 44.06 40.59 37.97 28.60 25.09 11.22

Positive effect Original 83.11 81.08 79.71 76.98 74.92 73.55 69.78 57.40 48.03 15.85

Embedded 47.10 45.03 42.16 41.86 37.59 35.05 32.71 25.40 24.17 13.58

Negative effect Original 83.11 81.34 79.25 77.85 76.08 73.49 68.65 60.38 47.08 15.76

Embedded 51.79 48.64 48.12 46.09 42.98 38.31 37.64 30.22 26.22 14.29

TABLE 5 Mean of normalized IGTB values across four clusters with ANOVA, Kruskal-Wallis, and t-test between clusters. Since most values are statistically
significant, only non-significant values are shown using an asterisk.

Name of IGTB Cluster Statistics value

0 1 2 3 F(3, 3596)a F(3, 3596)b T-test between clusters

0 vs 1 0 vs 2 0 vs 3 1 vs 2 1 vs 3 2 vs 3

t(2018) t(2234) t(2647) t(951) t(1364) t(1580)
Organization citizenship behaviors 0.53 0.36 0.47 0.43 107.8 205.83 17.9 5.98 11.76 �8.87 �6.99 3.15

Fluid intelligence 0.58 0.62 0.59 0.63 9.56 49.61 �3.21 �2.37 �6.41 1.80� �0.61� �3.70
Crystallized intelligence 0.62 0.66 0.62 0.57 6.03 7.67 �3.19 0.30� 6.03 2.89 6.84 4.20

Emotional stability 0.24 0.66 0.30 0.48 1164.29 877.31 �50.84 �6.67 �44.30 36.30 22.69 �22.81
Conscientiousness 0.82 0.36 0.73 0.55 1363.63 973.16 53.78 12.51 35.38 �36.01 �18.21 18.88

Extraversion 0.65 0.35 0.63 0.41 422.14 621.88 31.84 2.34 36.34 �25.24 �6.25 24.97

Agreeableness 0.74 0.42 0.65 0.52 642.54 737.06 40.55 10.72 29.60 �24.14 �10.52 14.50

Openness 0.67 0.62 0.65 0.52 14.32 37.86 5.23 2.16 19.77 �3.12 8.13 13.96

Trait positive affect 0.70 0.41 0.59 0.50 416.55 604.60 30.35 13.83 27.14 �18.15 �8.64 11.82

Trait negative affect 0.15 0.59 0.16 0.33 1370.23 742.50 �32.42 �2.55 �25.84 29.87 17.98 �20.08
Trait anxiety 0.21 0.55 0.21 0.42 1078.97 798.20 �36.07 0.46� �41.96 33.66 13.69 �33.52
Tobacco use (Yes/ No) 0 0.80 0.70 0.03 7399.80 2477.45 �61.42 �68.68 �7.25 6.11 57.43 62.59

Tobacco quantity 0 0.11 0.04 0 188.74 921.30 �9.08 �9.58 N/A 5.16 9.08 9.58

Sleep quality 0.22 0.38 0.25 0.30 148.56 179.32 �13.10 �4.24 �10.54 9.99 6.86 �5.09
aANOVA
bKruskal-Wallis
�p . 0:05 (not significant)
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components. Fluid intelligence, crystallized intelligence, and

openness contribute largely toward the second PCA dimension,

while sleep quality contributes mostly to the first. Trait negative

affect, trait anxiety, and emotional stability form a cluster

contributing positively to the first PCA component and

negatively to the second. On the other hand, extraversion,

agreeableness, trait positive affect, organization citizenship

behavior, form a different cluster contributing positively to the

second PCA component and negatively to the first one.

In inspecting those clusters in more detail, Table 5 further

shows the mean of the normalized IGTB values computed for

the participants of each cluster. Analysis of Variance (ANOVA),

along with the Kruskal-Wallis test, indicates that all IGTB

measures are significantly different across these four clusters

(cluster 0 with 1651 samples, cluster 1 with 368 samples, cluster

2 with 584 samples, and cluster 3 with 997 samples). Upon close

examination of this table, we can provide an additional

description of the characteristics of the participants in each

cluster. Since the Tobacco quantity value is zero in clusters 0 and

3, the t-test statistics in N/A in this case. Cluster 0 includes
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participants who have scored the highest on organization

citizenship behaviors, conscientiousness, extraversion,

agreeableness, openness, and positive affect. On the contrary, the

cluster shows the lowest mean score for fluid intelligence,

emotional stability, negative affect, trait anxiety, Tobacco use

(Yes/ No) and use, and sleep quality. We note here that the

lower the score for sleep quality, the better the overall sleep is.

Thus, this cluster contains participants who do not use tobacco,

have good sleep quality, have low anxiety, and are socially

extroverted, highly agreeable, and open-minded. On the contrary,

individuals assigned to cluster 1 appear to have opposite traits

compared to the ones assigned to cluster 0 with the

corresponding participants depicting the lowest values in

organization citizenship behaviors, conscientiousness,

extraversion, agreeableness, and positive affect; and the highest

values in both fluid and crystallized intelligence, emotional

stability, negative affect, trait anxiety, Tobacco use (Yes/No), and

sleep quality. These suggest that cluster 1 includes participants

with high intelligence, but lower overall well-being and higher

negative traits. Clusters 2 and 3 appear to be “in the middle.”
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FIGURE 7

Correlation circle plot with a unit circle for PCA 1 and PCA 2 using different IGTB values.
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Cluster 2 is more closely related to cluster 0. Individuals in cluster 2

have some of the lowest values for emotional stability and trait

anxiety. These constructs are not significantly different between

clusters 0 and 2 based on the post-hoc t-test analysis. Similarly,

with the exception of the low values for crystallized intelligence

and tobacco use, cluster 3 is more closely related to cluster

1. Individuals belonging to this cluster scored the lowest on

openness and high on crystallized intelligence, emotional

stability, and trait anxiety. Summarizing our findings, we can see

that cluster 0 and cluster 2 are similar and include individuals

with positive affectivity who tend to keep a relatively healthy

lifestyle in terms of sleep and tobacco use. On the other hand,

cluster 1 and cluster 3 are similar in that they include individuals

with negative affectivity and relatively less healthy lifestyle.
6. Discussion

In this work, we have examined the effectiveness of metric

learning algorithms in learning behavioral outcomes from

ambulatory data, potentially addressing the inherent inter-

individual variability that tends to hamper model performance.

The performance of our proposed model has been evaluated on

ambulatory data collected in an uncontrolled environment with

respect to several constructs related to the mental and emotional

well-being of healthcare workers, such as affect, stress, and anxiety.

We have achieved personalization by utilizing the trait

characteristics of the participants as an additional input to the

models as well as clustering criteria for grouping the participants,

followed by training separate metric learning models for each

group. Personalization implemented by adding the IGTB features
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as an additional input to the model (i.e., ML-AT) outperforms the

ML-A models that only include the ambulatory-based features

suggesting the need for adding information about individuals’ trait

characteristics in the model. Moreover, our results have

demonstrated that fine-tuning our model using a portion of data

from the target participants can improve the model performance

rather than training the model solely on samples from participants

other than the target. We have also explored the role of different

IGTBs on the resulting participant cluster. This provides us an

additional intuition on the key participant traits to focus on in

order to develop group-based models.

Studies among healthcare workers have shown that

improvement of the overall workplace environment is possible

through proper mindful interventions (106, 107). Healthcare

workers are becoming more aware of their health, safety, and

wellness, while issues associated with managing stress and

promoting overall well-being (e.g., weight control) are becoming

more and more pressing. Technology tools, such as intelligent

ambulatory assessment via personalized models, could help in

assisting healthcare workers for the same purpose. Prior work

has found that healthcare workers view positively the integration

of such smartphone-based technologies in their daily activities

which could potentially lead to improving their well-being and

mitigate the risk of depression (108), thus similar personalized

machine learning models could be used as a foundation of such

smartphone apps. The proposed metric learning model is quite

lightweight (i.e., around only 12K trainable parameters)

compared to the state-of-the-art convolution neural network

(CNN) for mobile applications, MobileNetV3’s 2.9 million

parameters (109) and can utilize a small amount of collected

data for training purposes, rendering it suitable for lightweight
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app development of momentary psychological evaluation and

intervention. This alternate way to assess the mental condition of

healthcare workers has further the potential to yield higher

adherence rates compared to conventionally-used self-reporting

via ecological momentary assessment (EMA) since it only

requires participants to wear their wearable devices and have

their smartphone devices in close proximity.

Our proposed SNN and personalization techniques

demonstrate improvements over methods that do not account for

individual differences, however, the performance is yet

insufficient for creating effective JITAIs. Utilizing a dataset

collected in a real environment with multi-modal features has

posed a unique challenge. Further, we have formulated the task

as a regression problem, where the commonly used matrix

related to tasks predicting similar constructs are accuracy and the

F1 score (110–114). A recent review of studies classifying stress

demonstrates that the overall accuracy of detecting stress through

data collected from ambulatory devices (around 75%) is

significantly lower than utilizing data collected in a laboratory

setup (around 95%) (115, 116). From the distribution of the

labels of different constructs (Figure 1) we observe that, apart

from positive affect, all the other constructs have a severely

skewed distribution. Especially, for anxiety, more than 50% data

belongs to label 1, and for negative affect, almost 80% of the

data belongs to label 5. This might be the underlying factor for

the relatively better performance for predicting positive affect

than the other constructs using our proposed models. In

comparing our results with prior work, Pearson’s correlation

coefficients in estimating anxiety from ambulatory data were

found to be similar to ours (cross-validated R2 of 0.06,

permutation test p , 0:001) (117). Although Yan et al. (66)

utilized the TILES-2018 dataset to predict the affective state of

the participants via regression analysis, the method of

personalization carried out in this work varies since the authors

used data from participant’s prior week’s to predict the affect in

future weeks. Moreover, the individual-specific models, trained

using rescaled and transformed features based on individual-

specific statistics (i.e. average and standard deviation) contrast

significantly with our fold-wise cross-validation approach. Finally,

along with the factors discussed above, the usage of contextual

features and a relatively larger dataset (i.e., a combination of

TILES-2018 and 2019, with 10-weeks data per participant as

opposed to on average 3 weeks of data used in our study) could

explain the overall better performance of this study. Overall,

there is a shortage of prior work in ambulatory monitoring that

uses similar evaluation metrics for our considered behavioral

constructs. Another potential reason for the relatively low

performance of our models lies in the fact that the self-reported

labels used to train these models might not necessarily be

collected in close temporal proximity to the occurrence of the

daily event that led to the corresponding value at the self-report.

For instance, a participant might have reported negative affect at

the end of the day, but this report might have reflected an event

that happened many hours before the self-report questionnaire

was administered. The proximity between event and self-report

could significantly impact the overall performance of the models.
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For example, using data collected in the wild from 606

individuals (67) achieved a 0.25 Spearman’s correlation for stress

detection. Apart from the fact that the dataset is relatively larger

than the dataset we used in this study, this data also ensured that

the participants would respond to the self-reports in close

proximity to the event. This could potentially help in achieving

relatively better performance. This lack of coordination between

the event and the label could be potentially addressed via

saliency detection methods, which will allow us to explore

prominent temporal patterns in the data that might be indicative

of changes in behavioral constructs.

Despite the encouraging results, our study presents the

following limitation. So far, we have studied well-being measures

that are aggregated over an entire day. As part of our future

work, we will explore the dataset in finer time resolution than

predicting our target constructs on a daily level, which will be

the next step in developing an effective JITAI using our proposed

approach. Our current MGT labels are recorded once daily

limiting our ability to use the data in achieving this objective.

Moreover, exploring patterns in data across a day instead of

using the daily average value for predicting the constructs would

help in pinpointing specific patterns which may trigger stress,

anxiety, or affect a person both positively or negatively, thus

improving upon our current findings. Another limitation of this

study is the pre-defined similarity threshold between samples in

our proposed metric learning approach. Determining the

appropriate value of the similarity threshold, potentially for each

participant separately, could have further improved our results

and revealed additional insights regarding individual differences

in our data. This study is also limited by a small dataset. To

address this limitation, we plan to expand our current study in a

cross-corpus manner extending to other publicly available

datasets in this or similar domain, for example, TILES-2019 (65),

Tesserae (118), and publicly available multimodal dataset on

stress detection of nurses (119). Our results indicate that

eliminating individual-specific differences from the data via

metric learning can yield improved performance in detecting

well-being outcomes. This can inspire the use of differential

privacy approaches (e.g., using adversarial learning), which can

potentially further eliminate individual-dependent attributes from

our data and preserve, or even further attenuate, the behavioral

attributes of interest.
7. Conclusion

Mental well-being is a crucial part of overall well-being and

effective work performance. This paper examines a machine

learning algorithm based on metric learning that contributes to

assessing one’s mental and emotional well-being unobtrusively

through widely-available ambulatory sensing technology. We

have proposed a lightweight model which utilizes a metric

learning technique to learn the relative distance between similar

and dissimilar samples and thereby reduce person-specific signal

dependencies in the data. We have bolstered the personalization

of our proposed approach by utilizing the participants’ trait
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characteristics as added features to the model and criteria for

clustering the population of the dataset to form cluster-specific

models. The performance of the proposed models has been

compared against two baselines, one that has utilized a non-

personalized learning technique via a model trained on all

participants, and one that has integrated personalization via a

domain adaptation technique rather than metric learning. Results

from our experiments indicate that our proposed models

outperform the baselines in most cases. Among the proposed

approaches, models utilizing IGTB features perform better than

those not using the IGTB features, highlighting the need for

personalization. The proposed system paves the way for

developing in-the-moment interventions that can promote a

healthier workplace environment for healthcare workers and

other professionals who work in similar high-paced high-stakes

environments.
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