AUTHOR=Sobolev Michael , Anand Aditi , Dziak John J. , Potter Lindsey N. , Lam Cho Y. , Wetter David W. , Nahum-Shani Inbal TITLE=Time-varying model of engagement with digital self reporting: Evidence from smoking cessation longitudinal studies JOURNAL=Frontiers in Digital Health VOLUME=5 YEAR=2023 URL=https://www.frontiersin.org/journals/digital-health/articles/10.3389/fdgth.2023.1144081 DOI=10.3389/fdgth.2023.1144081 ISSN=2673-253X ABSTRACT=Objective

Insufficient engagement is a critical barrier impacting the utility of digital interventions and mobile health assessments. As a result, engagement itself is increasingly becoming a target of studies and interventions. The purpose of this study is to investigate the dynamics of engagement in mobile health data collection by exploring whether, how, and why response to digital self-report prompts change over time in smoking cessation studies.

Method

Data from two ecological momentary assessment (EMA) studies of smoking cessation among diverse smokers attempting to quit (N = 573) with a total of 65,974 digital self-report prompts. We operationalize engagement with self-reporting in term of prompts delivered and prompt response to capture both broad and more granular engagement in self-reporting, respectively. The data were analyzed to describe trends in prompt delivered and prompt response over time. Time-varying effect modeling (TVEM) was employed to investigate the time-varying effects of response to previous prompt and the average response rate on the likelihood of current prompt response.

Results

Although prompt response rates were relatively stable over days in both studies, the proportion of participants with prompts delivered declined steadily over time in one of the studies, indicating that over time, fewer participants charged the device and kept it turned on (necessary to receive at least one prompt per day). Among those who did receive prompts, response rates were relatively stable. In both studies, there is a significant, positive and stable relationship between response to previous prompt and the likelihood of response to current prompt throughout all days of the study. The relationship between the average response rate prior to current prompt and the likelihood of responding to the current prompt was also positive, and increasing with time.

Conclusion

Our study highlights the importance of integrating various indicators to measure engagement in digital self-reporting. Both average response rate and response to previous prompt were highly predictive of response to the next prompt across days in the study. Dynamic patterns of engagement in digital self-reporting can inform the design of new strategies to promote and optimize engagement in digital interventions and mobile health studies.