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Opioid-related harms and care
impacts of conventional and
AI-based prescription
management strategies: insights
from leveraging agent-based
modeling and machine learning
Narjes Shojaati* and Nathaniel D. Osgood

Department of Computer Science, University of Saskatchewan, Saskatoon, SK, Canada

Introduction: Like its counterpart to the south, Canada ranks among the top five
countries with the highest rates of opioid prescriptions. With many suffering from
opioid use disorder first having encountered opioids via prescription routes,
practitioners and health systems have an enduring need to identify and
effectively respond to the problematic use of opioid prescription. There are
strong challenges to successfully addressing this need: importantly, the patterns
of prescription fulfillment that signal opioid abuse can be subtle and difficult to
recognize, and overzealous enforcement can deprive those with legitimate pain
management needs the appropriate care. Moreover, injudicious responses risk
shifting those suffering from early-stage abuse of prescribed opioids to illicitly
sourced street alternatives, whose varying dosage, availability, and the risk of
adulteration can pose grave health risks.
Methods: This study employs a dynamic modeling and simulation to evaluate the
effectiveness of prescription regimes employing machine learning monitoring
programs to identify the patients who are at risk of opioid abuse while being
treated with prescribed opioids. To this end, an agent-based model was
developed and implemented to examine the effect of reduced prescribing and
prescription drug monitoring programs on overdose and escalation to street
opioids among patients, and on the legitimacy of fulfillments of opioid
prescriptions over a 5-year time horizon. A study released by the Canadian
Institute for Health Information was used to estimate the parameter values and
assist in the validation of the existing agent-based model.
Results and discussion: The model estimates that lowering the prescription doses
exerted the most favorable impact on the outcomes of interest over 5 years with a
minimum burden on patients with a legitimate need for pharmaceutical opioids.
The accurate conclusion about the impact of public health interventions
requires a comprehensive set of outcomes to test their multi-dimensional
effects, as utilized in this research. Finally, combining machine learning and
agent-based modeling can provide significant advantages, particularly when
using the latter to gain insights into the long-term effects and dynamic
circumstances of the former.
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1. Introduction

The risks associated with psychoactive prescription medicines

—particularly opioids—are significant issues of public health and

patient safety (1–4), and Canada is still among the top five

countries with the highest rate of opioid prescriptions for the last

15 years (5, 6). Some patients who were prescribed with opioids

have sometimes resorted to non-medical opioid use or illicit drug

supply due to various factors such as inadequate pain

management, lack of access to alternative treatments, mental

health issues, and addiction vulnerability (7, 8). In 2017, 11 lives

were lost each day owing to opioid overdoses in Canada, with

3,658 opioid-related deaths reported in 2019 (9, 10). During the

COVID-19 pandemic, this problem has become particularly

acute, with sharp rises in death rates of opioid overdose (10, 11)

and destabilizing effects in prescription opioids (12). Undeniably,

the opioid crisis continues unmitigated in Canada (13); therefore,

ensuring the safety of opioid use and adequate access to pain

management should be among the top priorities for the

healthcare system.

In recent years, a variety of policy interventions have been

suggested to restrain medical opioid dispensing (14, 15);

however, there are discrepant developments of decreasing opioid

availability and increasing opioid mortality (16–18).

Contradictions inherent in these interventions call for a systems

science approach (19) to consider broader structural conditions

contributing to the issue.

Systems science offers more holistic tools and framework for

improving the understanding and decision-making regarding

complex problems. Systems science methods enhance the

capacity to reason about complex system behavior in systems

marked by entangling of factors, feedbacks, path-dependence,

delays and non-linearities, local contextual dependence, and

distinct emergent behavior at different scales (20)—characteristics

that are each notable features of the opioid crisis. Dynamic

modeling within systems science supports alternative

mechanisms for characterizing the structure of complex systems,

which can aid in identifying key drivers that contribute to the

emergence and persistence of complex phenomena, such as

opioid use disorder (21, 22). Systems science and the dynamic

simulation models can be used to explore the complex nature of

the opioid crisis and study the effect of changes to the system

with minimal costs, risks, and time (23).

A set of literature reviews (24–27) summarizes present existing

research on the implemented dynamic models for prescription

opioid use and harms. While dynamic modeling and simulation

have been employed to study the different aspects of medical

opioid dispensing, they have not taken into consideration the

effectiveness of prescription regimes at the individual level, in

general, or in the specific Canadian context that forms the focus

of this work.

An agent-based model methodology can readily capture

population heterogeneity and facilitate the study of a wide variety

of the individual-level factors and their contribution to whole

system behavior by simulating nature’s evolution in opioid-

prescribing practices, based on a set of specified rules. In
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comparison with previous dynamic modeling approaches that

focus at an aggregate level, the individual-level characterization

that is the hallmark of agent-based modeling supports capturing

the effects of pro-social companionship and adverse social

networks, feedback, and history dependence at an individual level

—such as those associated with the development of tolerance and

escalation of dosage levels and ensuring physiological

dependence, stigmatization and the impact of adverse childhood

experiences—widespread heterogeneity, as well as the effects of

local context on a situated agent. With the application of an

agent-based modeling, a new insight from a complex interaction

of a whole system will often emerge, which was not seen before

(28–30). Within the prescription context of the opioid use and

misuse examined here, the utilization of an agent-based model

allows the computer to evaluate different scenario results

regarding altering prescribing practices, which can be examined

and optimized with lower resources and cost than would be

required for human trials (31). This paves the way for more

exploratory use of the model as the source of the observed data

and incorporation of a hidden Markov model (HMM) as a

simulation model enhancement to implement a prescription drug

monitoring program (PDMP) (32). A simple PDMP designed to

prevent diversion and misuse of controlled substances by

identification of possible “doctor–pharmacy shoppers” patterns

(i.e., overlapping opioid prescriptions or obtaining multiple

prescriptions from different prescribers and pharmacies) (33).

However, an HMM-aided PDMP aims to monitor the legitimacy

of prescriptions by leveraging the agent-based modeling and

machine learning algorithms to identify potential cases of opioid

overuse among patients.

A hidden Markov model (34) as a machine learning method

has been used to capture hidden information from a sequence of

observations over time. While there are various probabilistic

sequence classification methods available (35–37), the HMM is

specifically selected for this study over other approaches due to

its strengths in handling sequential data, capturing hidden

dynamics underlying the observed data, representing discrete

hidden states, and modeling transitions between such hidden

states. Furthermore, the HMM’s solid mathematical foundation,

satisfactory computational performance, and ability to provide a

clear representation of the underlying model enable more

meaningful interpretation of outcomes, particularly in the context

of health policy studies (38, 39).

To employ an HMM, acquiring intensive longitudinal data is of

utmost importance (34). A detailed set of data is utilized for

estimating the probability of a sequence of observations,

decoding the most likely sequence of hidden states underlying

such a sequence, and training the HMM parameters based on

those observations. An appropriate agent-based modeling

framework has the potential to generate high-quality data that

are specific for these purposes (40, 41). In this study, an HMM-

aided PDMP is implemented in the agent-based model (42) to

investigate whether the HMM could improve prescription drug

monitoring programs to detect these unobserved legitimate states

for any new opioid prescription filled by each patient and further

study the consequence of the HMM-aided PDMP intervention.
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The goal of the study is to emphasize the significance of

utilizing dynamic modeling and simulation techniques with the

integration of machine learning algorithms to investigate opioid

use disorder among patients who have been prescribed with

opioids. Utilizing an agent-based model is essential to serve as a

basis for an HMM-aided PDMP and explore possible

interventions while assessing any unforeseen consequences of

different prescription regimes. Accordingly, this paper consists of

the following sections: Section 2 presents the research

methodology and provides an overview of the conceptual model,

the agent-based model details, and the HMM-aided PDMP

implementation and outlines different policy interventions;

Section 3 discusses the different results of policy interventions;

and Section 4 conveys the overall conclusions of this study along

with policy suggestions.
2. Research methodology

In considering the complex nature of the opioid crisis (43, 44)

and data gaps in this area (45, 46), it is evident that a conceptual

model can facilitate developing an accurate and useful

computational simulation model to support decision-making in

the context of opioid therapy in the healthcare system (47).
2.1. Conceptual model for the opioid
therapy agent-based model

The opioid crisis remains a significant public health challenge

in Canada (13). Canada has one of the highest per capita

consumptions of prescription opioids worldwide (48, 49).

Prescription opioids are of particular concern, due to the

potential harms associated with them, such as overdose and

addiction (50). An estimated 8%–12% of patients who were

prescribed with these medications developed dependence and

started obtaining additional prescription opioids from different

means such as overlapping opioid prescriptions, feigning

symptoms of pain, or borrowing from other patients (7, 8). The

quest to use increasing quantities may shift patients to street

opioids (51). Potential shifts in opioid utilization and provision

may lead to a move toward stronger illicit resources, beginning

with heroin and possibly escalating to fentanyl (52, 53), to the

extent that the prevalence of synthetic opioids like fentanyl in

street opioids is responsible for 80% of all opioid-related deaths

recorded in Canada in 2021 (10).

The nature of opioid use and outcomes includes many

entangled components, rendering evaluation of the public health

impact of any changes in opioid-prescribed practicing is

extremely challenging. Particularly notable are challenges

associated with balancing the provision of pain relief for those

with acute chronic or transient pain, the desire to minimize the

development of high levels of tolerance and physical dependency

among those on prescription opioids, and the need to prevent

individuals whose dosing is restrained in this way from switching
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to or supplementing their use with illegitimate requests for

prescription or street-supplied opioids (54, 55).

Having stated the foregoing, Figure 1 represents a causal loop

diagram for the opioid therapy agent-based model. This causal

loop diagram shows the boundary of the model in terms of its

breadth and highlights two reinforcing feedback loops and one

balancing feedback loop in the current scope of the study. The

researchers benefitted from published literature, and expert

opinion in the development of this framework and consistent

with the understanding gained through interaction with those

with lived experience in this area.

As illustrated in Figure 1, the causal loop diagram assumes that

a proportion of the population is misusing their prescription after

the loss of adherence to opioid therapy, either by underusing or

overusing opioids. A fraction of these people who start

underusing might keep a portion of surplus opioids in their

medication cabinet, ready to share with others. Another fraction

of these people who start overusing might experience drug

tolerance, which means that the dose must be increased over

time to achieve the same effect (56). Therefore, they might

engage in a few common mechanisms to obtain illegitimate

prescriptions such as requesting frequent refills of opioid

prescriptions, feigning symptoms of pain, forgery of prescription,

and fraudulent telephone calls to pharmacies. These mechanisms

are implemented in the model through the inclusion of either at

least 1 day of overlapping opioid prescriptions or the

procurement of new opioid prescriptions illicitly. The process

creates the first reinforcing loop. The overusing patients who do

not attempt to obtain illegitimate prescriptions seek surplus

prescriptions acquired from others to address their increasing

required doses. The process creates the second reinforcing loop.

As the patients demand surplus opioid prescriptions, the overall

source of surplus opioid prescriptions decreases. Because of this

balancing feedback loop, the patients might shift to street opioids

to address their needs.

Furthermore, the following statements describe the boundary

of the model in terms of the depth of detail that was

implemented for each person within the scope of the model. The

model includes a population of 50,000 individuals, each

characterized by two properties: opioid prescription dose and

duration of treatment. Each individual has one type of social

connection network, and the possible final states for an

individual are either shifting to street opioid use or showing the

signs of overdose.
2.2. Agent-based model and simulation

Designing a detailed conceptual model paved the way for

developing and implementing a more detailed computational

simulation model. As a result, an agent-based model was

developed and implemented to examine the potential impact of

reducing the opioid prescription dose and treatment durations, a

simple PDMP and an HMM-aided PDMP on potentially

important outcomes of interest such as medical and non-medical

overdose, individuals who escalate to street opioids, legitimate,
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FIGURE 1

Causal loop diagram for the opioid prescription practicing consequence. This causal loop diagram consists of variables connected by arrows showing
causal influence, with each relationship being positive (e.g., an increase in “Receiving opioid therapy” leads to an increase in “Overusing prescription
opioids” compared with the value it otherwise would have held, ceteris paribus) or negative (e.g., an increase in “Borrowing prescription opioids from
others” leads to a decrease in “Available surplus prescription opioid” compared with the value it otherwise would have held). Closed loops denote
feedback, which is either reinforcing (R1 and R2) or balancing (B1). A switch to a supply of street opioids represents a situation where prescription-
related factors may no longer apply.
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illegitimate, and total filled opioid prescriptions over a 5-year time

horizon, which spans from 2013 to 2018. This time interval is

consistent with the time period reported in the literature and

does not include any temporary alterations in the opioid

prescription practice that may have occurred during the COVID-

19 pandemic. The agent-based model was developed using the

simulation software AnyLogic version 8.8.1 (57), which is a

simulation tool that performs the major types of systems science

simulations (58). The model time unit is 1 day, and the model

operates in a continuous time. The model is initialized after a 5-

year burn-in period. After this 5-year burn-in period, the

patients exhibit different histories states of use of prescribed

opioids and resulting differences in adherence to opioid

treatment. Therefore, the model started to show a meaningful

and constant pattern after a 5-year burn-in period, and any

calibration or experimentation is run after that period.

2.2.1. Agent-based model structure and
agent-characteristics

The agent-based model presented in this study characterizes

the dynamics of opioid prescribing in Canada and can be used

to evaluate different intervention responses to reduce harms

associated with prescription opioid use. There is only one type of

agent in this model: person. The dynamic of opioid prescribing

for each person is captured via two state charts: the opioid-

prescribing state chart (depicted in Supplementary Figure S1)

and the medication adherence state chart (depicted in

Supplementary Figure S2).
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At the topmost level, the opioid-prescribing state chart

(depicted in Supplementary Figure S1) characterizes whether

the individual was or was not in opioid therapy in the past

year. In the opioid therapy state, based on the duration of the

prescription of the patient, that patient is further characterized

as to whether they are on short-term therapy or long-term

therapy. The people in the not in opioid therapy state transition

into opioid therapy based on two different prescription

initiation rates specified for new or established patients,

respectively. These rates were determined based on the

calibration experiment. To enter the opioid therapy state, firstly,

the patients seek their prescriptions in one eponymous state

and, upon receiving such prescriptions, move to the opioid

therapy state. Another thing that occurs in the seeking

prescription state is the HMM-aided PDMP, which classifies the

requests for an opioid prescription to legitimate or illegitimate

ones and therefore stops the person with an illegitimate opioid

prescription from entering the opioid therapy state. Further

information about the implantation of the HMM-aided PDMP

is provided in Section 2.3.

As the patients initiate opioid therapy, a new opioid

prescription dose and a new anticipated treatment length will be

assigned to each patient based on custom distributions that are

parameterized from CIHI data (48). Absent developing opioid

overuse, all patients exit opioid therapy following the length of

treatment based on timeout transitions.

Losing adherence to opioid treatment is implemented using the

medication adherence state chart (depicted in Supplementary
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Figure S2), where people are divided into two groups via a binary

representation of adherence to opioid treatment. When the

patients receive an opioid prescription, they move to an

adherence state. An internal timeout transition in adherence

state calculates the remaining total prescription opioid dosage

in case of loss of adherence. As time passes, each person might

lose adherence based on a geometric growth function

implemented inside an external timeout transition and move to

a non-adherence state. Then the patients are divided into two

main groups in non-adherence state, which are the underuse

prescribed opioids or overuse prescribed opioids. This division

is based on a possibility portion driven from literature. In the

underuse state, each patient decides to store a portion of

surplus prescribed opioids or dispose of them. After the initial

treatment length finishes for the person in the underuse state, a

transition fires, and the patients exit the underuse state and

enter the free opioid state.

If a patient enters the overuse state after losing adherence to

opioid treatment, the patient requires higher doses compared

with the initial prescribed dose, which is calculated using a

geometric growth function implemented within an internal

timeout transition. Another internal timeout transition

calculates the remaining opioid dose, and as the current

available opioid prescription finishes, a transition fires;

therefore, the patients start looking for other resources of

available opioid prescription.

A portion of patients start to look for the possibility of

obtaining illegitimate prescriptions. If any of the mechanisms for

obtaining illegitimate prescriptions is successful, a transition fires

and the patients move to the taking prescription opioids state.

Some patients are not successful to obtain illegitimate

prescriptions, as well as other patients who do not try obtaining

illegitimate prescriptions start to investigate their network for

others with surplus prescription opioids implemented inside a

timeout transition. If a patient obtains prescription opioids from

others that meet the needs of the patient in terms of the required

opioid doses, a transition fires and moves the patient to the

taking prescription opioids state.

Any successful obtaining of prescription opioids keeps the

patients in the overuse state while using prescription opioids.

The patients who fail to obtain prescription opioids move to the

seeking street opioids state. A small portion of patients in the

overuse state might stop using opioids and seek out of this state

because of self-caring or treatment, based on a rate transition.

Patients at any state of opioid therapy have a transition to an

overdose state governed by a hazard-rate based on the annual

overdose rate considering recent opioid dose. The cumulative

count of medical overdoses is calculated as the cumulative count

of overdoses that occurred for the patients in the adherence state.

The cumulative count of non-medical overdoses is calculated as

the cumulative count of overdoses that occurred for the patients

in the non-adherence state, which implies that the patients take a

dosage other than the medically recommended one. (Note that

other assumptions in translation from the real world into the

opioid therapy agent-based model are provided in the

Supplementary Table S2).
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2.2.2. Population and network
Agents were placed into a modeled environment of 50,000

persons, and the model incorporated a cohort population. The

interaction of people in the model is essential when the patients

start to look for surplus opioids through their connections. These

interactions make use of a social network; for this purpose, the

population was associated with an Erdos–Renyi network (59).

Thus, people are connected randomly with a given average

number of connections per person. Within the model, 60% of

individuals know five or more people that aligns with the

existing literature (60, 61) (see Supplementary Figure S3). The

network connections for each individual are set at the

initialization of the model and remain invariant throughout the

simulation.
2.2.3. Parameterization
A study released by the Canadian Institute for Health

Information (CIHI) (48) provided the custom distribution of the

prescribed dose and duration for new and established patient

prescribed opioids within Canada. This study was used, together

with information from a review of the literature on adherence

with opioid therapy to estimate the parameter values needed for

building the agent-based model. The information to estimate the

occurrence of other relevant behaviors such as opioid overuse

and overdose possibility was obtained from relevant literature,

which the reported data should be adjusted for smoking,

depression, pain site, age, and gender. Supplementary Table S1

summarizes the parameters and their sources.
2.2.4. Sensitivity analyses, calibration, and
validation of the model

Sensitivity analyses were conducted to identify the sensitive

parameters in which the model outcome was affected by changes

in them. Thus, the calibration was performed on these sensitive

parameters to find their values that best replicated the reported

data in the literature. During the calibration process, we

manually varied a set of model parameters until the model

outputs approximated the empirical data (see Supplementary

Tables S3, S4). Furthermore, seven outcomes were utilized to

validate the outcomes of the agent-based model over a 5-year

time horizon against the empirical data reported by CIHI (48) or

in the related literature including the proportion of people

starting opioids without being prescribed with opioids in the past

year and the proportion of patients on opioid therapy (see

Supplementary Figure S4), the proportion of patients prescribed

with opioids who either underuse or overuse them, and the

proportion of patients who develop an opioid use disorder after

being prescribed with opioids and subsequently overuse them

(see Supplementary Figure S5), the proportion of patients on

long-term opioid therapy and the proportion of patients who

overuse prescription opioids transition to street opioids (see

Supplementary Figure S6) and the prevalence of illegitimate

opioid prescriptions (see Supplementary Figure S7).

At that point, a set of requirements to establish the model’s

credibility and validity was met, and the model is deemed
frontiersin.org
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suitable as a source of observed data to train the HMM-aided

PDMP. It also explores different policies targeting the reduction

of prescription opioid misuse.
2.3. Prescription drug monitoring program
implementation using the two-state hidden
Markov model

One of the most challenging tasks for any practitioner is to

assess the legitimacy1 of prescriptions (63) for controlled

substances (64). In the implemented model, as different studies

of the prescription opioid use have found (65–67), some patients

are more likely to seek additional prescription opioids due to

building tolerance. They may try to fulfill their need through

different pathways such as obtaining extra opioid prescriptions

(68). In this case, the prescription opioids are no longer safe and

effective in treating the medical condition of the patient and,

therefore, potentially used for illegitimate purposes. Moreover,

there is always some chance for these people to stop seeking

additional prescription opioids based on self-care or treatment

(69). Therefore, considering the ultimate goal of a prescription

drug monitoring program to facilitate the fulfillment of legitimate

prescriptions while preventing illegitimate ones, it is justifiable to

incorporate two unobserved states, namely, “Legitimate” and

“Illegitimate,” for each new opioid prescription, which rely on

the present state of adherence of the patient and are not directly

observable to practitioners.

Due to the challenges in obtaining integrated longitudinal data

of the patients undergoing opioid prescription treatment, the

training data for the HMM was produced by running the above-

calibrated agent-based Monte Carlo simulation model with 10

realizations (each equipped with a different random seed) for 10

years. Consequently, the data for a subset of agents were

collected to serve as the training data set for the HMM. By

employing random sampling techniques, the Monte Carlo

simulation allows for the exploration of a wide range of possible

scenarios and outcomes, facilitating a broad understanding of the

behavior of the system. The Monte Carlo simulation involved

ensembles of 10 realizations, each possessing a unique random

seed, to help capture the inherent variability in the system and

enhance the robustness of the analysis. The conceptual model

assumes that the patients initially adhere to opioid prescriptions.

Therefore, the model is simulated for a duration of 10 years, and

the data from the entire period for each individual is retained to

maintain the desired initial probability of starting from an

adherence state, regardless of the fact that the HMM-aided
1“Legitimate medical purpose means a therapeutic treatment regimen or

program generally recognized and accepted in the field of medical science

as being safe and effective in the diagnosis, treatment, correction, or

alleviation of the specific medical condition of the patient under all

relevant circumstances” (62).
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PDMP can be utilized at any point in the opioid therapy

trajectory of a patient. Therefore, by utilizing a Monte Carlo

simulation with 10 realizations over a 10-year period and

drawing upon the data from a limited subset of agents, a robust

training data set was generated for the HMM-aided PDMP. The

validation data set, on the other hand, was obtained by excluding

the initial 5-year burn-in period and encompassing a

considerable population of agents. In addition, a Monte Carlo

simulation with 100 realizations was conducted, introducing

novel and previously unseen data for validation purposes. This

approach facilitates the evaluation of the performance of the

HMM-aided PDMP and its capacity to extend beyond the

confines of the training data, thereby enhancing its reliability and

effectiveness. To explore the receiver operating characteristic

(ROC) curve, the HMM threshold range was set between 0 and

1, with an incremental step of 0.1. However, when there is a

significant jump between outcomes in the receiver operating

characteristic and precision-recall curves, the incremental step

was reduced to 0.01. This range allows for a comprehensive

exploration of different threshold values and their impact on the

classification of prescriptions as legitimate or illegitimate opioid

prescriptions.

Throughout each such realization, the data for any new opioid

prescription claimed by each patient were reported, including the

prescription date, prescription duration, and prescription dose of

the opioid. To extract the parameters of the HMM from the

reported data, further observations—such as the cumulative

count of opioid prescriptions for each patient, cumulative opioid

doses, cumulative prescription duration, overlap for each

prescription with the previous one, and the time interval between

each prescription—also are calculated based on the reported data.

An exploratory investigation of the longitudinal data of the

patients finds that the “Legitimate” state and “Illegitimate” state

of the prescription correspond to two distinct categorical

distributions for dichotomous prescription overlap and fraction

of time in which the patient was not on opioid therapy. This

difference raises opportunities for machine learning-based

classification of a given prescription refill attempt on the basis of

these patterns. The opioid prescription overlap as the observation

input was split into a vector of two sub-features as overlapping

prescription and non-overlapping prescription. Furthermore,

using the lower extreme of the box plot (disregarding outliers) of

the fraction of time which legitimate patients were not on opioid

therapy, the fraction of time which any patient was not on

opioid therapy was also split into a vector of two sub-features

less than and equal to the lower extreme and higher than the

lower extreme. Finally, as a combination of these two separate

categorical distributions, four observations for each state are

defined. Using a package in R named “mHMMbayes” (70), the

HMM parameters were estimated as depicted in Figure 2. The

complete mathematical description of HMM algorithms and

equations can be referenced in (71), while the discussion of the

well-documented R package mHMMbayes can be found in (42,

72–74). In brief, the R package mHMMbayes fits the model by

employing a hybrid Metropolis within Gibbs Markov Chain

Monte Carlo algorithm. This approach extends the traditional
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FIGURE 2

Graphical representation of the HMM-aided PDMP. This HMM-aided PDMP consists of initial state probabilities (represented by black arrows), hidden
states (represented by circles), transition probabilities (represented by blue arrows), observations (represented by squares), and emission probabilities
(represented by brown arrows).
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HMM implementation by incorporating Bayesian estimation

techniques (75). Therefore, the longitudinal data of various

agents was studied using a multilevel HMM simultaneously, in

which the aggregated level model was trained on agent level data

with one overall categorical distribution (73).

Finally, the forward- backward algorithm was implemented in

the agent-based model to compute the posterior marginals of two

hidden state variables for any new prescription presented by a

patient, given a sequence of previous observations of the

prescription of the patient at the seeking prescription state. Then,

based on the HMM-assumed thresholds, the prescription is

classified as a legitimate or illegitimate opioid prescription.

Illegitimate requests for opioid prescription cannot be filled;

therefore, the person stops from entering the opioid therapy state

in the opioid-prescribing state chart.

For each HMM threshold set between 0 to 1, with incremental

step equal to 0.1 (in certain circumstances, in 0.01: see above), a

Monte Carlo simulation for 10 years with 100 runs and a

random seed was conducted. After the 5-year burn-in period for

the model, the HMM-aided PDMP started to classify each

prescription as a legitimate or illegitimate opioid prescription,

and key metrics such as the cumulative number of correctly and

incorrectly predicted positive cases, as well as the total positive

cases and the total negative cases of illegitimate opioid

prescription over 5 years, were reported. The initial analysis of

these outcomes highlights that the HMM-aided PDMP is an

imbalanced classification problem. Therefore, the HMM-aided

PDMP performance with different HMM thresholds was

evaluated via different metrics such as sensitivity (recall),

specificity, concordance probability, accuracy, and F1 score. False

negatives represent cases where the HMM-aided PDMP fails to
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identify illegitimate prescription refills, and mistakenly classifying

them as legitimate. These instances pose a concern as they

indicate missed opportunities to detect and intervene in

potentially harmful situations. True positives refer to the correct

identification of illegitimate prescription refills by the HMM-

aided PDMP. These instances demonstrate the ability of the

HMM-aided PDMP to accurately detect and flag suspicious

behavior, aiding in preventing the misuse of prescription drugs.

Minimizing false negatives and maximizing true positives are

essential to ensure the effectiveness of the HMM-aided PDMP in

accurately detecting illicit activities. Furthermore, false positives

refer to cases where the HMM-aided PDMP incorrectly identifies

legitimate prescription refills as illegitimate. These instances can

lead to unnecessary interventions or delays for patients who

legitimately require the prescribed medications. True negatives

represent cases where the HMM-aided PDMP correctly identifies

legitimate prescription refills. Minimizing false positives and

maximizing true negatives are essential in ensuring that

legitimate patients receive the medications they need without

unnecessary interventions or delays. Sensitivity (i.e., recall)

measures the ability of the HMM-aided PDMP to correctly

identify true positives, that is, accurately detecting illegitimate

prescription refills. A high sensitivity indicates that the HMM-

aided PDMP has a strong capacity to capture instances of illicit

activity, minimizing the risk of false negatives. Specificity

evaluates the ability of the HMM-aided PDMP to correctly

identify true negatives, referring to the accurate identification of

legitimate prescription refills. A high specificity implies that the

HMM-aided PDMP can effectively distinguish between legitimate

and illegitimate cases, reducing the occurrence of false positives.

Accuracy reflects how well the HMM-aided PDMP performs in
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correctly classifying both legitimate and illegitimate prescription

refills. It considers the combined impact of true positives, true

negatives, false positives, and false negatives. A higher accuracy

indicates that the HMM-aided PDMP is making more correct

predictions overall. Concordance probability measures the

probability that the HMM-aided PDMP will rank a randomly

chosen illegitimate refill higher than a randomly chosen

legitimate refill. A high concordance probability indicates a

strong discriminatory power of the HMM-aided PDMP, where it

can effectively differentiate between the two classes. While the

concordance probability focuses on the overall discriminatory

power of the model, the F1 score considers the trade-off between

precision and recall, and also providing insight into the overall

performance of the HMM-aided PDMP. The F1 score is

particularly valuable in scenarios involving imbalanced data sets,

as is the case in this study where the emphasis lies on accurately

rejecting illegitimate prescription fillings while ensuring

legitimate prescriptions are filled. To provide additional

information regarding precision, it can be stated that precision

indicates the ability of the HMM-aided PDMP to accurately

classify true positives while minimizing false positives. A high

precision score implies that when the HMM-aided PDMP flags a

refill as illegitimate, it is highly likely to be correct.
2.4. Interventions

To study the potential impact of reducing the opioid

prescription doses and treatment durations, a simple PDMP and

the HMM-aided PDMP on outcomes of interest, different

interventions were examined. These interventions involved the

following:

• Reducing the opioid prescription dose from baseline by 5%,

10%, 15%, 20%, and 25%.

• Reducing treatment duration from baseline by 5%, 10%, 15%,

20%, and 25%.

• Applying a simple PDMP that prevents filling overlapped opioid

prescriptions.

• Applying the HMM-aided PDMP with four different HMM

thresholds (i.e., 0.20, 0.30, 0.40, and 0.50) demonstrated a high

F1 score, a high concordance probability, and a low false

positive rate.

• Combinations of dual reductions in the prescription doses by

5%, 10%, 15%, 20%, and 25%, and treatment duration by 5%,

10%, 15%, 20%, and 25%.

• Combinations of any of the above interventions in which

particularly strong benefits occurred when considered in

isolation.

For each intervention or combined interventions, a Monte Carlo

simulation with 100 realizations was conducted to ensure that a

broad set of values for the parameters treated as random

variables was drawn from distributions. To accommodate

transients associated with the initial state, each simulation

employed a 5-year burn-in period for the model. Following the

burn-in period, the model was run for a time horizon of 5 years
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more to track outcomes of interest for each run. Finally, the

result section reported percentage change of medical and non-

medical pharmaceutical opioid use-related overdoses, percentage

change of street opioid initiation, and percentage change of

legitimate, illegitimate, and total filled opioid prescription from

the baseline over 5 years for each intervention or selected

combined interventions. These outcomes were compared across

interventions to identify the most effective intervention for

reducing the harms associated with prescription opioid use.
3. Results

The baseline scenario yields approximately 326,500 opioid

prescription fills with 3% illegitimate requests for prescription over

5 years. Meanwhile, 18% of the patients prescribed with opioids in

the model misuse them at any given time, and 4% of the patients

who misuse prescription opioids eventually transition to street

opioids. The total number of opioid overdoses is approximately 200

over 5 years, which implies that the prevalence of overdose among

patients treated with prescribed opioids is 0.03%.
3.1. Single interventions

3.1.1. Lowering the prescription doses
Supplementary Table S6 shows the results of lowering the

prescription doses for the 5-year outcomes of interest. Over 5

years, lowering the prescription doses by 5% would provide a

0.25% reduction in medical overdose; with a 15% and 25%

reduction in dose, the effect changes to 5.32% reduction and

11.41% reduction in medical overdoses, respectively.

Lowering the prescription doses has also a favorable effect on

non-medical overdoses. Over 5 years, lowering the prescription

doses by 5% would provide a 1.27% reduction in non-medical

overdose: with a 15% and 25% reduction, the impact changes to

5.02% reduction and 12.17% reduction in such overdoses.

Lowering the prescription doses slightly decreases the total

number of individuals who escalate to heroin over 5 years (by a

1.65% decrease and 3.85% decrease in such escalation for a 15%

and 25% dose reduction, respectively). Moreover, lowering the

prescription doses would have a modest effect on reducing the

total number of filled opioid prescriptions, yielding a reduction

by 0.05% and 0.30% for a 15% and 25% lowered dose,

respectively, over 5 years. It further secures a reduction in

illegitimate opioid prescriptions (reducing such prescriptions by

2.61% and 6.86% for a 15% and 25% lower dose, respectively,

over 5 years). It is notable that such results exhibit an elasticity

of effect, leading, for example, to a doubling of the reduction in

dose more than doubling the benefits in certain outcomes of

interest. Such effects suggest the value of a closer examination of

the dependence of such results on dose changes.
3.1.2. Lowering treatment duration
Supplementary Table S6 shows results of reductions in

treatment duration on the 5-year outcomes of interest. Lower
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treatment durations have a larger favorable impact on both medical

and non-medical overdoses over 5 years. Lowering treatment

duration in the model by 15% yields a reduction in medical

overdose and non-medical overdose of 7.59% and 14.33%,

respectively, over 5 years. Lowering treatment duration by 25%

would provide a 14.47% reduction in medical overdose and

27.13% reduction in non-medical overdose, respectively, over 5

years.

Such benefits must be counterbalanced with the fact that

lowered treatment duration in the model imposes the worst

outcome in terms of the total number of individuals who escalate

to heroin over 5 years. Specifically, 15% and 25% lower

treatment duration in the model yields a 6.01% increase and

8.24% increase escalation to heroin over that half-decade,

respectively.

A lowered treatment duration also results in an increase in the

number of filled opioid prescriptions over 5years, with a 3.83%

increase and 6.75% increase in such filled prescriptions resulting

from a 15% and 25% lowering in treatment duration,

respectively, over 5 years. Reduced treatment duration also leads

to a superlinear increase in illegitimate opioid prescriptions by

4.85% and 10.52% for a 15% and 25% lowering in treatment

duration, respectively, over 5 years.

3.1.3. Prescription drug monitoring program
In order to examine the effectiveness of the HMM-aided

PDMP, the ROC curve and associated area under the curve

(AUC) for different HMM thresholds (see Supplementary

Figure S8) and the precision-recall curve and associated AUC

for different HMM thresholds (see Supplementary Figure S9)

were calculated. Plausibly acceptable frequencies of positive and

negative results of the HMM-aided PDMP across both ROC and

the precision-recall curves can be achieved with HMM thresholds

equal to 0.2, 0.3, 0.4, and 0.5. This set of HMM thresholds is

located progressively closer to the upper left-hand corner in the

ROC curve plot and the upper right-hand corner in the

precision-recall curve plot that reflects the progressively greater

discriminant capacity of the HMM-aided PDMP. In addition,

they exhibit a high F1 score, a high concordance probability, and

a low false positive rate compared with other HMM thresholds

(see Supplementary Table S5). The corresponding AUCs

confirm that the HMM-aided PDMP has a suitable predictive

ability to differentiate illegitimate prescription refills from

legitimate prescription refills.

Supplementary Table S7 shows results for a simple PDMP

(i.e., blocking the acquisition of overlapping prescriptions) and

the HMM-aided PDMP interventions. The simple PDMP has

only a small effect on medical and non-medical overdose

(yielding a 0.24% increase and 0.59% reduction, respectively). By

contrast, the simple PDMP exerts a large reduction in illegitimate

opioid prescriptions (41.89% over 5 years), leading to a massive

number of individuals who cannot access opioid prescriptions

and who therefore escalate to street opioids (resulting in a

101.97% increase over 5 years). While the HMM-aided PDMP

shares only a small impact on medical overdose (by 0.63%

increase and 0.24% increase for 0.2 and 0.4 HMM- threshold,
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respectively), the HMM-aided PDMP has a larger impact on

non-medical overdose (yielding a 2.11% reduction and 4.20%

reduction for HMM-thresholds of 0.2 and 0.4, respectively).

Compared with the Baseline, the HMM-aided PDMP also

achieves notable decreases in illegitimate opioid prescriptions,

with 0.2 and 0.4 HMM thresholds yielding reductions of 44.30%

and 43.45%, respectively, over 5 years. However, the advantages

of the HMM-aided PDMP are subject to a crucial side effect

shared with its simple PDMP counterpart: significant increases in

the number of individuals who shift to street opioids. Specifically,

the HMM-aided PDMP precipitates 105.43% and 94.97%

increases in transitions to street options for HMM thresholds of

0.2 and 0.4, respectively.
3.2. Combined interventions

Supplementary Table S8 shows results for combinations of

two interventions—lowered prescription doses and lowered

treatment duration—with different levels of reduction. The most

favorable impact in reducing three outcomes of interest

(cumulative count of medical and non-medical overdoses and

count of individuals who escalate to street opioids) was achieved

by lowering treatment duration by 5% combined with lowering

the prescription dose by either 20% or 25%. Illegitimate opioid

prescriptions also decreased with these combinations.

Strong reductions in medical and non-medical overdose would

also be achieved with the combination of a 25% reduction in the

prescription dose with lowering treatment duration either by 10%

or 15%; however, this combination also leads to a slight increase

in individuals who escalate to street opioids.

Supplementary Table S9 shows results for three interventions,

each representing a combination of interventions in which

particularly strong benefits occurred when considered in

isolation. These combined interventions are the following: (1) the

combination of lowering the prescription doses by 25% and

the HMM-aided PDMP with threshold equal to 0.40; (2) the

combinations of lowering treatment duration by 25% and

the HMM-aided PDMP threshold equal to 0.40; and (3) the

combination of lowering treatment duration by 10%, lowering

the prescription doses by 20%, and the HMM-aided PDMP

threshold equal to 0.40. In all three cases, intervention

combinations are less beneficial than the lowering the

prescription doses or treatment durations by corresponding

amounts in isolation and leading to nearly two times higher

escalation to street opioids relative to the baseline.
4. Discussion

This work sought to secure both methodological and public

health insights from the use of a machine learning-equipped

stylized agent-based simulation model characterizing dynamics

associated with prescription opioid use and the risk of shifts to

street-sourced opioids. While this work evaluated the accuracy

extending from using the hidden Markov model to recognize the
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individuals engaged in opioid seeking for legitimate needs, it did so

in the broader context of a simulation model recognizing the risk

that the individuals flagged as engaged in doctor shopping would

transition to street opioid use, and of overdoses. As an example

of the application of this framework, this work investigated the

opioid overdose and street opioid escalation impacts of two

policies targeting opioid prescription practices among patients

prescribed with pharmaceutical opioids.

The majority of the data utilized in this work was sourced and

derived from a study published by the Canadian Institute for

Health Information (48), a Canadian Federal institution that seeks

to preserve public trust by placing foremost importance on ethical

considerations and responsible data handling practices. In its

commitment to the Canadian public, CIHI is committed to

protecting patient privacy, ensuring data security, addressing biases

in data collection and analysis, and promoting transparency and

accountability (76). Furthermore, we carefully documented and

detailed the assumptions made during the development of the

simulation model to ensure transparency and provide a clear

understanding of the underlying principles. We additionally

employed rigorous validation procedures to assess the performance

of the simulation model and assess potential biases.

At a methodological level, the findings suggest both the

practicality and desirability of informing agent-based models using

machine learning methods at an individual level. This work

further demonstrated that the simple and computationally frugal

approach of the hidden Markov modeling can achieve favorable

accuracy profiles, raising the potential for more heavily data-driven

approaches to further boost both the accuracy of the classification

and the public health gains from HMM-informed policies.

With respect to the example policies examined here, the

simulation model findings suggest that if used aggressively to

lower doses, lowering the prescription doses could have the most

favorable impact on the outcomes of interest over 5 years while

minimizing burden on the patients with a legitimate need for

pharmaceutical opioids.

Lowering treatment duration would introduce varying degrees

of potential unintended consequences by escalating some patients

who cannot access prescribed pharmaceutical opioids to street

opioids. These unintended consequences vary widely across

different types of intervention, especially with the PDMP. Both

the simple PDMP and the HMM-aided PDMP readily reduced

the number of illegitimate opioid prescriptions and decreased the

supply of prescription opioids, but thereby caused some patients

to shift to street opioid use.

Note that a combination of lowering in prescription doses and

lowering in treatment duration did not perform much better than

lowering the prescription doses, considered alone, with the respect

to all outcomes of interest. Moreover, the combination of the

HMM-aided PDMP with other interventions presented above are

only examples of the more than 100 possible combinations of

strategies, and in the exploratory testing of other combinations of

strategies, the adverse influence of the HMM-aided PDMP on

escalation to the street opioids is always a pronounced dynamic.
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The current study offers two primary findings. The first is that it

is misleading to consider combined interventions to always provide a

greater positive effect on the potential issue than any single policy.

While the combined interventions exert a large positive impact on

reducing both medical and non-medical opioid overdose, when

considered in terms of reducing the number of individuals who

shift to street opioids, none of the combined interventions

achieved more favorable outcomes than the single intervention of

lowering in opioid dose by 25%. Ultimately, it is essential to create

a comprehensive set of outcomes to test the multi-dimensional

effect of the suggested interventions.

The second major finding is the strong benefits conferred by

jointly conducting machine learning and agent-based modeling

when using the latter to understand the downstream

consequences and characterize the dynamic context for the

former. Within the application examined here, the individual-

level simulation model incorporated machine learning as a

component of individual-level policy targeting, with the agent-

based model characterizing both the patient–provider encounters

that required such evaluation, and the subsequent evolution of

the patient trajectory, including their experience of adverse

events. While other studies have examined the prescription or

short-term outcome classification accuracy achieved by machine

learning strategies on the records of prescription drug use

(77–80), the current modeling analysis is the first to demonstrate

that the HMM-aided PDMP could be more beneficial in reducing

overdose among patients who have been prescribed with opioids

than simple PDMP. More significantly, beyond the use of a

simulation model serving to produce a set of well-grounded data

to test the possibility of applying machine learning to healthcare

problems, this implementation demonstrates that a simulation

model can evaluate the trade-offs involved in the application of

machine learning algorithms in healthcare more broadly and in

more textured contexts than is traditionally pursued, by evaluating

the impact of healthcare machine learning-supported decisions

within and on the life course of the patient.

This study is encumbered by a number of notable limitations.

The scope of the model excludes consideration of measures that

would reduce the necessity of continued opioid use, such as

through the use of alternative pain management techniques.

Furthermore, the current model differentiates neither between fatal

and non-fatal overdoses, nor between accidental and intentional

overdoses. However, based on adherence of the patient to opioid

treatment, overdoses are classified into two categories: medical and

non-medical overdoses. This classification offers strong benefits in

evaluating the suggested interventions. Moreover, the current model

does not consider the uses of illegitimate opioid prescriptions to

obtain pharmaceutical opioids for resale; within the current work,

such prescriptions are considered as being solely intended for

personal use. The hidden Markov model seeking to address the

diversity of opioid use behaviors in a broader empirical context

may require additional latent states and transitions to capture the

distinct patterns of opioid seeking and transition dynamics that are

observed in this broader context. The scoping of this part of the
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agent-based model may serve to partly compensate for the model’s

exclusion of consideration of other avenues of accessing diverted

opioids, such as pharmaceutical opioids that were lost or stolen

from community pharmacies, companies, or hospitals.

The current simulation model can render less stylized and by

providing it with stronger empirical grounding data about

pharmaceutical opioid use from other sources, including

untraditional forms of data, such as from social media and

wastewater surveillance systems. Moreover, extending the model

domain to capture street drug use, criminal justice involvement,

and social influence on illegitimate opioid prescription seeking

and misuse of diverted pharmaceutical opioids could help

support more granular estimates of the effects of the suggested

interventions examined here. Finally, a model representation of

other components of the heterogeneity of the patients in the

simulation model including sex and other demographics, history

of trauma, mood and anxiety disorders, and the duration of pain

complaints and pain location may have a positive impact on the

discriminant capacity of an HMM-aided PDMP.

This study offers some support for possible policy avenues to

lessen the distressingly heavy burden the opioid crisis has

imposed on the Canadian population. However, there is a large

population of individuals with existing opioid use disorders, and

while the size of that population notably limits securing the full

potential benefit of the policies studied here, it also emphasizes

the need to ensure efficient prioritization and use of the limited

flow of resources available for preventive strategies. Thus, while

stylized, the current findings may offer steps toward aiding the

public health community in enhancing the effectiveness of

measures focused on preventing the development of opioid use

disorders via prescription drug pathways.
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