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Embracing the uncertainty in
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support clinical decision-making
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Two significant obstacles exist preventing the widespread usage of Deep Learning
(DL) models for predicting healthcare outcomes in general and mental health
conditions in particular. Firstly, DL models do not quantify the uncertainty in
their predictions, so clinicians are unsure of which predictions they can trust.
Secondly, DL models do not triage, i.e., separate which cases could be best
handled by the human or the model. This paper attempts to address these
obstacles using Bayesian Deep Learning (BDL), which extends DL
probabilistically and allows us to quantify the model’s uncertainty, which we use
to improve human–model collaboration. We implement a range of state-of-the-
art DL models for Natural Language Processing and apply a range of BDL
methods to these models. Taking a step closer to the real-life scenarios of
human–AI collaboration, we propose a Referral Learning methodology for the
models that make predictions for certain instances while referring the rest of the
instances to a human expert for further assessment. The study demonstrates
that models can significantly enhance their performance by seeking human
assistance in cases where the model exhibits high uncertainty, which is closely
linked to misclassifications. Referral Learning offers two options: (1) supporting
humans in cases where the model predicts with certainty, and (2) triaging cases
where the model evaluated when it had a better chance of being right than the
human by evaluating human disagreement. The latter method combines model
uncertainty from BDL and human disagreement from multiple annotations,
resulting in improved triaging capabilities.
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uncertainty, Bayesian Deep Learning, human–machine collaboration, mental health

conditions, human uncertainty

1. Introduction

The World Health Organization estimates that mental health conditions (MHCs)

account for one-fifth of years lived with disability globally, as they increase the

susceptibility to other physical health problems (1). Recently, the COVID-19 pandemic

has exacerbated mental health issues due to its impact on health, society, and economy

(2). Some MHCs (e.g., depression) are preventable, and others (e.g., dementia) can be

slowed down with early treatment. A scalable mechanism to assist in diagnosing these

conditions will have a substantial impact. Natural language carries essential information

that can assist in diagnosis. For example, dementia reduces vocabulary diversity (3), and

depression leads to an increased usage of negative-emotion words (4).
01 frontiersin.org

http://crossmark.crossref.org/dialog/?doi=10.3389/fdgth.2023.1188338&domain=pdf&date_stamp=2020-03-12
https://doi.org/10.3389/fdgth.2023.1188338
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fdgth.2023.1188338/full
https://www.frontiersin.org/articles/10.3389/fdgth.2023.1188338/full
https://www.frontiersin.org/articles/10.3389/fdgth.2023.1188338/full
https://www.frontiersin.org/articles/10.3389/fdgth.2023.1188338/full
https://www.frontiersin.org/journals/digital-health
https://doi.org/10.3389/fdgth.2023.1188338
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


Popat and Ive 10.3389/fdgth.2023.1188338
Recent years have seen efforts to create Machine Learning–based

prediction models for diagnosing MHCs from language, such as in

(5–8). Deep Learning (DL) models have superseded traditional

Machine Learning models as they are more flexible and scalable,

require much less feature engineering, and have superior

performance on larger datasets for several domains such as text.

Indeed, in many clinical applications, DL models have been shown

to achieve similar performance to clinical experts (9). However,

there are several barriers to the uptake of these models in

healthcare, including the fact that DL models’ predictions are

unreliable as they fluctuate and do not measure uncertainty. Also,

DL models are not designed to support human experts. This

support is crucial in the domain of mental healthcare where a

human clinician is essential to ensure the success of a treatment

and will benefit from AI assistance with the growing number of

patients. In particular, DL models do not triage: coordinate which

cases could be best handled by the human or the model (so that

humans are not biased by any model suggestion). These barriers

could be addressed by Bayesian Deep Learning (BDL).

Predictive Uncertainty, i.e., uncertainty in the predictions, is

essential to quantify in DL models because they only output

point estimate predictions that can fluctuate significantly. For

instance, a DL model that predicts an MHC diagnosis can give a

patient the opposite diagnosis under a simple change of the

random seed (10). In medicine, this is significant as mistakes can

be costly and life-changing to patients, e.g., wrong/missing

treatment. Uncertainty helps by quantifying the degree of these

predictive fluctuations. BDL is a field that extends DL by placing

probability distributions over model weights (11), and this

propagates into a distribution over each prediction, which

encodes predictive uncertainty. BDL’s value is that it provides

principled uncertainty estimates on an individual patient basis.

This uncertainty serves as a form of transparency, allowing the

clinician to know which predictions to concentrate on or trust.

BDL models remain underinvestigated for mental health text.

DL models are not uniformly accurate and are considerably less

accurate than humans on some instances. For example, the model’s

accuracy may suffer on out-of-distribution data. Consequently, if

we can identify such inaccurate instances and refer them to

human experts, we may achieve better performance overall than

if either the model or human were to work independently.

Referral Learning (RL) is a term we introduce for models that

predict for some instances and delegate/refer the remaining

instances to a human expert. This learning paradigm has many

names, including learning: to defer to an expert (12), under

algorithmic triage (13), or to complement humans (14). Aside

from better performance, Referral Learning has other advantages;

it integrates the model more naturally within the clinician’s

workflow, and it frees up time and resources for clinicians to

spend on more complex cases.

In medicine, clinical experts frequently disagree on cases,

known as “grey cases,” and these can occur in as much as 25%

of cases and take significant doctor time (15). We therefore

consider two types of Referral Learning, distinguished by

whether each datum has a single label or multiple labels.

Multiple labels arise from multiple doctors annotating the same
Frontiers in Digital Health 02
datum, and it is of particular interest when these doctors

disagree, i.e., there is human uncertainty. In any case, different

referral strategies exist for which data the model should refer. For

the single label case, having implemented BDL, we refer the

instances with high predictive uncertainty (16). This is analogous

to the model playing the role of a junior doctor who identifies

and refers the more uncertain/complex cases to a specialist. For

the multiple labels case, we can go one step further and learn to

predict human uncertainty and combine this with the model’s

uncertainty to decide which instances to refer in the human–

machine collaboration setup (17).

In summary, our main contributions are threefold. (a) A

thorough investigation of different uncertainty-aware models,

spanning different Bayesian Deep Learning methods, model

classes, and measures of uncertainty, that we evaluate on

different mental health datasets. We show that models hide

significant heterogeneity of performance and expose that

uncertainty-aware models can overcome this by identifying cases

that are more likely to be incorrect, i.e., the model “knows what

it does not know.” To the best of our knowledge, this is the first

attempt of such an investigation. (b) We leverage model

uncertainty in a doctor–model teamwork scenario where the

models refer their most uncertain cases and show that

performance improves ubiquitously. (c) Evaluation of uncertainty

estimates in a Referral Learning scheme that uses BDL and

leverages model uncertainty and discrepancy in human expert

label annotations. We demonstrate that considering this

discrepancy can lead to better overall performance.

Finally, the methods that we apply to text-based clinical data

for MHCs generalise to other illnesses. Thus, the solution

presented herein, for MHC diagnosis from language, serves as a

case study of the potential of uncertainty-aware solutions to

many clinical applications.
2. Materials and methods

In this section, we introduce our data and methods setting our

work in the context of the existing literature.
2.1. Data and preprocessing

We focus on two benchmarking MHCs: dementia and

depression. For training and evaluating our Deep Learning

models, we use two public datasets.

2.1.1. DementiaBank English Pitt Corpus
DementiaBank English Pitt Corpus (18) has transcripts of

patients’ descriptions of the Cookie Theft picture from the

Boston Diagnostic Aphasia Exam (19). It consists of 551

transcripts for 312 patients.

This is a cognitive assessment where patients are asked to

describe a picture that shows a household scene with much

activity. A clinician can diagnose dementia based on the patients’

language, including linguistic features such as diversity of
frontiersin.org
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vocabulary, ability to discourse, and succinctness of the description.

Each datum, therefore, consists of a patient transcript and an

associated binary label: 0 meaning healthy control (HC) and 1

meaning Alzheimer’s disease (AD).
2.1.2. MIMIC – III with phenotype annotations
We use this dataset for detecting depression and obtain it from

PhysioNet (20). Medical Information Mart for Intensive Care

(MIMIC) is a large database that contains de-identified data for

around 40,000 patients who stayed in a tertiary hospital in

Boston in the period between 2001 and 2012 (21, 22). These data

are vast and so we focus on the patient notes/electronic health

records (EHRs) from the NoteEvents database. Of these

EHRs, we focus on the discharge summary notes of each hospital

admission, as they are most informative regarding a patient’s

MHCs, in contrast to other structured data, e.g., a patient’s

temperature. However, these EHRs are not annotated with the

MHCs that a patient has. Hence, we use an additional phenotype

database within MIMIC (23, 24) that gives annotations of which

conditions patients have, e.g., depression, for a subset (813

hospital admissions) of the aforementioned EHRs. Each datum

consists of a patient’s discharge summary and a binary label

indicating the presence of depression (1) or not (0). However, for

this dataset, there are at least two binary labels (three on

average) per EHR due to several human experts independently

annotating the dataset. Each binary label comes from a separate

human expert team, which consists of a resident physician and a

clinical researcher. Notably, approximately 10% of cases showed

label disagreement.
2.1.3. Longitudinality
Both datasets are longitudinal: they contain multiple samples

from the same patients over several years. This is unavoidable in

obtaining a reasonably sized clinical MHC dataset. Hence, in

Table 1, we include the number of patients and samples. For the

MIMIC dataset, this results from different hospital admissions

and thus can be for unrelated reasons and the EHRs

corresponding to the discharge summary will be quite different.

For the dementia dataset, many of the patients with multiple

samples initially had a condition called mild cognitive

impairment (MCI) that could develop into Alzheimer’s, and thus

repeated tests were conducted over several years. Following Pam

et al. (8), we remove the MCI samples for this study and samples

corresponding to dementia types other than Alzheimer’s, such as

Dementia with Lewy Bodies. This results in the dataset summary

in Table 1. It could be observed that the MIMIC dataset is more
TABLE 1 Dataset summaries after extraction and preprocessing.

Dataset Samples (patients) Avg. #
words

Avg. #
labels

Total MHC = 1 Control = 0
DementiaBank 474 (256) 255 (168) 219 (88) 109 1

MIMIC phenotype 813 (473) 222 (148) 591 (405) 208 3
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imbalanced than the dementia dataset. See the Supplementary

material for details regarding data preprocessing.
2.2. Diagnosing mental health conditions
using Deep Learning

The dementia dataset has both audio recordings and their

written transcripts and has received a lot of attention from the

DL community. Existing works such as Gosztolya et al. (25)

compare the utility of text and audio separately and together,

and found that text outperforms audio but better results can be

obtained by using both. The ADRESS challenge (26) concerns

the first dataset and the best performance was obtained in Yuan

et al. (27) by using Transformer-based models (28), such as

Devlin et al. (29), on the text and information about pauses from

the audio. Since we are aiming for generalisability, we focus on

text-only approaches, and the state-of-the-art is the study by

Roshanzamir et al. (30), which uses Transformer-based models

for the dementia dataset. Prior to such models, Recurrent neural

network (NN)–based models (31) performed best in works such

as Pan et al. (8). We, therefore, investigate both Recurrent NN

and Transformer-based models as the state-of-the-art DL model

classes for textual data.

2.2.1. Recurrent NNs and Transformer-based
models

Recurrent NNs (31) are designed to take in a sequential and

variable-length input, which is relevant as we have a textual

sequence as input. Recurrent NNs were motivated by the fact

that humans process sentences sequentially, i.e., we hear one

word at a time and build up knowledge based on what we have

heard previously. Recurrent NNs are defined as NNs that have a

cycle in the network’s connections. They take input sequentially,

rather than all at once, so the words in the sentence are inputted

as one word embedding per timestep.

Transformers are the state-of-the-art for solving sequential

tasks, such as text analysis. Recurrent NNs fall short in

modelling long-term dependencies due to recurrence.

Transformers have no recurrence in their architecture, and their

key component is an attention mechanism (28), which enables

focussing on specific words directly without taking the whole

sequence into account. We refer the reader to the study by Ive

(32) for a more detailed introduction into language modelling.

BERT, which stands for Bidirectional Encoder Representations

from Transformers, is a pre-trained Transformer-based model and

is a breakthrough state-of-the-art model for a range of natural

language processing (NLP) tasks (29). BERT is pre-trained on a

large amount of unlabelled data to learn the general language,

leading to a particular model configuration. This model

configuration is then fine-tuned for a desired task by training on

a labelled dataset and slightly modifying the architecture. For

example, for classification, we add a classification layer to BERT’s

output. BERT uses contextualised word embeddings that enable

considering a word’s meaning in its context. RoBERTa (33) is a

variant of BERT with an improved pre-training procedure.
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2.3. Bayesian Deep Learning

BDL is a field that extends DL probabilistically and allows

principled uncertainty estimates for the model’s predictions. We

focus on three main BDL methods: Bayesian Neural Networks

using Bayes-by-Backprop (11), Deep Ensembles (34), and Monte

Carlo (MC) Dropout (35). We chose these methods as they are

the more fundamental BDL approaches and they are often used

as baselines in general BDL contexts such as in Ovadia et al.

(36). We apply these Bayesian methods to the RNN and

Transformer DL models. BDL has been applied to clinical textual

datasets such as in Dusenberry et al., van der Westhuizen and

Lasenby, and Guo et al. (10, 37, 38). In the following sections,

we describe our BDL models in detail.

Bayesian Deep Learning models output a probability distribution

over the categorical outcomes (healthy and diseased), which encodes

the model’s uncertainty in its prediction. Recurrent NNs and

Transformers discussed thus far are deterministic by design.

Bayesian NNs are artificial NNs that introduce stochastic elements

into the NN architecture, in particular, we consider stochastic

weights/parameters u (39). In Deep Learning, we chose the NN

weights û by minimising a loss function L(u) and all other

parameterizations u = û are not considered at test time. However,

in Bayesian Deep Learning, the Bayesian NN’s stochastic weights u

are learned by inferring a posterior distribution over u namely

p(u jD), where D is the training data D ¼ {(xi, yi) j i ¼ 1, . . . , N}

and x and y denote the NN input and output (see Supplementary

material for more details).

One of the ways to apply BDL to Recurrent NNs is to learn the

most likely values for the probabilistic weights [Bayes-by-Backprop

algorithm introduced by Blundell et al. (11)]. We use a popular

version of such a Bayesian Recurrent NN (40).

Dropout was originally presented as a regularisation method to

prevent overfitting (41). For example, the output of an NN layer

can be multiplied by Bernoulli noise, which means a specified

fraction, known as the dropout rate, of the neurons’ outputs are set

to zero. This prevents over-reliance of a given neuron on neurons

of the previous layer, as the given neuron learns to perform well

despite some of the previous layer neurons being turned off. Note

that the dropout procedure is applied only to neural networks at

training time. At test time, the prediction is deterministic.

MC Dropout applies dropout in both the training and test

phases. Therefore, in testing, the prediction is random, allowing a

Bayesian/probabilistic interpretation (35). The idea behind using

dropout at test time is that, for a given test datum, one can

perform multiple forward passes through the trained network

with dropout again. Since each prediction is based on different

dropout configurations, it is somewhat equivalent to having

different networks’ predictions. Their distribution can be

analysed to quantify the uncertainty in an inexpensive way.

Ensemble learning is where we aggregate the predictions of

multiple machine learning models. The idea is that the strengths

of the models will be reinforced and their weaknesses will be

negated. A Deep Ensemble refers to an ensemble of Deep NNs,

where each Deep NN has been trained with a different random

seed. We initialise M Deep NNs with the same initial
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distribution of weights, but that distribution is parametrised by a

different random seed. The M models in the ensemble are

trained on the same dataset, and for each test datum, each model

gives a prediction, resulting in M predictions. These M

predictions can be averaged to give more reliable estimates than

the individual models. There is a conceptual debate regarding

whether Deep Ensembles are non-Bayesian or Bayesian

approximations (42) (since, for example, they do not specify a

prior, which is fundamental to Bayesian Inference). We consider

them to be the latter and use them in our analysis.

To evaluate the models, we consider standard model evaluation

measures for classification tasks (accuracy, F-measure, ROC-AUC,

precision, recall, and calibration). While assessing BDL models, we

output a posterior predictive distribution p(y j x, D), and, therefore,
we extract the point estimate ŷ from this distribution and perform

the performance and calibration evaluation. This allows comparison

of the BDL and DL models. However, BDL models also encode

predictive uncertainty in the posterior predictive distribution so we

also consider metrics for uncertainty quantification: expected

entropy (degree to which the entropy would change), entropy,

mutual information (relative entropy), and variation ratio

(proportion of cases which are not in the mode category). See the

Supplementary material for more details on these metrics.
2.4. Types of uncertainty

Predictive uncertainty, or uncertainty in the predictions, can be

decomposed into two types: aleatoric and epistemic (43). Aleatoric/

data uncertainty in the output arises from incomplete information,

noise, or class overlap in the dataset. Epistemic/model uncertainty

is the uncertainty over which model parameters or functions best

explain the observed data.

Consider Figure 1, which depicts a binary classification task

(with noughts or crosses labels) over a 2D input space. We

consider the uncertainty at the points with the question mark.

The left diagram shows how, even with the optimal linear

decision boundary, we are uncertain how to classify this data

point. This aleatoric uncertainty arises from noise in the data:

the classes overlap. In a medical context, this uncertainty appears

as the diagnostic test may not be perfectly reliable, or the data

are ambiguous as the doctor uses additional contextual data

beyond that visible in the test, e.g., age, or the doctor makes a

mistake. This uncertainty can only be reduced by leveraging

multiple data sources or changing the data collection process,

e.g., using a more reliable diagnostic test.

The right image shows that insufficient data around the

question mark point mean that we are unsure how to label it.

The data point is somewhat out-of-distribution. This epistemic

uncertainty is caused by multiple decision boundaries correctly

separating the observed data. This uncertainty is concerned with

the interplay of the model and the data; it arises from an overly

flexible model (like Deep NNs) or insufficient data to constrain

the model parameters. Epistemic uncertainty can be reduced by

observing more data, particularly in the sparser regions of the

input space.
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FIGURE 1

Plots showing aleatoric (left) and epistemic uncertainty (right) in a 2D binary classification task. Source: Hüllermeier and Waegeman (44).
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2.5. Model architectures and training

Our task is a supervised binary classification (as the labels

[ {0, 1}); hence, the models should output a probability score

that the patient has the mental health condition. We consider

two recent state-of-the-art models for NLP: Recurrent NN–based

models and BERT-based models. We create variations of those

models using the three BDL methods detailed above: MC

Dropout, Deep Ensembles, and Bayesian Neural Networks.

Hyperparameters of all our models were tuned using intuition-

based manual (common practice in the domain) tuning on relevant

validation sets (see Supplementary material). Except the Bayes-by-

Backprop Recurrent NN, all the models use the Binary Cross

Entropy loss. Our Recurrent NN–based Models use bidirectional

gated recurrent units (GRUs) and pre-trained embeddings

[GloVe (45) for the dementia dataset as a common choice with

no other models pre-trained on similar data and BioWordVec

(46) for MIMIC as these were pre-trained using in-domain data

similar to MIMIC]. We extend our Recurrent NN to three BDL

models using MC Dropout, Deep Ensembles, and Bayesian

Recurrent NNs. We add MC Dropout of 0.2 before the linear

layer. Higher dropout rates hamper performance as the model is

not overfitting.

We implement a Bayesian Recurrent NN using the Pyro

Library (47). We make the fully connected layer Bayesian,

which is supported by Brosse et al. (48) to perform better than

making both the fully connected and Recurrent NN layers

Bayesian. For the choice of prior distribution on the fully

connected layer, we follow the recommendation of Dusenberry

et al. (10) and use independent Gaussian distributions for the

fully connected layer’s weights and biases with mean zero and

variance 1 and 10, respectively. The variance is larger for the

biases as they can take a wider range of values. For the

variational distribution, we also follow the recommendations of

independent Gaussians (i.e. mean-field variational inference).

For training, the observed predicted label is treated as a

Bernoulli random variable of the Bayesian Recurrent NN’s

output of a probability score. We optimise the Evidence Lower

Bound (ELBO) objective using the Pyro library’s (47) Adam

optimizer (49) that is adapted to facilitate our random

variables. To acquire the test predictions, we generate samples
Frontiers in Digital Health 05
from the variational distribution and then use these to

configure the Bayesian Recurrent NN’s weights and then collect

1,000 Monte Carlo samples. We implement a Deep Ensemble

of Bayesian Recurrent NNs, named Bayesian Recurrent NN

Ensemble. We ensemble the means of the NN’s predictive

samples.

We implement RoBERTa (33) as our Transformer-based

model, using the HuggingFace library (50) (base version with

the standard preprocessing pipeline). As in the study by

Roshanzamir et al. (30), which provides state-of-the-art results

for the dementia dataset, we implement two types of

Transformer-based models: text-level and sentence-level. The

former is where we pass in the entire transcript to the

embedding layer (standard approach) and the latter is where we

pass in each sentence of the transcript separately and ensemble

the results. To make these RoBERTa models Bayesian, we

implement MC Dropout and Deep Ensembles. For MC

Dropout, we use RoBERTa’s pre-trained dropout rate of 0.1.
3. Results

In this section, we will present results for our seven BDL

models described above. In particular, these are the three

Bayesian versions of our Recurrent NN model: MC Dropout,

Deep Ensemble, and Bayesian Recurrent NN. We also report the

performance of a Deep Ensemble of a Bayesian Recurrent NN.

We analyse the performance of RoBERTa for text-level and

sentence-level predictions. We consider the MC Dropout text-

level version and Deep Ensembles of both text- and sentence-

level versions.
3.1. Intrinsic evaluation

To evaluate our seven BDL models, we consider both

performance and uncertainty quantification. In these seven BDL

models, we have three underlying DL models, namely Recurrent

NN and RoBERTa at two levels, whose performance we compare

first. We then evaluate the seven BDL models concentrating on

differences of the Bayesian methods.
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TABLE 4 Comparing the accuracy score of individual models intra-
ensemble against the ensembled score.

Model Ensemble Mean + SD Min Max
Recurrent NN ensemble 0.743 0:683+ 0:021 0.641 0.717

Bayesian recurrent NN ensemble 0.749 0:716+ 0:013 0.694 0.730

RoBERTa Text-level ensemble 0.829 0:822+ 0:019 0.793 0.842

RoBERTa Sentence-level
ensemble

0.787 0:748+ 0:014 0.730 0.766
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3.1.1. Comparison with state-of-the-art
From Table 2, our best performing DL model is RoBERTa

Text-level across metrics. This performance is comparable to

the performance of the similar BERT model from Roshanzamir

et al. (30). Note that Roshanzamir et al. (30) use the full

dataset, whereas we use only 86% of the Pitt corpus as

explained earlier. Generally, our models present higher F1 than

accuracy and higher recall than precision. From Table 3, we

achieve state-of-the-art recall with an 8.6% improvement via

RoBERTa Text-level with MC Dropout. Higher recall is

preferable in a clinical context, as false positives can be less

dangerous than false negatives.

3.1.2. DL models comparison
From Table 2, the Transformer models outperform the

Recurrent NNs. RoBERTa Text-level has 7.4% higher accuracy

than the Sentence-level one. This is perhaps because the text-

level version can capture relationships between sentences, e.g.,

paragraph-level discourse. In contrast, the sentence-level

version essentially tries to predict AD from a given sentence,

which is easier than the task at the text level because there are

more sentences but harder as those sentences are more diverse.

Note that this is opposite to the conclusion from Roshanzamir

et al. (30).

3.1.3. BDL models comparison
In general, we are more concerned with epistemic than

aleatoric uncertainty. This is because epistemic uncertainty is

reducible and is more relevant to our model selection and

improvement, whereas aleatoric uncertainty is harder to estimate

accurately and is more related to the data than the model.
TABLE 2 DL Model performance on Dementia Dataset.

Type Model Acc." F1
DL Recurrent NN 68.3 7

RoBERTa text 82.2 8

RoBERTa sentence 74.8 7

Roshanzamir et al. (30) BERT text 82.8 8

BERT sentence 84.5 8

The last two rows are from Roshanzamir et al. (30) (where they use BERT models at the

subset throughout so the performance was more comparable when we used the full

Best performance values are in bold.

TABLE 3 Model performance on Dementia Dataset. For all columns, higher is

Type Model Acc." F
DL Recurrent NN 0.683 0

RoBERTa Text-level 0.822 0

RoBERTa Sentence-level 0.748 0

BDL Recurrent NN MC dropout 0.675 0

Recurrent NN ensemble 0.743 0

bayesian recurrent NN 0.724 0

Bayesian recurrent NN ensemble 0.749 0

RoBERTa Text-level MC dropout 0.804 0

RoBERTa Text-level ensemble 0.829 0

RoBERTa Sentence-level ensemble 0.787 0

Best performance values are in bold.
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3.1.4. DL vs BDL performance
Theoretically, BDL models should have a better performance than

the underlying DL models because the predictive distributions in BDL

allow a better assessment of which class to predict. For example, if the

predictive distribution is uniform on [0.4, 0.7] for a given instance, the

BDLmodel can take the predictivemean of 0.55 tomake the prediction,

whereas a DL model could classify incorrectly because of a point-

estimate prediction that lies in [0.4, 0.5). Practically, we find that

Deep Ensembles and Bayesian NNs improve on their underlying DL

models (see Tables 3 and 4), whereas MC Dropout leads to a slight

performance reduction here; we elaborate on this later. The

performance of BDL models depends on (1) the underlying DL

model’s performance and (2) the quality of the uncertainty estimates.

To assess (2), we consider the uncertainty metrics for the BDL

models on individual patients (Figure 2). In the latter, we order the

data by Predictive Entropy (PE, a measure of how much information

is missing or unknown before making a prediction). This is because

this ordering reduces noise aiding visualisation; PE measures

closeness to 0.5, so this ordering has relevance to the predicted

probabilities, and PE can be computed without BDL. Since PE is the

sum of Mutual Information (MI) and Expected Entropy (EE), we

can see the relative contributions of MI and EE to PE.
" ROC-AUC " Precision " Recall "
1.1 73.9 69.8 72.7

4.1 90.5 81.3 87.1

7.0 82.9 75.8 78.7

1.5 — 85.1 78.7

2.7 — 90.3 76.5

levels of text and sentence). Note they use the full dataset, whereas we used an 86%

dataset.

better.

1" ROC-AUC" Precision" Recall"
.711 0.739 0.698 0.727

.841 0.905 0.813 0.871

.770 0.829 0.758 0.787

.704 0.742 0.691 0.718

.764 0.799 0.755 0.773

.750 0.788 0.731 0.769

.774 0.817 0.750 0.800

.836 0.915 0.760 0.929

.845 0.914 0.825 0.867

.805 0.861 0.794 0.816
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FIGURE 2

Relationships between Uncertainty Metrics for different BDL Models. RNN-MC, Recurrent NNs with MC Dropout; RNN-ENS, Recurrent NN Ensembles;
BRNN, Bayesian Recurrent NNs; BRNN-ENS, Bayesian Recurrent NN Ensembles; T-TRF-MC, Text-Level RoBERTa MC Dropout; T-TRF-ENS, Text-Level
RoBERTa Ensemble; S-TRF-ENS, Sentence-Level RoBERTa Ensemble.

Popat and Ive 10.3389/fdgth.2023.1188338
3.1.5. MC dropout vs ensemble overview
From Table 3, the MC models, Recurrent NN and RoBERTa

Text-level, perform worse than their underlying DL models by 0.8%

and 1.8% accuracy, respectively. In contrast, for the Recurrent NN,

Bayesian Recurrent NN, and RoBERTa Sentence-level DL models,

their Deep Ensembles outperform even the best performing model

in the ensemble, while RoBERTa Text-level Ensemble has a slight

improvement on the mean model in the ensemble.

3.1.6. Ensemble behaviour
The reason Deep Ensembles improve performance is the same

reason we gave for BDL improving performance: the predictive
Frontiers in Digital Health 07
distributions allow more informed predictions than those from

DL. From Figure 2 and Table 4, we see there is a more

significant improvement of the Deep Ensemble over the

individual models when there is greater mean epistemic

uncertainty [as seen via the MI and Variation Ratio (VR)

metrics]. The Deep Ensemble’s performance gains arise from

misclassification being corrected on the data that have high

epistemic uncertainty. Moreover, this epistemic uncertainty is

significant as three of the ensemble models have intra-ensemble

disagreement for over 40% of cases. This reveals the problem

with using single DL models as changing the random seed can

flip the predicted class for individual DL models intra-ensemble,
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and this occurs on a significant fraction of the dataset. One

disadvantage of ensembling occurs for Variation Ratio is that

since it measures label variance but the ensemble size is small (5

or 10 for us), it therefore only takes a few different possible

values, reducing the granularity of uncertainty quantification.

This results in the staircase shape of Variation Ratio in the

Ensemble models in Figure 2.

3.1.7. MC Dropout behaviour
As mentioned previously, MC Dropout performs worse than

the individual DL models (for both Recurrent NN and

RoBERTa) and therefore the Ensemble BDL models, see Tables 3

and 4. The main reason is the low dropout rate of 0.1 in

RoBERTa and 0.2 in Recurrent NNs (hyperparameter chosen to

optimise performance). This low dropout rate leads to minor

variations in the Deep NN weight configurations that generate

different forward passes, and hence there is a narrower predictive

distribution. In addition to MC Dropout not obtaining the

performance gains, it also adds dropout at test time, and this

masks some of the learned information during training leading

to a performance reduction.

3.1.8. RoBERTa comparisons
Sentence-level RoBERTa Ensemble has inferior performance to

Text-level Ensemble at both the individual and ensemble levels,

although Sentence-level RoBERTa Ensemble generates a higher

performance improvement through ensembling, as discussed

above. In Figure 2, Sentence-level RoBERTa Ensemble has

remarkably different uncertainty patterns to the other BDL

models. Generally, the Predictive Entropy (PE) curve’s shape

reveals the distribution of the probability scores because PE

measures proximity to 0.5. This model’s PE curve has a different

shape than the others, demonstrating a significantly higher

fraction of instances have the ensembled (mean) prediction close

to the decision boundary, indicating high predictive uncertainty

possibly due to the lack of wider context.

In summary, we have three Bayesian methods (Bayes-by-

Backprop, Deep Ensembles, and MC Dropout) and three DL

Models (Recurrent NN, Sentence-level, and Text-level RoBERTa).

We considered combinations of these Bayesian methods and DL

models to form seven BDL models. We evaluated these models

with respect to performance and uncertainty on the DementiaBank

dataset. We found that Deep Ensembles outperform MC Dropout

due to higher epistemic uncertainty. Next, we will evaluate the

uncertainty by using it in decision-making tasks.
3.2. Extrinsic evaluation: referral learning

RL revolves around developing models that predict for some

instances and delegate/refer the remaining instances to a human

expert. The key is the model’s decision of which instances to refer.

We can distinguish two types of RL, single label and multiple

labels, based on the number of labels for each instance in the

dataset. For our scenario, the label is {0, 1} depending on whether

the patient corresponding to the instance has the mental health
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condition or not. Multiple labels arise when we have different

humans/doctors annotating the same data, and when these

humans disagree, we can infer how accurate humans are on the data.

We found it necessary to introduce the term Referral Learning

as there is no unifying term for this learning paradigm. We

distinguish our work from related works based on the method

and application domain. Regardless of the number of labels,

there are two overarching methodologies for implementing RL:

(1) the loss function approach and (2) the uncertainty or

confidence approach. Our work focuses on approach (2). Both

approaches interact within the single and multiple label cases.

Approach (1) uses a modified loss function, known as a

surrogate loss, which is adapted to the Referral Learning objective.

A loss function is used in training a DL model, and the loss

function essentially marks how well the model is performing and

directs the model on how to learn. For the single label case, this

approach has names such as rejection learning (51) or selective

classification (52). An example of approach (1) is to add an

additional label say 2, corresponding to referral. Then the DL

model predicts {0, 1, 2} and the loss function is changed to incur

a cost of referral. Note that approach (1) in either single or

multiple labels does not use Bayesian Deep Learning.

Approach (2) refers the instances that have high uncertainty/

low confidence, and this is the approach we use in this work. In

particular, we use Bayesian Deep Learning and apply uncertainty

measures to obtain estimates of the model’s uncertainty. This

technique has been applied to medical imaging tasks such as

diabetic retinopathy in the study by Leibig et al. (16) and skin

cancer in the study by Combalia et al. (53). Two advantages of

this technique over approach (1) are that it is possible to achieve

the benefit of Referral Learning without having to make

significant changes to the model, and it is much easier to change

the proportion of the data that should be referred.

Within the multiple labels case, examples of recent work that use

approach (1) include learning to defer to an expert (12), learning to

complement humans (14) and learning under triage (54). Approach

(1) methods have been applied to both imaging and text (specifically

hatespeech) such as in Mozannar and Sontag (12).

Previously, we mentioned how approach (2) can use either

confidence or uncertainty. In DL, the difference between

confidence and uncertainty is that confidence is obtained from a

DL model, whereas uncertainty is derived from a BDL model.

Confidence is typically represented by a single value, such as a

probability score, indicating how sure the model is about the

correctness of its predictions for a given input. Consider a

classification task with inputs x and output labels

y [ {1, . . . , C}. Then, given an NN model that outputs a

probability vector p(x), the prediction label is

ŷ ¼ argmax
c[{1,...,C}

pc(x): (1)

The corresponding confidence in the prediction ŷ is

p̂ ¼ max
c[{1,...,C}

pc(x): (2)
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As explained earlier, Bayesian DL models incorporate uncertainty

explicitly by treating model parameters as probability

distributions (u) rather than fixed values. They give a predictive

distribution p(y j x, D). Formally, Vp(y j x,D)(y) is the predictive

uncertainty. By the Law of Total Variance, we may decompose this:

Vp(y j x,D)(y) ¼ Vp(u jD)(E p(y j x,u)(y))þ E p(u jD)(V p(y j x,u)(y)): (3)

Uncertainty has been found to be more informative than

confidence about what a model does not know (36).

We extend the BDL version of approach (2) to the multiple

labels case and apply approach (2) to the textual domain. In

particular, we estimate the model’s uncertainty using BDL and

uncertainty quantification, and then we estimate the human

disagreement directly by training a DL model to predict it. Our

referral learning scheme is then based on the combination of the

model uncertainty and human disagreement. In general, we

follow the approach of Raghu et al. (13), who combine model

confidence and human disagreement in a similar way to us; they

also directly predict human disagreement. However, we use BDL

to compute the model’s uncertainty, whereas they use a heuristic

approach based on the confidence of the DL model.
3.2.1. Single label case
We first explain the method of Referral Learning for the single

label case and how to evaluate it. Since BDL allows us to quantify

uncertainty on a per-instance basis, the key technique is that the

model refers to the human the instances for which the model’s

predictions have high uncertainty. More precisely, as in Figure 3,

the model initially predicts for all instances, and from this, an

uncertainty score on each instance is computed, and then the

instances of high uncertainty are referred to the human who

supplies the final prediction for those instances. In summary, the

model predicts for the instances of lesser model uncertainty, and

the human predicts for the instances of higher uncertainty.

Evaluation process. In this single label case, we do not know

how accurate the human is, and thus we assume the human is

always correct, i.e., the human will supply the ground truth label

for the referred instances. Hence, to evaluate the Referral

Learning method, we will evaluate the model’s predictions on the

non-referred instances. For example, if the model refers 20% of

the data, we evaluate the model on the non-referred 80%. If,

instead, we evaluated the dataset-level performance (i.e., both the

human’s and the model’s performances) rather than just the
FIGURE 3

Workflow of uncertainty-based referral learning for the single label case.
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model’s performance, this would mask the impact of referral on

the model’s performance, as referring more would always

improve dataset-level performance as the human is always

correct. Crucially, Referral Learning enables us to quantify the

quality of the uncertainty estimates through the performance

improvement that the referral brings.

Referral curves. We order the dataset based on the uncertainty

metric and refer the most uncertain fraction of data; this fraction of

the data that is referred is the referral rate. In Figure 4 (using the

Recurrent NN model example), we generate referral curves for our

best ensembling models by varying the referral rate and evaluating

the model’s performance on the non-referred data, respectively.

Our first baseline is random referral where we randomly refer a

portion of the data based on the referral rate. We also compute

the optimal referral, which is where the misclassified (i.e.

incorrectly classified) cases are referred first. However, this is a

theoretical upper bound, as it requires knowledge of the ground

truth test labels, which we do not have.

We next discuss our results. Firstly, we analyse the overall trend

that validates the Referral Learning method, and the exceptions to

this trend. We then investigate how this overall trend differs across

the four BDL models and the four main uncertainty metrics.

Finally, we explain the limitations of the method and how it may

be used in practice.

Key result. The model’s performance on the non-referred data

improves as the model refers more instances of high uncertainty.

This is clear from the upward trend (across models) in Figure 4.

Compared to the random referral baseline in Figure 4, the

uncertainty-based referral curves are significantly higher for all

referral rates and performance metrics.

This method of referring high uncertainty cases performs well

because uncertainty correlates with misclassification (i.e, incorrect

classification). We see this in Figure 5 where, for all models and

metrics, the median uncertainty, and indeed the entire uncertainty

distribution, for incorrect classification is significantly higher than

that for correct classification. To understand this, we consider the

three types of uncertainties, predictive, epistemic, and aleatoric.

Predictive uncertainty leads to proximity to the decision threshold

of 0.5. Epistemic uncertainty leads to a wider predictive

distribution (which is more likely to include the decision

boundary). Aleatoric uncertainty arises from noise in the data and,

therefore, especially in heteroscedastic cases, can be difficult for

the model to account for and not overfit. These three uncertainties

can lead to misclassification as, e.g., epistemic and predictive

uncertainty lead to the predicted probability scores fluctuating
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FIGURE 4

Referral curves for Recurrent NN Ensemble, for different performance and uncertainty metrics, including random and optimal referral.

FIGURE 5

Boxen plots comparing the Uncertainty Distributions for the four key uncertainty metrics (PE, MI, EE, and VR), subdivided by whether the classification is
correct, for three different models (see subfigure title). RNN-Ensemble, Recurrent NNs Ensemble; BRNN, Bayesian Recurrent NNs; TRF Ensemble, Text-
Level RoBERTa Ensemble (DementiaBank Dataset).

Popat and Ive 10.3389/fdgth.2023.1188338
more and are near the decision boundary, so they are more likely to

predict the incorrect class. Figure 6 supports this as each uncertainty

metric increases as we approach the decision threshold p ¼ 0:5 that

determines which label {0, 1} is predicted. Now that we have

established how uncertainty correlates with misclassification, this

translates to the performance gains we saw with the referral curves

in Figure 4. The uncertainty-based referral leads to performance
Frontiers in Digital Health 10
gains because the model is referring proportionately more

incorrect cases than the dataset currently contains.

We next analyse three exceptions to the overall trend of

performance improving as referral rate increases. The two

exceptions which show some performance reductions are some

models/metrics at high referral rates and the Text-level RoBERTa

Ensemble model’s ROC-AUC metric.
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FIGURE 6

Scatter plots comparing the uncertainty against the probability outputted by the Recurrent NN Ensemble for the four key uncertainty metrics (one per
subfigure—PE, MI, EE, and VR), divided by in/correct classification (DementiaBank Dataset).
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High referral rates. Some referral curves in Figure 7 display a

drop in performance as the referral rate approaches one or the

tolerance threshold approaches zero. This is for two reasons.

Firstly, the dataset size approaches zero, so the scores become

noisy as each datum referred has increasing impact on the
FIGURE 7

Referral curves for the four BDL models in a matrix of performance metrics
Recurrent NNs Ensembles; BRNN, Bayesian Recurrent NNs; BRNN-ENS, Bayesi
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performance score. Secondly, as explained previously, initially,

uncertainty-based referral leads to referring more incorrect than

correct instances proportionately than the current incorrect-

correct ratio in the dataset; conversely, when the tolerated

uncertainty approaches zero or referral rate approaches one, we
(rows) and uncertainty metrics (columns) (PE, MI, EE, and VR). RNN-ENS,
an Recurrent NNs Ensembles; T-TRF-ENS, Text-Level RoBERTa Ensemble.
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refer low uncertainty cases so we may refer proportionately more

correct than incorrect, than the dataset ratio, leading to a

performance decrease.

RoBERTa ROC-AUC issue. Further to the aforementioned

occasional performance decrease, in Figure 7, we see that Text-

level RoBERTa Ensemble has a sharp ROC-AUC decline for the

entropy-based metrics (PE, EE, and MI) and referral rates above

0.5. This is because ROC-AUC depends on the ROC curve,

which depends on the false positive Rate, but there are hardly

any false positives since hardly any data are misclassified as the

accuracy is around 95% when the ROC-AUC decline occurs.

Notably, this phenomenon does not occur for the VR metric for

Text-level RoBERTa Ensemble because the accuracy of the VR

referral never reaches that of the other entropy-based metrics at

the point which their ROC-AUC declines (95%).

Overall, we find that Text-level RoBERTa Ensemble is the best

BDL model both in terms of performance improvement and in

terms of the absolute referred performances. Crucially, we see that

this model surpasses the state-of-the-art accuracy of 88.1% (30) with

less than 20% referral. Significantly, accuracy improvements of above

3% can be achieved by referring a mere 10% of cases. We are most

interested in lower referral rates, as higher referral rates minimise the

model’s role in the model–human teamwork and increase the

number of costly and time-consuming human predictions.

3.2.2. Multiple labels case
Multiple labels means several humans have each provided a

label for every instance in the dataset and we are particularly

interested when these labels disagree about the MHC diagnosis.

In this section, we use the MIMIC dataset introduced earlier as it

provides multiple labels.

In the previous section, we saw how the model refers to the

human cases on which the model is uncertain. However, so far

we assumed that the human’s agreement is perfect, which is

rarely true in practical scenarios, as seen in Elmore et al. (15)

where clinicians can disagree in a substantial number of cases,

e.g., 25%. We drop this assumption in this section and focus on

improving the performance by better factoring in the human

element of the model–human collaboration.

Motivation and strategy. Consider the background of models

achieving similar performance to humans (9) and that the goal of

Referral Learning is better performance through model–human
FIGURE 8

Workflow of uncertainty-based referral learning for the multiple labels case.
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collaboration. The human handling the cases of high model

uncertainty may be suboptimal. Optimally, the human should

handle cases where they could predict more accurately than the

model and vice versa. More precisely, the strategy we consider is

that the model refers to the human instances of high model

uncertainty minus human uncertainty, which we define below.

Human uncertainty. Consider our multiple labels referral

strategy of referring cases of high model uncertainty minus

human uncertainty. How do we measure this human

uncertainty? Since the multiple human labels are binary in {0, 1}

rather than probability scores, most of the uncertainty metrics

presented earlier are less suitable as they are computed using the

probability scores directly. Hence, we use the VR metric, which

uses the binary labels directly, to compute the ground truth

human uncertainty per instance. For example, if the human

labels for a given patient are {0, 0, 1}, we compute the VR metric

on this to obtain the ground truth human uncertainty of 1
3. In

summary, we define the human uncertainty as the disagreement

of the multiple labels, specifically through the VR metric.

Estimating human uncertainty. Since this human uncertainty

is not available at test time in the real world, it would be ideal to

learn to estimate it (see Figure 8), for example, via a regression

model (55). However, due to data sparsity (only 73 positive

examples of human disagreement) and potentially lack of context

in the preprocessed EHR to determine the disagreement, the

model will not be able to produce reliable estimates.

Ground truth labels. To evaluate our other model that predicts

the MHC diagnosis (not the human disagreement model), we

require a ground truth MHC label, but we have multiple labels

for the same patient. Ideally, we would have a ground truth label

that determines which of the multiple labels are correct, but we

do not have this. We instead choose the majority label of the

multiple labels as the ground truth.

Evaluation process. Previously, in the single label case, we

evaluated the model’s performance on the non-referred portion

of the dataset. This is because we had no knowledge of the

human error rates and thus assumed the human had perfect

accuracy. By contrast, we now have information regarding the

human’s accuracy at a per-instance level through the multiple

labels. Hence, we evaluate the performance holistically at the

dataset level, i.e., the model is evaluated on the non-referred

portion of the data and the human is evaluated on the referred
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portion. How do we simulate the human’s prediction? We choose

the minority label as the human predicted label (recall that there is

only 10% disagreement so this is still 90% accurate). This option

gives the human the lowest accuracy of 90% and will therefore

better highlight the utility of this referral method.

We use the Recurrent NN Ensemble BDL model for predicting

the MHC diagnosis and for determining the model’s uncertainty.

Single label strategy. We first evaluate our single-label Referral

Learning strategy (referring instances of high model uncertainty) in

the multiple labels context. We consider this in two ways: (1)

without and (2) with the human prediction. (1) We verify that the

single-label Referral Learning strategy works for the Recurrent NN

Ensemble model with all four uncertainty metrics in Figure 9,

where we plot the model’s performance on the non-referred data.

(2) Then, we repeat this single-label referral strategy but we instead

plot the dataset-level performance in Figure 10. This is where the

model predicts for the non-referred data but now we simulate the

human predicting with 90% accuracy for the referred data by

taking the junior doctor label on the data with disagreement as

discussed in the Evaluation Process paragraph. Observe that the
FIGURE 9

Single Label Strategy Referral Curves, where the model refers cases of high m
only.

FIGURE 10

Single label strategy referral curves, where the model refers cases of high mod
simulated human prediction on the referred data.
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single label referral strategy performs well with the upward trend

when we consider the model’s performance on the non-referred

data alone in Figure 9 as it did for the dementia data, but we do

not see the upward trend when we factor in the human’s

prediction in Figure 10. The two reasons for the latter’s flat referral

curve is that the model and the human have similar accuracies of

around 90% and the referral is not optimal as the human and

model are not playing to their strengths as we shall see next.

Multiple labels strategy. We evaluate then the multiple labels

Referral Strategy (referring instances of high model minus human

uncertainty). We consider this in two ways, where the human

uncertainty is (1) ground truth and (2) estimated. We evaluate at

the dataset level, i.e., model and human combined performance.

For (1), consider Figure 11, where we refer using the model

uncertainty minus human uncertainty (computed using the

known human disagreement). Comparing to Figure 9, we see

that the multiple labels strategy performs better than the single

label strategy in two ways. Firstly, the multiple labels strategy has

a larger performance improvement for referral rates up to 0.2 as

the multiple labels strategy achieves a 5.5% improvement in F1
odel uncertainty and we evaluate performance on the non-referred data

el uncertainty and we evaluate performance at the dataset level using the
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FIGURE 11

Multiple labels strategy referral curves, where the model refers cases of high model uncertainty minus human uncertainty. This graph uses the ground
truth human uncertainty.
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score compared with 3% for that of the single label strategy.

Secondly, whereas in the single labels strategy the performance

declines after the referral rate reaches 0.2, for the multiple labels

strategy it does not decline quickly. Overall, the superiority of the

multiple labels strategy is because neither the model nor the

human is uniformly accurate and, thus, we exploit this so that

each covers the other’s weaknesses.

Discussion. MHCs are becoming increasingly prevalent in the

society. There is great potential for managing these MHCs using

DL models to assist human professionals. Currently, DL models

achieve excellent performance but have several downsides,

including that they do not quantify the uncertainty in their

predictions and they are not designed to support the human with

whom they collaborate. A solution to these two problems lies in

quantifying and using the model’s uncertainty. To this end, we

use BDL which allows us to quantify the model’s uncertainty in

its prediction for each patient. We then apply these uncertainty-

aware BDL models in the Referral Learning paradigm that

accommodates human–model cooperation.

In practice, Referral Learning can be used in two ways: (1)

triage or (2) support. The key distinction is that the human

predicts for only the referred instances in (1) and all instances in

(2). (1) Triaging is where the model handles the cases it

considers to be easier (low uncertainty, still monitored by the

human) and refers the more complex cases to the human (where

human cannot be biased by the proposed model suggestions).

Thus, we can analogise the triaging use case to the model

playing the role of a junior doctor who may be uncertain about a

case and thus refers it to a senior doctor/specialist. The support

use case (2) is where the human makes predictions for all

instances, and the model can be used to support the human,

verifying the human’s predictions for the cases that the model is

certain; the human can therefore devote more resources and

attention to those cases that the model is uncertain or where

there is model–human disagreement. A critical decision in either

use case (1) or (2) is the choice of referral rate, and this depends

on the performance requirements of the model and the human

prediction budget (time and money).
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For triaging, we also propose a Referral Learning method that

incorporates both model uncertainty from BDL and human

uncertainty that is estimated separately. We demonstrate that

better triaging occurs when the referral strategy incorporates

the human’s uncertainty.

Furthermore, we detail some limitations of the proposed

collaborative scenario:

Assumes similar model–human performance. The multiple labels

referral strategy relies on the model and human having similar

performance. This is implicit in referring based on model minus

human uncertainty, where we have equated the importance of

the model and human uncertainties. To overcome this, when the

model–human performances are dissimilar, we could weight the

objective, e.g., model uncertainty—a� human uncertainty.

In the future, we plan to incorporate full-scale simulations with

human clinical experts, enabling us to thoroughly examine

variations in the human decision-making. It is essential to

recognise that Referral Learning performance relies heavily on

the expertise and quality of decisions made by human experts,

whenever the algorithm seeks their consultation.

Model handles grey cases. The strategy to the human cases of high

model uncertainty minus human uncertainty means that the model

handles cases with low model uncertainty but high human

uncertainty. This is because the models having less uncertainty than

the human on the grey cases could arise from a more simplistic

predictive mechanism. This strategy could be adjusted for each

particular use case. A possible change is to refer to the human cases

of high model uncertainty plus human uncertainty. This means that

the human handles cases of both high model and high human

uncertainty, rather than high model but low human uncertainty.
4. Conclusion

MHCs are becoming increasingly significant in the society.

There is great potential for managing these MHCs by using DL

models to assist human professionals. Currently, DL models

achieve great performance but have several downsides including
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that they have unreliable fluctuating predictions and are not

designed to support the human with whom they collaborate. With

increased focus placed on the treatment of mental health

conditions as a route to promote society’s overall health,

collaboration of this nature is particularly important as AI has the

ability to help human doctors by complementing their expertise.

A solution to these downsides of DL models lies in quantifying

the model’s uncertainty. To this end, we use BDL which allows us

to quantify the model’s uncertainty in its prediction for each

patient. We investigate this thoroughly by implementing three

different Bayesian methods on three different DL models with

two datasets. We evaluate these BDL models on the basis of

performance and uncertainty, using a range of uncertainty

measures that we compare theoretically and empirically. Our best

BDL model is a deep ensemble of Transformer-based models

and performs comparably with the state-of-the-art ones. We have

analysed uncertainty metrics as powerful tools to unleash the

model’s potential to collaborate with humans.

We then propose to integrate these uncertainty-aware BDL

models into human–model cooperation via Referral Learning and

showcase the utility of uncertainty estimates. We demonstrate

that models can significantly improve their performance by

referring to the human the cases of high model uncertainty. In

particular, our best model surpasses the state-of-the-art

performance by referring approximately 15% of cases. This works

because the model’s uncertainty correlates with misclassification,

hence the model knows what it does not know. Referral Learning

can be used either (1) to support the human where the model

predicts only if it is sure or (2) to triage cases where the model

handles the easier cases and refers the harder cases to the

human. We, therefore, propose a novel method for Referral

Learning that incorporates both model uncertainty from BDL

and multiple annotations. This method leads to better triaging.

Overall, we show that uncertainty is an important asset that

paves the way for the AI community to translate its high-

performing DL models into clinical practice.
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