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Introduction: Using data collected from hearing aid users’ own hearing aids could
improve the customization of hearing aid processing for different users based on
the auditory environments they encounter in daily life. Prior studies characterizing
hearing aid users’ auditory environments have focused on mean sound pressure
levels and proportions of environments based on classifications. In this study, we
extend these approaches by introducing entropy to quantify the diversity of
auditory environments hearing aid users encounter.
Materials and Methods: Participants from 4 groups (younger listeners with normal
hearing and older listeners with hearing loss from an urban or rural area) wore
research hearing aids and completed ecological momentary assessments on a
smartphone for 1 week. The smartphone was programmed to sample the
processing state (input sound pressure level and environment classification) of
the hearing aids every 10min and deliver an ecological momentary assessment
every 40min. Entropy values for sound pressure levels, environment
classifications, and ecological momentary assessment responses were calculated
for each participant to quantify the diversity of auditory environments
encountered over the course of the week. Entropy values between groups were
compared. Group differences in entropy were compared to prior work reporting
differences in mean sound pressure levels and proportions of environment
classifications. Group differences in entropy measured objectively from the
hearing aid data were also compared to differences in entropy measured from
the self-report ecological momentary assessment data.
Results: Auditory environment diversity, quantified using entropy from the hearing
aid data, was significantly higher for younger listeners than older listeners. Entropy
measured using ecological momentary assessment was also significantly higher
for younger listeners than older listeners.
Discussion: Using entropy, we show that younger listeners experience a greater
diversity of auditory environments than older listeners. Alignment of group
entropy differences with differences in sound pressure levels and hearing aid
feature activation previously reported, along with alignment with ecological
momentary response entropy, suggests that entropy is a valid and useful metric.
We conclude that entropy is a simple and intuitive way to measure auditory
environment diversity using hearing aid data.
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Introduction

Recent years have seen a growing interest in understanding the

soundscapes or auditory environments that listeners, and

specifically hearing aid users, encounter in daily life (1).

Understanding the auditory environments hearing aid users

encounter in daily life, and the factors that affect what types of

environments hearing aid users encounter, could improve

hearing aid outcomes. Hearing aid selection, hearing aid signal

processing, counseling, and aural rehabilitation can be tailored

based on the auditory environments users encounter and their

unique hearing needs in specific environments (2–5). For

example, hearing aid users with more active lifestyles, and thus

who likely encounter more diverse auditory environments, may

benefit more from advanced hearing aid technologies than

listeners with less active lifestyles (6). Technological

improvements have enabled new methods for collecting real-

world environment data from daily life. One such method is to

use the hearing aids to collect data about the environment,

including the sound pressure level (SPL), hearing aid

environment classification, and the hearing aid processing state

(3,5,7). An open question, however, is how to use these data

effectively to characterize the environments users encounter and

draw useful conclusions. The common approach has been to

describe averages and proportions, typically average sound

pressure levels and proportions of environment types (3,5,7).

This approach offers a limited view into the auditory

environments and lifestyles of hearing aid users. Specifically, this

approach does not capture the the diversity of environments or

how users’ environments change over time. A key feature of

modern hearing aids is their ability to adapt to environments

and even, using machine learning, adapt their processing based

on the diversity and types of environments an individual user

encounters. Thus, it is of interest to find meaningful metrics that

characterize how diverse a hearing aid user’s auditory

environments are, how they change over time, and what

demographic or lifestyle factors might predict these metrics.

To that end, this study presents an analysis of the data

described in (7). The purpose of that study was to investigate

differences in auditory environments and hearing aid feature

activation encountered by different demographic groups: younger

participants with normal hearing and older participants with

hearing loss living in an urban or rural area. Auditory

environment differences between groups were characterized using

participants’ average sound pressure levels, as recorded by the

hearing aids, and the proportions of different auditory

environments participants encountered (speech, quiet, noise) as

classified by the hearing aids. Using those metrics, the authors

found that older listeners tend to encounter lower sound

pressure levels than younger listeners, with the largest differences

observed between the younger listeners in an urban area and the

older listeners in a rural area. No differences in the proportions

of environment classes was observed.

This study aims to investigate differences in auditory

environment diversity among those groups by quantifying
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diversity using entropy of measurements collected from the

participants’ hearing aids. To further validate the use of entropy

as a measure of auditory environment diversity, entropy

measured from hearing aid data will be compared to self-report

data from ecological momentary assessments (EMA; surveys

taken on a smartphone throughout the day). Entropy measures

how diverse some system or parameter is as a function of its

predictability. That is, the more predictable a system is—or the

less often and the less drastically it changes—the less diverse it is

and thus the less entropy it has (8). Entropy has been applied

across a range of disciplines to quantify diversity or complexity

in various ways. For example, researchers have used entropy to

quantify the complexity of social networks in communities using

phone call data and literature citations (9,10). Ghozi et al. (11)

used entropy to show how the complexity of a single auditory

environment (a college cafeteria) increased with occupancy and

sound pressure level. Wu et al. (12) proposed entropy as a means

to quantify auditory environments using EMA. Wu et al. (12)

first showed that auditory environment diversity declined during

the Covid-19 pandemic among cochlear implant users, mirroring

the known effects of the pandemic on social lifestyle among the

same participants (13). The authors also showed that hearing aid

users with higher auditory environment entropy reported less

hearing aid benefit, suggesting that entropy is a useful clinical

measure for quantifying auditory environment diversity and its

effect on hearing aid outcomes. The present study furthers the

application of entropy to quantifying auditory environment

diversity through three aims:

1. Demonstrate the use of entropy to quantify diversity of

auditory environments using sound pressure level and

environment classification measured by hearing aids;

2. Use entropy measured from hearing aid data to compare

auditory environment diversity among younger and older

listeners in an urban and rural area;

3. Compare objective differences in entropy between groups

calculated from hearing aid data to self-report differences in

entropy calculated from EMA.

To address these aims, entropy of SPLs and hearing aid

environment classification (taken from hearing aid data) as well

as entropy from EMA responses were computed for each

participant. Entropy was compared among groups and data

types. Methods and findings from this study can inform future

investigations of auditory environment diversity and its

relationship to clinical practice and audiologic outcomes.
Materials and methods

Participants and procedures

The dataset from (7) was used for this analysis. In that

study, 46 participants were recruited in four groups: older

listeners with hearing loss from an urban area (OHL-U), older

listeners with hearing loss from a rural area (OHL-R), younger
frontiersin.org
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TABLE 1 Ecological momentary assessment (EMA) questions and answer
options used in the analysis of auditory environment diversity.

Question Response options
Q1. What did your active listening involve? 1. Conversation, live

2. Conversation via
electronic device

3. Speech/music listening
live

4. Speech/music listening,
media

5. Environmental sound
listening

Q2. (if Q1 = 1 or 2) Were you talking with more than
one person?

1. Yes

2. No

Q3. (if Q1 = 3 or 4) What kind of sounds were you
listening to?

1. Speech

2. Music

Q4. Were you in wind? 1. Yes

2. No

Q5. Was there music in the background? 1. Yes

2. No

Q6. Were there people around you talking in the
background?

1. Yes

2. No

Q7. How loud were the background environmental
sounds?

1. Very loud

2. Loud

3. Medium

4. Soft

5. Very soft

Q8. (if Q1 = 1 or 2, or Q3 = 1) The speech of interest
was ________ when compared to all other sounds.

1. Much louder

2. Somewhat louder

3. Equally loud

4. Somewhat softer

5. Much softer

Questions 1 and 3 were “select all that apply.”
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listeners with normal hearing from and urban area (YNH-U), and

younger listeners with normal hearing from a rural area (YNH-R).

The urban area was the greater San Francisco Bay Area centered

around Berkeley, California, and the rural area was eastern Iowa

centered around Iowa City. Urban and rural are defined in this

study based on the relative population densities of the

recruitment centers. The population density of Johnson County,

Iowa, which contains Iowa City, is 212.9 inhabitants per square

mile, while the population density of Alameda County,

California, which contains Berkeley, is 2047.6 inhabitants per

square mile (U.S. Census Bureau, 2019). Older was broadly

defined as being over the age of 35, while younger was defined as

being under the age of 35. Participants with normal hearing had

to show audiometric thresholds less than 25 dB HL at all

audiometric frequencies. Participants with hearing loss had to

have acquired, mild-to-moderate sensorinueral hearing loss and

be experienced hearing aid users. Participants in the OHL groups

were generally retired, but the most participated in various

volunteer, social, religious, or community groups or held part-

time employment. Participants in the YNH groups were students

or working professionals, and most indicated participation in a

variety of additional social and community activities. Participants

were paid for their time in the laboratory and $1 for each EMA

they completed. Data collection took place from 2017–2019

(prior to the Covid-19 pandemic).

Participants wore Starkey Halo 2 i2400 receiver-in-the-canal

hearing aids with research firmware for one week. Participants

were asked to wear the hearing aids for 12–16 h per day. For

participants with normal hearing, the hearing aids were set to

have zero gain in all channels. For participants with hearing loss,

the hearing aids were set to match the gain-frequency response

of the participant’s own hearing aids using real-ear measures. For

a complete description of the fitting process, see (14).

Participants also carried a smartphone connected to the

hearing aids via Bluetooth. Throughout the week, data from the

hearing aid was sent to and stored on the smartphone. Data

included the sound level of the environment and the

environment classifier as well as the processing state of the

hearing aid. Due to the power limitations of the hearing aids and

the smartphone, data was collected by sampling the hearing aid

data, rather than collecting it continuously. Every 10 min, the

system attempted to collect data for one minute at a sampling

rate of 2 Hz. Every 40 min, the system attempted to collect data

for 5 min at a sampling rate of 2 Hz. The purpose of the longer

sampling period every 40 min was because every 40 min the

smartphone delivered an EMA which asked participants to report

on the auditory environment and their experience. EMAs were

delivered to participants using the AudioSense+ app (15).

Participants were alerted to complete a survey via a ringtone or

vibration and participants could not initiate a survey themselves.

For this study, only EMA questions which asked participants

about the auditory environment were included in the analysis.

Only EMA responses where the participant indicated that they

were actively listening were included in the analysis. The EMA

questions and possible responses are given in Table 1. Each

question could have 1 response, with the exceptions of questions
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1 and 3 which were “select all that apply.” EMA surveys were

also tagged with GPS-coordinates with the consent of

participants. For details on the accuracy and assessment of GPS-

tagged EMA, see (2).
Hearing aid data

Auditory environments were quantified using two indicators,

measured by the hearing aids: SPLs and environment classifier.

To calculate SPL for each sampling period, all 24 channels of the

hearing aids recorded the input level to that channel every 2 sec.

Frequency-specific transforms were used to estimate the free-field

level at each ear to account for microphone location effects.

Then, microphone and pre-amp gain corrections were applied.

These values were converted to dB full scale (FS) and summed.

Finally, a correction factor was applied to provide an estimate of

the SPL at each sample. For this study, the median value of these

measurements within each sampling period for each hearing aid

was calculated and the values for each hearing aid were averaged

to give a single SPL value for each sampling period. The hearing

aids also returned a classifier of the environment for each
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sample: quiet, speech, noise, music, machine, or wind. The exact

nature of how the hearing aids make decisions on the

environment classification is proprietary and could involve

hundreds of parameters. However, the common approach is to

train an algorithm using known environments and allow the

algorithm to determine what acoustic features are best associated

with each class and then use these features to make decisions

about novel environments (4). The proportion within each

sampling period the hearing aids returned each classifier was

calculated and averaged between hearing aids.
Entropy calculations

Entropy calculations were made using the Shannon entropy

formulation (8):

H(x) ¼ �
Xn

i¼1

pxi log10 pxi (1)

where pxi is the probability of the ith event in signal x. The use of

Shannon entropy was motivated by its prior use in measuring

diversity in auditory environments (11,12). Thus, for this study,

entropy varies as a function of the probability of the SPLs and

hearing environment classifications. One way to conceptualize

the relationship between the entropy value and the SPL or

classification probability is to consider the probability density

function of the SPLs or hearing aid environment classification

proportions for each participant. Broader, flatter probability

density functions of either parameter (less predictable, more

diverse) result in higher entropy values relative to narrow, peaked

probability density functions (more predictable, less diverse).

SPL and environment classification entropy per subject were

calculated using data from the hearing aids. SPL entropy

quantifies the overall predictability or diversity of a participant’s

SPLs across the entire week. The more diverse the participant’s

SPLs, the less predictable the participant’s SPLs and the higher

the overall entropy. SPL entropy for each participant was

calculated from the time series of SPL values where each value is

the median SPL in each sample across the entire week. The

distributions of SPLs were discretized into 3 dB bins from 43 dB

SPL to 109 dB SPL (based on the observed range of SPLs

encountered by participants). The same number of bins (23), size

(3 dB), and bin edges were used for each subject. To calculate

entropy, the probabilities of SPLs falling into each bin were

calculated (pxi, where x is the time series of SPLs and i is the

SPL bin) and multiplied by the log10 of that probability. These

values were summed and multiplied by �1 to give the entropy

value. Environment classification entropy quantifies the overall

predictability or diversity of a participant’s environment

classification across the entire week. The closer the proportions

of each environment classifier, the less predictable the

environment and the higher the entropy. To calculate the overall

entropy for environment classification, the proportions of each

environment class across the week for each participant were

computed (pxi, where x is the time series of environment
Frontiers in Digital Health 04
classifications and i is the classifier). These values were

then multiplied by the log10 of the values, summed, and

multiplied by �1.

Entropy was also calculated based on participant responses on

the EMA. The EMA entropy value quantifies how predictable

auditory environments were for each subject based on the

probabilities of pairwise combinations of EMA responses.

Participants who recorded a greater diversity of EMA response

combinations therefore encountered more diverse auditory

environments and had higher EMA entropy values. EMA

entropy was calculated using the method described in (12),

which in turn used the network approach described in (9). The

EMA analysis included 8 EMA questions with 52 total possible

response options (Table 1). Each response option was treated as

a network node. The number of links between any 2 possible

nodes (EMA responses) for each subject were calculated to

determine the network. From this network, entropy was

calculated by determining the probability of each link between

each node for each subject and computing the entropy from

those values. Unlike the SPL and environment class entropy

calculations, the EMA entropy calculation was dependent on the

number of EMAs completed by each subject. Because entropy

might increase as a function of the number of values in the

calculation, the EMA entropy value was then normalized by the

log of the number of EMAs completed by each subject. For a

more detailed explanation of calculating entropy from EMA

responses, see (12).
Analysis

Analyses were made between all groups as well as for groups

combined across age and hearing status (e.g., between YNH and

OHL). Group differences were analyzed using one-way Analysis

of Variance (ANOVA). When appropriate, significant omnibus

statistics were followed with a priori pairwise comparisons with

Tukey p-value adjustments for multiple comparisons. Model

assumptions were evaluated by visually examining the data

distribution and residuals, and no evidence of violating model

assumptions was detected. Pearson-product moment correlation

was used to assess the correlations among the 3 entropy

measures. All analyses were performed in R (4.2.1, 2022-06-23,

“Funny-Looking Kid”).
Results

Hearing aid data was collected from a total of 46 participants

across the 4 groups. Participants per group and summary

statistics for each group are given in Table 2.
SPL and environment class entropy

A total of 8,292 data points from the hearing aids (SPLs and

matched environment classifications) were analyzed: 1,654 for
frontiersin.org
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TABLE 2 Participant data.

Group Location N Age (Mean, StD) PTA (Mean, StD)
OHL-R Iowa City, IA 13 66.2, 4.12 47.9, 6.1

OHL-U Berkeley, CA 12 65.5, 4.12 48.3, 5.5

YNH-R Iowa City, IA 10 25.6, 6.5 6.6, 3.7

YNH-U Berkeley, CA 11 26.5, 4.6 2.6, 4.4

N, number of participants; Age, mean, standard deviation of age in years. PTA,

mean; standard deviation of 4-frequency pure tone average (0.5 1, 2, and 4 kHz)

in dB, averaged across ears.
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YNH-U, 2,117 for OHL-U, and 1,802 for YNH-R, 2,719 for OHL-

R. The YNH showed lower numbers of data points than the OHL

groups, likely because the sample size was slightly smaller for the

YNH groups. However, the number of samples per participant

did not differ significantly between groups (F(3) ¼ 1:68,

p ¼ 0:186). Based on hearing aid data-logging information taken

from the programming software, hearing aid data was collected,

on average, every 20.38 min of hearing aid wear time for

participants with normal hearing and every 27.1 min for

participants with hearing loss. This is likely due to different

amounts of daily wear time. Based on available data-logging (7

from the YNH group and 12 from the OHL group), the YNH

group wore their hearings for an average of 8.71 h per day and
FIGURE 1

Probability density estimates for sound pressure level for each participant in ea
higher entropy values.
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the OHL group wore their hearing aids for an average of 13.17 h

a day. This difference was significant (t(13:45) ¼ �6:46,

p , 0:001). Note, however, that participants with hearing loss

likely wore the hearing aids beyond data collection period each

day, and thus actual data collection sampling periods were likely

closer together than 27.1 min.

To provide an example of how entropy quantifies diversity via

predictability, kernel density estimation was used to plot the overall

SPL probability density estimates for each participant (Figure 1).

As can be seen, the OHL groups have generally taller, narrower

probability densities than the YNH groups, indicating more

predictable, less diverse auditory environments overall. Further,

the rural groups generally have taller, narrower probability

densities than their respective urban groups, suggesting less

diversity of auditory environments in the rural groups compared

to their age-matched urban groups. Taller, narrower probability

densities have lower entropy values than flatter, more broad

probability densities.

This pattern is observed in the entropy values. SPL entropy

values are shown in Figure 2. Generally, SPL entropy increased

from the OHL groups to the YNH groups, and from the rural

groups to the urban groups. There was a significant overall group

effect on SPL entropy (F(3) ¼ 3:22, p ¼ 0:0321). Pairwise
ch group. Broader, flatter probability densities (less predictability) result in
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FIGURE 2

Boxplots of SPL entropy values per group (left) and groups combined along age and hearing status (right). OHL-R, older hearing loss rural; OHL-U, older
hearing loss urban; YNH-R, younger normal hearing rural; YNH-U, younger normal hearing urban. OHL, older hearing loss (rural and urban combined);
YNH, younger normal hearing (rural and urban combined). Vertical bars represent values within the first and third quartiles þ=� the interquartile range �
1.5. Dots represent outliers. * indicates p , 0:05.
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comparisons showed the significant omnibus statistic was driven by

the YNH-U have a significantly higher SPL entropy than then the

OHL-R group (t(42) ¼ �3:01, adjusted p ¼ 0:022). Recall the

taller, narrower probability density functions for the OHL groups

compared to the YNH groups. This is observed in entropy values

when combining the groups along age and hearing. The YNH

participants had significantly higher SPL entropy than the OHL

participants (F(1) ¼ 7:141, p ¼ 0:011).

Environment class entropy between all groups is shown in

Figure 3. The OHL-R group had higher environment class

entropy than the OHL-U group, and the YNH-U group had

higher environment class entropy than the YNH-R group,

though these differences did not reach significance (F(3) ¼ 2:133,

p ¼ 0:11). The difference between the YNH-U and OHL-U

group approached significance (t(42) ¼ �2:492, adjusted

p ¼ 0:076). When groups were combined along age and hearing

status, the YNH participants had significantly higher

environment class entropy than the OHL participants

(F(1) ¼ 4:226, p ¼ 0:046).
EMA entropy

2,074 ecological momentary assessments were analyzed (587

for YNH-U, 517 for OHL-U, and 286 for YNH-R, 684 for OHL-

R). On average, each participant completed 8.3 EMA surveys per
Frontiers in Digital Health 06
day (7.8 for YNH-U, 8.9 for OHL-U, 5.6 for YNH-R, and 9.9

for OHL-R). Number of EMA surveys completed per group did

not differ with the exception that the YNH-R group completed

fewer EMA surveys than the OHL-R group (t(42) ¼ 2:832,

p ¼ 0:034).

EMA entropy differences between all groups followed a similar

pattern as SPL entropy (Figure 4). EMA entropy was highest for

participants in the YNH-U group and lowest for the OHL-R

group. Differences in EMA entropy between all groups

approached but did not reach significance (F(3) ¼ 1:91,

p ¼ 0:15). When combined along age and hearing status, EMA

entropy differences were aligned with entropy differences

observed in SPL and environment class: the YNH participants

had significantly higher EMA entropy than the OHL participants

(F(1) ¼ 4:639, p ¼ 0:039).
Entropy correlations

Pearson’s product-moment correlations were used to assess the

relationship among the 3 entropy values. Correlation coefficients

and 95% confidence interval estimates are shown in Table 3.

Moderate and significant correlations were observed between SPL

and environment class entropy (p ¼ 0:012) and between SPL and

EMA entropy (p ¼ 0:016). The correlation between environment

class and EMA entropy was not significant (p ¼ 0:265).
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FIGURE 3

Boxplots of environment class entropy values per group (left) and groups combined along age and hearing status (right). OHL-R, older hearing loss rural;
OHL-U, older hearing loss urban; YNH-R, younger normal hearing rural; YNH-U, younger normal hearing urban. OHL, older hearing loss (rural and urban
combined); YNH, younger normal hearing (rural and urban combined). Vertical bars represent values within the first and third quartiles þ=� the
interquartile range � 1.5. Dots represent outliers. * indicates p , 0:05.
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Discussion

This study aimed to use a novel metric—entropy—to quantify

auditory environment diversity using SPL and environment

classification data from hearing aids. We showed that entropy

could be calculated in a straightforward manner from hearing aid

data. The study then aimed to validate the use of entropy,

calculated from hearing aid data, as a measure of auditory

environment diversity by comparing SPL and environment class

entropy between younger and older listeners from an urban and

rural area and comparing these entropy differences to differences

in entropy on EMA. SPL and environment class entropy was

significantly higher for the YNH than the OHL participants, with

the largest differences were observed between the YNH-U and

OHL-R groups. Similarly, the YNH participants had significantly

higher EMA entropy than the OHL participants. Finally, this

study aimed to compare entropy measured objectively from

hearing aid data to entropy measured from EMA, a self-report

measure. Significant, moderate correlations were observed

between SPL and environment class entropy and between SPL

and EMA entropy, providing further evidence for the validity of

entropy as a measure of auditory environment diversity. Taken

together, the findings from this study suggest that younger

listeners encounter a greater diversity of auditory environments

than older listeners, that this diversity can be captured using

hearing aid data and measured using entropy, and that entropy
Frontiers in Digital Health 07
calculated using objective hearing aid data broadly corresponds

with entropy measured from self-report EMA data.

Findings in the present study are broadly consistent with the

findings in (7), where younger listeners were observed to

encounter higher SPLs and greater likelihood of hearing aid

feature activation than older listeners. This study extends those

findings to formally quantify that younger listeners, and

particularly younger listeners in an urban area, also encounter

more diverse auditory environments than older listeners, and

particularly older listeners in a rural area. In both studies,

differences between the YNH and OHL groups were clear, while

less clear differences were observed when groups were further

divided along geographic location. A possible reason for this is

that age is a more robust predictor of auditory environment

diversity than geographic location, and with a relatively small

sample, the clearest differences emerged when groups were

combined along age. This is consistent with prior work (16).

Findings from the present study are also consistent with those of

Wu et al. (12), where entropy calculated from EMA was

validated as a measure of auditory environment diversity. The

convergence of these findings suggests that entropy is a valid

measure of auditory environment diversity and that entropy

measured from hearing aid data is consistent with listeners’

perceived experience.

Quantifying auditory environments via entropy with hearing

aid data has some advantages over other approaches. Because
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FIGURE 4

Boxplots of EMA entropy values per group (left) and groups combined along age and hearing status (right). OHL-R, older hearing loss rural; OHL-U, older
hearing loss urban; YNH-R, younger normal hearing rural; YNH-U, younger normal hearing urban. OHL, older hearing loss (rural and urban combined);
YNH, younger normal hearing (rural and urban combined). Vertical bars represent values within the first and third quartiles þ=� the interquartile range �
1.5. Dots represent outliers. * indicates p , 0:05.

TABLE 3 Correlation coefficients between SPL entropy, environment class
entropy, and EMA entropy.

SPL entropy Class entropy EMA entropy
SPL entropy 1.00 0.37 [0.09, 0.59] 0.35 [0.07, 0.58]

Class entropy 0.37 [0.09, 0.59] 1.00 0.17 [�0.13, 0.44]

EMA entropy 0.35 [0.07, 0.58] 0.17 [�0.13, 0.44] 1.00

Values are shown with 95% confidence interval estimates. Significant correlations

(p , 0:05) are in bold.
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data is collected frequently, it may be more sensitive to detecting

auditory environment differences than other approaches. For

example, as reported in (7), no differences between the groups in

this study were found on the frequency sub-scale of the Auditory

Lifestyle and Demand questionnaire, which aims to capture how

often listeners encounter different environments and should then

measure auditory environment diversity (17). Retrospective

questionnaires may not be sensitive enough to capture auditory

environment diversity. Both this study and Wu et al. (12)

quantified auditory environment diversity using EMA. Although

EMA is well-suited to collecting frequent samples about a

listener’s experience, it still requires effort on the part of the

participant, which in turn affects compliance, sampling

frequency, and reactivity (18). Further, EMA may under-sample

demanding environments like noisy places where listeners may

be less likely to complete the assessment (19). Because hearing
Frontiers in Digital Health 08
aids can collect data with no effort from the participant, the data

may be less systematically biased and the sampling frequency can

be very high. On the other hand, using hearing aid data to

quantify auditory environments requires the user to wear the

hearing aids consistently across environments, which may not

always be the case (5). Finally, it is worth noting that an analysis

of the data collected in this study was performed on the GPS

coordinates collected from the participants’ smartphones. Those

data were used to assess whether there were group differences in

the number of different locations the participant went to over the

week. No differences were found, suggesting that auditory

environment diversity is not necessarily related to environment

diversity. Thus, hearing aids, because they collect acoustic data

specifically, provide a more sensitive measure of auditory

environments that broader metrics like GPS tracking.

A simple, intuitive, and theoretically meaningful measure of

auditory environment diversity such as entropy has many

potential applications. Hearing aids users who encounter greater

auditory environment diversity may benefit from more advanced

hearing aid technologies such as a more detailed environment

classification taxonomy, faster feature activation of adaptation,

more user control, GPS-tagged features, feature parameters that

learn from the environment and user input, or other algorithms

that take into account less predictable inputs (2,5,6). Because

auditory environment diversity can be meaningfully estimated

with entropy measured from hearing aid input data, the hearing
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aids themselves could use this information to make decisions about

how to adapt to the environment for a given user. For example, if

the hearing aid determines that the user encounters a diversity of

environments, based on some entropy metric, the hearing aid

change adaptation parameters or classification specificity to better

meet a given users’ needs. That is, rather than clinicians making

choices about a users’ technology level needs based on patient

interview or questionnaires, it could be left up to the hearing aid

itself to decide how to employ available algorithms based on

estimations of the users’ lifestyle using metrics such as SPL or

environment class entropy.

This re-analysis had three key limitations that should be

noted. First, absolute entropy values are not meaningful. What the

actual entropy values are depends on the parameter and the study

design. It is not possible to compare absolute entropy values across

studies. Second, there is no ground truth for auditory environment

diversity. We do not have a way to validate the entropy value by

comparing it to the “true” auditory environment diversity of each

participant. We validate entropy as a measure of auditory

environment diversity by comparing entropy to other measures of

diversity and by comparing various methods of measuring

entropy. Third, this study relied on a relatively small sample from

only two geographic areas. We did not attempt to collect data

about all factors that might affect auditory environment diversity,

such as cultural, socioeconomic, or other demographic factors.

The bias in auditory environments of this sample relative to the

population is unknown, and the effects of age and location on

auditory environment entropy may be moderated by additional

factors not accounted for in this study.
Conclusions

Entropy, calculated using hearing aid data such as SPL and

environment classification, is an intuitive, simple, and

theoretically meaningful way to estimate the diversity of auditory

environments encountered by listeners. SPL and environment

class entropy are consistent with other measures of auditory

environment diversity as well as entropy calculated using self-

report on EMA, suggesting that entropy may be a valid measure

of auditory environment diversity. Entropy could be a useful

metric for a hearing aid to determine the auditory environment

diversity of a user and make processing changes based on

individual users’ auditory environment diversity.
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