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Interpretable clinical phenotypes
among patients hospitalized with
COVID-19 using cluster analysis
Eric Yamga1, Louis Mullie1, Madeleine Durand1,2,
Alexandre Cadrin-Chenevert3, An Tang2,4, Emmanuel Montagnon2,
Carl Chartrand-Lefebvre2,4 and Michaël Chassé1,2*
1Department of Medicine, Centre Hospitalier de l’Université de Montréal (CHUM), Montréal, QC, Canada,
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Canada, 3Department of Medical Imaging, CISSS Lanaudière, Université Laval, Joliette, QC, Canada,
4Department of Radiology and Nuclear Medicine, Centre Hospitalier de l’Université de Montréal (CHUM),
Montréal, QC, Canada

Background: Multiple clinical phenotypes have been proposed for coronavirus
disease (COVID-19), but few have used multimodal data. Using clinical and
imaging data, we aimed to identify distinct clinical phenotypes in patients
admitted with COVID-19 and to assess their clinical outcomes. Our secondary
objective was to demonstrate the clinical applicability of this method by
developing an interpretable model for phenotype assignment.
Methods: We analyzed data from 547 patients hospitalized with COVID-19 at a
Canadian academic hospital. We processed the data by applying a factor analysis
of mixed data (FAMD) and compared four clustering algorithms: k-means,
partitioning around medoids (PAM), and divisive and agglomerative hierarchical
clustering. We used imaging data and 34 clinical variables collected within the
first 24 h of admission to train our algorithm. We conducted a survival analysis
to compare the clinical outcomes across phenotypes. With the data split into
training and validation sets (75/25 ratio), we developed a decision-tree-based
model to facilitate the interpretation and assignment of the observed phenotypes.
Results: Agglomerative hierarchical clustering was the most robust algorithm. We
identified three clinical phenotypes: 79 patients (14%) in Cluster 1, 275 patients
(50%) in Cluster 2, and 203 (37%) in Cluster 3. Cluster 2 and Cluster 3 were both
characterized by a low-risk respiratory and inflammatory profile but differed in
terms of demographics. Compared with Cluster 3, Cluster 2 comprised older
patients with more comorbidities. Cluster 1 represented the group with the
most severe clinical presentation, as inferred by the highest rate of hypoxemia
and the highest radiological burden. Intensive care unit (ICU) admission and
mechanical ventilation risks were the highest in Cluster 1. Using only two to four
decision rules, the classification and regression tree (CART) phenotype
assignment model achieved an AUC of 84% (81.5–86.5%, 95 CI) on the
validation set.
Abbreviations

AD, average distance; ADM, average distance between means; ANC, absolute neutrophil count; APN, average
proportion of non-overlap; AUC, area under the curve; CART, classification and regression tree; CCI, Charlson
comorbidity index; CXR, chest radiographs; FAMD, factor analysis of mixed data; FOM, figure of merit; ICU,
intensive care unit; LOOCV, leave-one-out cross-validation; MCI, medicines comorbidity index; ML, machine-
learning; MV, mechanical ventilation; NLR, neutrophil-to-lymphocyte ratio; PAM, partitioning around
medoids; PCR, polymerase chain reaction; POLST, physician orders for life-sustaining treatment; VIA,
variable importance analysis.
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Conclusions:We conducted a multidimensional phenotypic analysis of adult inpatients with
COVID-19 and identified three distinct phenotypes associated with different clinical
outcomes. We also demonstrated the clinical usability of this approach, as phenotypes
can be accurately assigned using a simple decision tree. Further research is still needed
to properly incorporate these phenotypes in the management of patients with COVID-19.
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Introduction

Patients affected by coronavirus disease 2019 (COVID-19) have

shown significant clinical heterogeneity and variability in disease

trajectory (1). Clinical phenotypes are homogeneous disease

subgroups with distinct clinical features (2). Beyond descriptive

categories, phenotypes hold prognostic value. Well-established

phenotypes are needed at the bedside for proper patient

classification, clinical trial enrolment, disease prognostication,

and treatment personalization.

Since the first case description of COVID-19, various

phenotypes have emerged, each of which uses various layers of

clinical information. Two phenotypes have been described based

on lung mechanics and radiological findings (3, 4). Others have

focused on disease complications—as such, a hypercoagulable

phenotype has been observed, prompting recommendations for

intensified antithrombotic therapy (5–7). Most of these

phenotypes failed to fully describe the complexity of the disease,

as they focused on characterizing only one dimension of the

clinical presentation. Being mainly derived from clinical

observation, the reliability and the methodology of these first

phenotyping efforts have been put into question (8, 9).

Consequentially, interest arose in applying data-driven

methodologies to phenotyping. Clustering is an unsupervised

machine-learning (ML) method used to identify homogeneous

groups within a heterogeneous dataset. These methods are

hypothesis-agnostic and rely solely on the assumption that

clinical patterns lie within the data (10). This method has been

previously used for disease phenotyping, such as chronic

obstructive pulmonary disease (COPD) (11) and sepsis (12).

Similarly, several authors have recently used clustering to identify

clinical phenotypes in patients with COVID-19 (13–21).

Methodologically, these efforts did not include unprocessed

imaging data, which are a key determinant of COVID-19

prognostication (22). Additionally, none have focused on

interpretability, hampering the implementation of data-driven

phenotypes at the bedside and their complete understanding by

clinicians.

Here, we aimed to identify COVID-19 phenotypes at patient

presentation using multimodal real-world clinical and medical

imaging data, and assess their association with three clinical

outcomes: mechanical ventilation (MV), intensive care unit (ICU)

admission, and hospital mortality. We hypothesized that imaging data

were crucial in enhancing the reliability of clustering efforts in the

context of COVID-19, and aimed to facilitate the interpretation and
02
assignment of patients to one of the identified phenotypes through

data visualization and decision tree modelling, respectively (23).
Methods

Data sources

We used real-world data extracted from a clinical data system

comprising relevant information from all COVID-19-related

hospitalizations at the Centre for the Integration and Analysis of

Medical Data (CITADEL) of the Centre Hospitalier de

l’Université de Montréal (CHUM), a Canadian academic

quaternary center. The analytical dataset contained de-identified

data for over 1,100 patients hospitalized with COVID-19,

including demographics, comorbidities, laboratory results, vital

signs, drugs, medical procedures, frontal chest radiographs

(CXR), and clinical outcomes. The raw data were managed using

SQLite 3, and further data processing was conducted using

Python version 3.7 and R version 4.0.3. Additional details

regarding the initial data processing are provided (see S1 text,

Supplementary Methods).
Study population

We included all unique adult hospitalizations (≥18 years of

age) for COVID-19 from January 1, 2020, to January 30, 2021,

for which a chest x-ray was available within 24 h of admission.

A COVID-19 hospitalization episode was defined as

hospitalization within seven days of a positive SARS-CoV-2 PCR

result. The Institutional Review Board of the CHUM (Centre

Hospitalier de l’Université de Montréal) approved the study, and

informed consent was waived because of its low risk and

retrospective nature.
Imaging data processing

Imaging data were obtained in DICOM format, and frontal

CXR (posteroanterior and anteroposterior) were processed,

discarding lateral CXR. Lung opacities observed on CXR were

manually annotated with bounding boxes by a board-certified

radiologist using a bounding box annotation software (24). This

annotation method is recognized by the Radiological Society of
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TABLE 1 Final set of variables and respective subdomains.

Subdomain Clinical variable
Demographic Age, sex, comorbidities (MCI)

Hemodynamic SBP, DBP, HR, Anion Gap

Respiratory FiO2, SpO2

Imaging Opacities number, Opacities size

Hematologic Neutrophils, Lymphocytes

Inflammatory/Thrombotic Mean Platelet Volume (MPV), Temperature

Renal Creatinine, Sodium, Potassium, Bicarbonate

Yamga et al. 10.3389/fdgth.2023.1142822
North America (RSNA) and is the annotation methodology of

choice for all deep-learning challenges involving image detection

(25, 26). Bounding boxes are rectangular or squared delimitations

of the opacities found on a chest radiograph reported with a

scaled width and length. Hence, from the manual annotation, we

derived the number of opacities and the total size of opacities as

a relative percentage of the total surface of the image.
Variables selection and feature engineering

A total of 160 candidate variables were extracted from the

analytical dataset. We provided the list of those variables in the

supplementary material (see Supplementary Table S1). For each

variable, we exclusively used the first recorded value within the

first 24 h of admission. We then excluded 56 variables for which

more than 25% of observations were missing. The remaining

missing variables were imputed using all available features,

excluding the clinical outcomes (ICU admission, mechanical

ventilation, and death). We used classification and regression tree

(CART) single mean imputation, a robust method against

outliers, multicollinearity, and skewed distributions, which is

simple to implement in a real-world setting (27). We selected

this imputation method because of its lower computational cost,

which makes it more feasible to implement compared to

methods with superior performance, such as Expectation

Maximization (EM) and Multiple Imputation (MI) (28). We

computed the Medicines Comorbidity Index (MCI), a metric to

assess multimorbidity that has shown epidemiological value

similar to the Charlson Comorbidity Index (CCI) (29). We relied

on MCI instead of CCI because comorbidities were not

systematically recorded in our database, but medications were

(see Supplementary Table S1). MCI was computed at the time

of study enrollment using only the data available upon clinical

presentation. Table 1 summarizes the final set of variables

included in the analysis with their respective subdomains of

interest.
FIGURE 1

(A) Study flowchart (Cluster Analysis). FAMD, factor analysis of mixed
data; PAM, partition around medoids; HC, hierarchical clustering; APN,
average proportion of non-overlap; AD, average distance; ADM,
average distance between means; FOM, figure of merit. (B) Study
flowchart (Phenotype Assignment Model). CART, classification and
regression tree; Cp, complexity parameter; LOOCV, leave-one-out
cross-validation; AUC, area under the curve.
Cluster analysis

Before applying the clustering algorithms, we processed our

dataset, log-transformed skewed continuous variables (skewness

> 0.5), and excluded highly correlated variables (correlation

> 0.8). We then obtained the principal components via factor
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analysis of mixed data (FAMD) (30) for all our observations. The

only excluded variable based on high correlation was the total

white blood cell count (WBC), which was correlated with the

absolute neutrophil count (ANC).

We compared four clustering algorithms: k-means, partitioning

around medoids (PAM), and divisive and agglomerative

hierarchical clustering. We used three internal validation metrics

(connectivity, Dunn index, and average silhouette width) and

four stability measures: the average proportion of non-overlap

(APN), average distance (AD), average distance between means

(ADM), and figure of merit (FOM) to compare the algorithms.

The optimal algorithm and number of clusters were then

determined by rank aggregation of the ranked lists of each

validation metric. We used the optCluster package, an R package

facilitating the execution of the aforementioned analyses (31). We

have provided additional details regarding our cluster analysis in

the Supplementary Material (see the Supplementary S1 Text).

A summary of the development process of our clustering

algorithm is shown in Figure 1A.
Clinical outcomes evaluation

We conducted survival analysis using the Kaplan-Meier

method to compare clinical outcomes according to clusters. We

assessed three clinical outcomes:7-day ICU admission, 7-day

mechanical ventilation, and 30-day mortality. To reduce

confounding bias, we specifically restricted clinical outcome

analysis to patients eligible for MV and ICU admission according

to the Physician Orders for Life-Sustaining Treatment (POLST)

form. All statistical analyses were performed using R software

(version 4.0.3, R Foundation for Statistical Computing), and

p-value (2-sided) below 0.05 was considered statistically significant.
Phenotype assignment model and clusters
interpretability

To facilitate the interpretation and clinical usability of the

obtained clusters, we trained a simple decision tree using CART

with the clusters as the predicted outcomes (32). Because the

primary objective was to favor interpretability, we did not

compare CART with other supervised machine learning models.

We built the CART model using R package caret. All patients

included in the study were randomly split into a training set (75%)

and a validation set (25%). The model Complexity Parameter (Cp)

was tuned using leave-one-out cross-validation (LOOCV) 100

times on the training set, with the area under the curve (AUC)

as the evaluation metric. Because this classification problem

focuses more on predicted scores than predicted classes, we

favored AUC over alternative evaluation metrics.

We validated the model’s performance by calculating four

macro-averaged classification metrics on 1,000 bootstrap samples

from the validation set. We opted for macro-averaging because

each class is of equal importance. The computed metrics were

AUC, balanced accuracy, accuracy, precision, recall, and F1 score.
Frontiers in Digital Health 04
Subgroup analyses based on the COVID-19 waves during

admission were performed. The different steps followed in the

modeling process are summarized in Figure 1B.

We determined the most critical variables to discriminate

between clusters by conducting a variable importance analysis

(VIA) (33). Details regarding the VIA are provided in the

Supplementary Material (see Supplementary S1 Text).

Finally, we computed three variables that have recently been

associated with COVID-19 mortality: neutrophil-to-lymphocyte

ratio (NLR) (34), ratio of peripheral arterial oxygen saturation to

the inspired fraction of oxygen (SpO2/FiO2) (35), and shock

index (heart rate/systolic blood pressure) (36). These variables

were not used for the clustering effort and were computed

strictly for descriptive and interpretability purposes.
Phenotypes robustness: sensitivity analyses

We conducted a sensitivity analysis to assess whether the

removal of imaging data altered the performance of the clustering

algorithm. We first compared the clustering results given these

two scenarios using the average silhouette width and the adjusted

Rand index (37), a measure of the similarity between two data

clustering. We then assessed the number of patients who

underwent phenotypic reclassification before and after the removal

of the imaging data in the clustering algorithm. In other words,

we analyzed the characteristics of patients for whom the assigned

cluster differed after the removal of imaging data.
Results

Study population

In total, 1,125 unique COVID-19 hospitalizations were

screened. A total of 559 patients were excluded after removing

readmissions (n = 36), patients without a CXR within 24 h of

admission (n = 523), and patients for whom clinical data were

missing (n = 19), leaving 547 patients for the cluster analysis (see

Figure 2). We have provided details regarding the characteristics

of the study cohort (see Table 2). Our population was similar to

other cohorts of patients hospitalized with COVID-19 in North

America during the first two waves, with a mean age of 69 years,

a relatively similar proportion of men and women, and an in-

hospital mortality rate of 20% (38).
Clinical characteristics of phenotypes

Agglomerative hierarchical clustering was deemed to be the

most robust clustering algorithm for our dataset. The optimal

number of K clusters was K = 3 (see Supplementary Figure S1),

yielding the highest clustering performance, as exhibited by the

rank aggregation of the seven internal validation measures (see

Supplementary Figure S2, Table S2).
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TABLE 2 Baseline characteristics of the study population.

Characteristics n = 547
Age (years), mean (SD) 66.56 (17.94)

Sex (male), n (%) 313 (57.2)

Medicines Comorbidity Index, mean (SD) 2.77 (2.04)

Laboratory results
Hemoglobin, mean (SD) 127.23 (20.69)

Platelet, median [IQR] 207.00 [157.00, 271.50]

WBC, median [IQR] 6.80 [5.30, 9.85]

Neutrophil count, median [IQR] 5.01 [3.60, 7.60]

Lymphocyte count, median [IQR] 0.95 [0.62, 1.35]

Monocytes count, mean (SD) 0.63 (0.39)

Basophils count, mean (SD) 0.01 (0.03)

Yamga et al. 10.3389/fdgth.2023.1142822
The characteristics of these clusters are summarized in Table 3.

As determined through the VIA, the most critical variables for

discriminating clusters were MCI, age, opacities size, and

absolute neutrophil count (see Supplementary Figure S3).

Cluster 1 (n = 79, 14%) represented the group of patients with

the most severe presentation having the highest NLR [median 9.9;

interquartile range (IQR), 5.64 to 19.55], the highest rate of

hypoxemia (median SpO2/FiO2 306; IQR, 109 to 402), and the

highest radiographic burden, with 100% of patients with at least

two pulmonary opacities and a mean total opacities size of 17%

[standard deviation (SD), 8].

Cluster 2 (n = 275, 50%) and Cluster 3 (n = 203, 37%) were

similar regarding their relatively non-severe clinical presentation

but differed in terms of demographics. For Cluster 2, the median

SpO2/FiO2 ratio was 447 (interquartile range, 335–457), and the

proportion of patients with at least two pulmonary opacities was

66%. Cluster 2 also represented the oldest group (mean 75.4

years; SD 13) and the group with the highest proportion of

comorbidities (mean MCI of 3.93; SD 1.72). Accordingly, Cluster

2 included patients with a high proportion of concurrent

medication on admission:66% took antihypertensive agents, 57%
FIGURE 2

Study inclusion and exclusion criteria.
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hypolipemiant agents, 53% hypoglycemic agents, 45% antiplatelet

agents, and 34% bronchodilator agents. For Cluster 3, the

median SpO2/FiO2 was 457 (IQR, 443–467), and the proportion

of patients with at least two pulmonary opacities was 30%.

Cluster 3 represented the youngest cohort (mean 58 years; SD

19) and the group with the lowest comorbidities (mean MCI of

1.43; SD 1.50) (see Figures 3A,B).
Eosinophils count, mean (SD) 0.05 (0.12)

Mean Platelet Volume (MPV), mean (SD) 9.89 (1.33)

Mean Corpuscular Volume (MCV), median [IQR] 89.90 [85.90, 93.85]

Sodium, mean (SD) 137.59 (5.05)

Potassium, mean (SD) 4.00 (0.53)

Bicarbonate, mean (SD) 24.95 (3.76)

Anion gap, mean (SD) 11.05 (3.69)

Creatinine (µmol/L), median [IQR] 78.00 [63.00, 105.00]

Vital Signs
FiO2, median [IQR] 21.00 [21.00, 28.00]

SpO2, median [IQR] 95.00 [94.00, 97.00]

Temperature, mean (SD) 36.98 (0.51)

Systolic Blood Pressure, median [IQR] 130.00 [116.00, 144.50]

Diastolic Blood Pressure, median [IQR] 75.00 [68.00, 82.00]

Heart Rate, mean (SD) 92.2 (20.2)

Respiratory Rate, median [IQR] 20.00 [20.00, 24.00]

Medication
Anticholesterolemic agents, n (%) 183 (33.5)

Antihypertensive agents, n (%) 241 (44.1)

Bronchodilator agents, n (%) 178 (32.5)

Diuretics, n (%) 137 (25.0)

Factor Xa Inhibitors, n (%) 50 (9.1)

Hypoglycemic agents, n (%) 209 (38.2)

Platelet aggregation inhibitors, n (%) 150 (27.4)

Imaging Data
Opacities Numbers

0, n (%) 141 (25.8)

1, n (%) 89 (16.3)

2, n (%) 279 (51.0)

3, n (%) 37 (6.8)

4, n (%) 1 (0.2)

Opacities Size (surface area %), mean (SD) 9 (8)

Clinical outcomes
Length of Stay (days), median [IQR] 8.29 [3.48, 18.20]

Mechanical Ventilation, n (%) 48 (8.8)

Wave (1st), n (%) 295 (53.9)

ICU admission, n (%) 132 (24.1)

Death, n (%) 113 (20.7)
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TABLE 3 Clinical characteristics stratified by clusters.

Cluster 1 Cluster 2 Cluster 3
n (%) 79 (14) 265 (48) 203 (37)

Age (years), mean (SD) 58.81 (15.42) 75.14 (13.31) 57.99 (19.14)

Sex (male), n (%)

Medicines Comorbidity Index (MCI), mean (SD) 2.38 (2.06) 3.93 (1.72) 1.43 (1.50)

Laboratory results
Hemoglobin, mean (SD) 121.73 (22.82) 124.87 (20.70) 132.48 (19.76)

Platelet, mean (SD) 292.14 (104.41) 213.00 (89.05) 210.50 (87.48)

WBC,† median [IQR] 9.50 [7.35, 14.25] 6.80 [5.30, 9.50] 6.20 [4.90, 8.70]

Neutrophil count, median [IQR] 7.80 [5.64, 12.70] 5.10 [3.63, 7.20] 4.40 [3.18, 6.49]

Lymphocyte count, median [IQR] 0.80 [0.47, 1.10] 0.90 [0.60, 1.30] 1.09 [0.70, 1.59]

MCV, median [IQR] 87.00 [83.05, 90.90] 90.90 [87.35, 94.50] 89.00 [84.70, 93.10]

MPV, mean (SD) 9.43 (1.08) 9.91 (1.37) 10.01 (1.32)

NLR,* median [IQR] 9.91 [5.64, 19.55] 5.62 [3.38, 9.83] 4.33 [2.53, 7.15]

Sodium, mean (SD) 136.91 (5.07) 138.21 (4.74) 137.61 (5.21)

Potassium, mean (SD) 4.05 (0.70) 4.05 (0.51) 3.95 (0.45)

Bicarbonate, mean (SD) 23.80 (4.17) 25.19 (3.53) 25.02 (3.43)

Anion Gap, mean (SD) 12.35 (4.12) 10.74 (3.38) 10.89 (3.74)

Creatinine (µmol/L), median [IQR] 72.00 [55.00, 100.50] 86.00 [70.00, 116.00] 71.00 [59.00, 89.00]

Vital Signs
FiO2 (%), median [IQR] 28.00 [21.00, 82.50] 21.00 [21.00, 28.00] 21.00 [21.00, 21.00]

SpO2 (%), median [IQR] 94.00 [91.00, 96.00] 95.00 [93.00, 97.00] 96.00 [94.00, 98.00]

SpO2/FiO2,* median [IQR] 305.71 [109.85, 402.38] 447.62 [335.71, 457.14] 457.14 [442.86, 466.67]

Temperature (°C), mean (SD) 36.92 (0.31) 36.94 (0.54) 37.02 (0.53)

Systolic Blood Pressure (mm Hg), median [IQR] 127.00 [116.00, 143.50] 133.00 [118.50, 149.50] 123.00 [113.00, 137.00]

Diastolic Blood Pressure (mm Hg), median [IQR] 78.00 [70.50, 84.00] 74.00 [67.00, 80.00] 76.00 [68.00, 82.00]

Heart Rate (bpm), mean (SD) 99.53 (16.49) 87.10 (18.52) 95.89 (21.55)

Shock Index* median [IQR] 0.79 [0.64, 0.92] 0.66 [0.55, 0.75] 0.74 [0.63, 0.89]

Respiratory Rate (bpm), median [IQR] 26.00 [20.00, 30.00] 20.00 [20.00, 24.00] 20.00 [18.00, 20.00]

Medication
Anticholesterolemic agents, n (%) 16 (20.3) 153 (55.6) 21 (9.9)

Antihypertensive agents, n (%) 19 (24.1) 181 (65.8) 46 (21.6)

Bronchodilator agents, n (%) 28 (35.4) 92 (33.5) 62 (29.1)

Diuretics, n (%) 17 (21.5) 105 (38.2) 15 (7.0)

Factor Xa Inhibitors, n (%) 1 (1.3) 45 (16.4) 4 (1.9)

Hypoglycemic agents, n (%) 33 (41.8) 145 (52.7) 39 (18.3)

Platelet aggregation inhibitors, n (%) 13 (16.5) 124 (45.1) 17 (8.0)

Imaging Data

Opacities Numbers, n (%)

0 0 (0.0) 33 (12.0) 117 (54.9)

1 0 (0.0) 59 (21.5) 33 (15.5)

2 76 (96.2) 155 (56.4) 55 (25.8)

3 3 (3.8) 28 (10.2) 7 (3.3)

4 0 (0.0) 0 (0.0) 1 (0.5)

Opacities Size (surface area %), mean (SD) 17 (8) 10 (8) 4 (6)

Clinical outcomes
Length of stay (days), median [IQR] 14.99 [6.00, 34.42] 9.95 [4.61, 20.04] 5.04 [1.32, 11.51]

Mechanical ventilation, n (%) 19 (24.1) 27 (9.8) 2 (0.9)

ICU admission, n (%) 41 (51.9) 68 (24.7) 23 (10.8)

Death, n (%) 14 (17.7) 77 (28.0) 23 (10.8)

Other
Wave (1st), n (%) 49 (62.0) 154 (56.0) 108 (50.7)

†Those variables were excluded from the clustering algorithm effort because of the presence of other highly correlated variables.
*Those variables were excluded from the clustering algorithm effort and computed after phenotypic classification for interpretability purposes.
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Phenotypes and clinical outcomes

Among the 547 patients in our study cohort, 436 were eligible

for ICU admission and MV, as deemed by their POLST form, and

were thus analyzed for clinical outcomes (see Figure 2).
Frontiers in Digital Health 06
The cumulative mortality risk was significantly different

across clusters (log-rank test, p = 0.01). The 30-day mortality

risks were 30% (10%–45%, 95 CI), 34% (25%–42%, 95 CI), and

12% (3%–20%, 95 CI) for Clusters 1, 2, and 3, respectively (log-

rank, p = 0.01). The cumulative ICU admission and mechanical
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FIGURE 3

(A) Radar plot showing the distribution of clinical variables across clusters. (B) Bar Plot showing the distribution of clinical variables across clusters.
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ventilation risks were also statistically significant across all clusters

(log-rank test, p≤ 0.01 and p≤ 0.01, respectively). More precisely,

the 7-day ICU admission risk was 59% (45%–70%, 95 CI) for

Cluster 1, 30% for Cluster 2 (24%–36%, 95 CI), and 26% (9%–
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23%, 95 CI) for Cluster 3. The 7-day mechanical ventilation risk

was 45% (30%–57%, 95 CI) for Cluster 1, 20% (14%–25%, 95

CI) for Cluster 2, and 3% (0.5%–5%, 95 CI) for Cluster 3 (see

Figure 4).
frontiersin.org

https://doi.org/10.3389/fdgth.2023.1142822
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


FIGURE 4

(A–C) Kaplan–Meier curves for clinical outcomes stratified by phenotypes: (A) death (B) ICU admission and (C) mechanical ventilation risk.
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Phenotypes interpretability and assignment

We developed a simple decision tree that allows patients to be

assigned their respective clinical phenotypes using the rules shown

in Figure 5. Using only three variables (MCI, opacities number,

ANC) and following between two and three steps, one can assign

a patient to one of the three phenotypes with a macro-averaged

AUC of 0.84 (0.81–0.87, 95% CI) on our validation cohort. The

other metrics are presented in Table 4. Subgroup analyses

showed a consistent performance of the model across the first

two waves of the pandemic. Detailed characteristics of our

validation cohort are provided in Supplementary Table S4.
Phenotypes robustness: sensitivity analyses

When comparing the clustering results with and without the

inclusion of imaging data, the adjusted Rand index was 0.18,

indicating that the dissimilarity between the two clusterings was

high. The average silhouette width also decreased after the

removal of the imaging data (0.34 with imaging; 0.29 without

imaging), indicating that clustering with the inclusion of imaging

data yielded more homogeneous clusters.
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We further characterized individuals who underwent

phenotypic reclassification. 51 percent of the patients (n = 279)

underwent reclassification (see Figure 6A), indicating that their

phenotype changed after the removal of imaging data. The

highest proportion of reclassified observations came from Cluster

1, as 96 percent of observations (n = 76) were reclassified to

Clusters 2 or 3 after the removal of imaging data. The ICU

admission rate of the 34 patients reassigned from Clusters 1 to 2

was 65%. The ICU admission rate of the 42 patients reassigned

from Clusters 1 to 3 was 43%. Conversely, the 111 patients

initially assigned to Cluster 2 and reassigned to Cluster 1 after

removing the imaging data had an ICU admission rate of 30%

(see Figure 6B).
Discussion

We identified three clinical phenotypes with distinct clinical

characteristics and outcomes using multimodal clinical data in

patients admitted with COVID-19. The three phenotypes can be

summarized as follows: severely hypoxemic with high

radiological burden irrespective of age (Cluster 1), mildly

hypoxemic with either a high comorbidity index or old age
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FIGURE 5

Phenotype assignment using decision tree-based rules. This graph represents the classification rules obtained after training the CART decision tree
algorithm with the phenotypes as outcomes. The rules obtained could be used at the bedside to determine the phenotype of a given individual
following simple steps. The rules are located in white square boxes, and each coloured node box displays the probability of the predicted class.

TABLE 4 Phenotype assignment model validation results.

Metrics Result (Mean ± SD)*

Entire validation set
(n = 135)

First wave
(n = 68)

Second wave
(n = 67)

AUC 0.84 ± 0.025 0.83 ± 0.058 0.85 ± 0.037

Accuracy 0.75 ± 0.037 0.75 ± 0.052 0.75 ± 0.053

Balanced
accuracy

0.77 ± 0.030 0.77 ± 0.043 0.76 ± 0.042

Precision 0.69 ± 0.055 0.71 ± 0.077 0.69 ± 0.081

Recall 0.67 ± 0.043 0.68 ± 0.062 0.67 ± 0.060

F-1 score 0.66 ± 0.048 0.67 ± 0.063 0.66 ± 0.064

*The results presented were macro-averaged and validated on 1,000 bootstrap

samples of the validation set.
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(Cluster 2), and mildly hypoxemic with a low comorbidity index

(Cluster 3).

Although not primarily intended for use as a clinical prediction

tool, the identified phenotypes had distinct clinical outcomes.

Cluster 1 included patients with the most severe presentation and

was thus, unsurprisingly, the phenotype with the highest ICU

admission and mechanical ventilation risk.

Cluster 2 and Cluster 3 represented patients with similar milder

clinical presentations but with distinct comorbidity profiles. Patients

in Cluster 2 had a higher comorbidity index (3.93 vs. 1.43), and the

30-day mortality was higher than that in Cluster 3 (34% vs. 12%).

Being able to distinguish phenotypes with apparent similar

features but different outcomes is essential clinically. These

represent patients currently treated identically, but who might

benefit from a different and more targeted treatment approach.

When comparing our results with previous work (13–20), the

number of clusters obtained was consistent, as all have identified

three phenotypes. However, all cited studies have reported
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phenotypes suggesting a linear relationship between age and disease

severity. This drastically differs from our findings, in which the

most severe phenotype (Cluster 1) did not represent the oldest

group. Our phenotypes reflect the complexity of the distribution of

COVID-19 patients, in which age is not the sole determinant of

severity. Further research is needed to understand the virological

and immunological factors causing severe infection in this phenotype.

Despite having considered more than 30 variables in our

clustering algorithm, only four subdomains were central to

establishing the phenotypes: demographics, hematologic features,

respiratory features, and imaging data. The impact of socio-

demographics, comorbidities (39), and hypoxemia (40) on the

clinical course of patients with COVID-19 has been well

documented, and their relative importance in our clustering

effort was thus expected. Furthermore, the neutrophil-to-

lymphocyte ratio (NLR), previously identified as an independent

risk predictor of disease severity in COVID-19 (41), was

accordingly higher in Cluster 1. In contrast, mean platelet

volume (MPV) did not significantly impact clustering results

despite being associated with severe forms of the disease (42).

Our study emphasizes the importance of imaging data in

COVID-19-related clustering. Through our sensitivity analysis,

we showed that incorporating CXR enhanced the clinical value of

the phenotypes. Even in the absence of ground truth in

unsupervised machine learning, we showed that dismissing

imaging data reduced the clinical accuracy of our clustering

algorithm. A total of 111 patients initially assigned to Cluster 2

were reclassified into the more severe Cluster 1 after removing

imaging data from the algorithm. We deemed the initial

assignment to the less severe Cluster 2 accurately, given that the

30% ICU admission rate of these patients was lower than that of

Cluster 1 (52%) and closer to that of Cluster 2 (25%). Similarly,
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FIGURE 6

(A) Sankey diagram assessing clustering stability with and without
imaging data. This plot shows the distribution of patients who
underwent reclassification after the removal of imaging data in the
clustering algorithm. A total of 279 observations were reclassified
when imaging data were removed. A disproportionate number of
reclassified observations originate from Cluster 1. 96% percent of the
observations initially assigned to Cluster 1 (n= 76) were reclassified
after the removal of imaging. As Cluster 1 is the most severe
phenotype, the potential impact of this reclassification is not without
consequences. (B) Bar plot showing the ICU admission rate of
patients either unassigned from Cluster 1 or reassigned to Cluster 1
after removing the imaging data from the clustering effort. The graph
qualitatively highlights that the phenotypic assignment is more
clinically accurate with the inclusion of imaging data. After removing
the imaging data, 34 patients were reassigned from Cluster 1 to
Cluster 2 and 42 patients were reassigned to Cluster 3. The ICU
admission rates of these two groups of patients were closer to that of
their initial assigned phenotype. Likewise, the ICU admission rate of
the 111 patients reassigned from Cluster 2 to Cluster 1 was closer to
their initial phenotype. Knowing that Cluster 1 is the most severe
phenotype, this suggests that the initial phenotypic assignment using
imaging data was clinically appropriate.
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76 patients initially assigned to Cluster 1 were reclassified into

Clusters 2 or 3 after the removal of imaging data. We deemed

the initial assignment to severe Cluster 1 appropriate because the

ICU admission rate of those patients (53%) exceeded those of

Clusters 2 and 3 (25% and 11%, respectively) (see Figure 6B).

The use of imaging helped correctly classify outlier patients as

those with a lower or higher radiological burden than the

majority of the patients in their respective phenotypic groups

(see Supplementary Figures S4, S5).
Opacity size has not been previously used in other COVID-19

phenotyping studies. Instead, the number of opacities has been

used as a proxy variable in only one other paper (13). The

number of opacities is generally more accessible, as it can be

directly extracted from CXR reports and does not require manual

annotation of medical images. However, studies have shown that,

although these two variables provide overlapping information,

they are not interchangeable. Their respective values differ when

predicting survival and the need for respiratory support in

patients with COVID-19 (22).

Furthermore, automation of chest x-ray opacity annotation is

increasingly feasible with publicly available deep-learning models

that harmonize the process (25). We opted for manual

annotation in this study, awaiting further validation of these

tools for the COVID-19 population. However, chest x-ray

annotation should not be viewed as a rate-limiting process. On

the contrary, it should be encouraged in healthcare machine

learning, as it allows for uniform inputs during training and

upon model deployment (43).
Our study highlights the feasibility and importance of agnostic

approaches to disease phenotyping with no a priori information

about patient outcomes.
At the bedside, clinical phenotypes help categorize patients in

an unbiased manner. Previous studies have shown that individual

risk factors alone are insufficient to adequately stratify patients

with COVID-19 (22). Thus, phenotypes offer a simple yet

holistic means of describing patients with COVID-19 while

incorporating clinical presentation and morbidity risk.
In clinical trials, phenotypes can help harmonize enrolled

participants and facilitate the identification of patient subgroups

benefiting from a given therapy. Recent clinical trials have

revealed that distinct clinical presentations mandate distinct

treatments, with some therapies benefiting only patients with

severe diseases (44, 45). The inclusion criteria for these trials

have made it difficult for clinicians to accurately identify patients

who would benefit the most from these novel interventions. The

controversy regarding the benefits of anticoagulation in critically

and non-critically ill patients is a testimony to this observation

(46). Using standardized phenotypes could eliminate the

ambiguous nature of patient subgrouping and facilitate the

comparison of outcomes across trials.
In the optics of a potential clinical implementation, we applied

three aspects deemed key for the acceptance of machine learning

algorithms in the clinical setting: usability, interpretability, and

trustworthiness (47).
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Usability—the extent to which an ML algorithm can be

integrated efficiently in a healthcare environment—was achieved

through our phenotypic assignment model. The variables

needed to assign patients to phenotypes are readily available at

the point of care, and phenotypic assignment can be performed

following two to four rules (see Figure 5). We internally

validated our model using a 25% holdout set with bootstrapping

for the error estimation. Our model must be externally validated

before use in clinical settings. Even though our patient

population was diverse and representative of North American

patients hospitalized with COVID-19, we recognize that the

unicentric nature of our cohort limits the generalization of the

phenotypes obtained. Nevertheless, the CART model remains

helpful for demonstrating the applicability of such phenotypes

in clinical settings.

Interpretability—the ability to understand the internal

mechanism of an algorithm—in the context of clustering refers

to providing intuition regarding how phenotypes differ. This was

achieved through data visualization, as shown in Figures 3A,B

serve as visual aids, highlighting the significant differences

between the phenotypes. The CART assignment model also

serves interpretability, as it gives clinicians insight into the

workings of clustering, highlighting which features are most

important in assigning phenotypes while also showing how

decisions are made based on those features.

Trustworthiness, the ability to assess the validity and reliability

of a machine learning output, is also provided through CART. The

probabilistic nature of the algorithm allows for direct quantification

of model uncertainty, as shown in Figure 5 (48). By assessing the

probability distributions of each phenotype, clinicians can better

appreciate the degree of confidence in a given phenotypic

assignment.

We considered using other supervised learning models, but

ultimately elected to use CART, as it offers a unique balance of

overarching these three goals.

Finally, we recognized the discrepancy between our model’s

reported AUC and the other evaluation metrics (see Table 4).

We believe that AUC is the most appropriate evaluation metric

for the use case of our assignment model. The AUC requires

predicted probabilities, whereas the F1-score requires predicted

outcomes. Because our model’s output is the probability

distribution of phenotypes and not the predicted phenotype

alone, the importance of the F1-score is secondary to that of the

AUC. We also reported non-weighted macro-averaged validation

metrics, which negatively affected other metrics.

Our study has some limitations. Clinical phenotypes do not

offer a comprehensive explanatory model of observed disease

heterogeneity (49). However, these studies lay the groundwork for

understanding COVID-19 pathobiology. Studies linking biobank

data to clinical phenotypes allow us to capture the taxonomic

complexity of the disease and describe how phenotypes differ in

terms of their pathogenic mechanisms (50, 51).

Multiple variables could not be included because they were

either not captured in our electronic health record (e.g., time

from onset of symptoms, mechanical ventilation parameters, and
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in-hospital complications) or excluded from our study because of

missingness. However, missing values are common in clinical

practice, and investigating risk stratification while considering the

inherent characteristics of real-world data is important at the

bedside (52). In addition, this enhances the applicability of our

phenotypes, as they are based only on the most common

variables available for patients admitted with COVID-19 (53).

This differs from studies that have included flux cytometry and

CD4+/CD8+ counts in their algorithms (14). In addition, the

omitted variables do not seem to have significantly impacted our

results, as the three clusters obtained were consistent with

previous studies (13–19).

We also acknowledge that the use of our model was limited to

the first 24 h of admission. We restricted our clustering effort to the

data available within the first 24 h of admission to ease

generalizability and to emulate the timing of triage decisions that

are often made early upon admission. Although this

methodological design choice serves its purpose, we recognize

that phenotypes evolve over time (54). To expand the use of our

model beyond the first 24 h of admission, we would need to

repeat the clustering algorithm at different time points or use

proper time-series clustering techniques, such as dynamic time

warping. Given the inconsistent availability of imaging data after

the first few days of admission, we did not consider these two

options for this project.

Additionally, our study included patients admitted between

January 1, 2020, and January 31, 2021, before the approval of

most targeted therapies against COVID-19 and the mass

vaccination campaign. Therefore, we did not assess the effect of

vaccination, treatment, and variant type on phenotypes (21).

Accordingly, this puts our algorithm at risk for a temporal

dataset shift (55), and calibrating our clustering algorithm or

applying the net reclassification index (NRI) will be necessary

before exploiting it in the clinical setting. However, our work

demonstrated the feasibility and potential clinical applicability of

such methods to help identify patients at risk of clinical

deterioration. Finally, because race-based data are not recorded

in the Quebec healthcare system (56), we could not proceed to a

sensitivity analysis according to race. For the same reason, we

acknowledge that our work could be subject to algorithmic bias,

as evidence has shown racial disparities in the clinical outcomes

of patients with COVID-19 (57).
Conclusion

We developed a multidimensional phenotypic analysis of

COVID-19 patients and identified three distinct phenotypes, one

specifically associated with worse clinical outcomes. Our study

supports the feasibility of using real-world clinical data to

conduct unsupervised phenotypic clustering while highlighting

the importance of including imaging data in such endeavors.

External validation and further research are needed to determine

how phenotypes could impact clinical trial design and

phenotype-guided treatment in clinical practice.
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