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This paper presents a new Bayesian method for analyzing Ecological Momentary
Assessment (EMA) data and applies this method in a re-analysis of data from a
previous EMA study. The analysis method has been implemented as a freely
available Python package EmaCalc, RRID:SCR 022943. The analysis model can use
EMA input data including nominal categories in one or more situation dimensions,
and ordinal ratings of several perceptual attributes. The analysis uses a variant of
ordinal regression to estimate the statistical relation between these variables. The
Bayesian method has no requirements related to the number of participants or the
number of assessments by each participant. Instead, the method automatically
includes measures of the statistical credibility of all analysis results, for the given
amount of data. For the previously collected EMA data, the analysis results
demonstrate how the new tool can handle heavily skewed, scarce, and clustered
data that were collected on ordinal scales, and present results on interval scales.
The new method revealed results for the population mean that were similar to
those obtained in the previous analysis by an advanced regression model. The
Bayesian approach automatically estimated the inter-individual variability in the
population, based on the study sample, and could show some statistically credible
intervention results also for an unseen random individual in the population. Such
results may be interesting, for example, if the EMA methodology is used by a
hearing-aid manufacturer in a study to predict the success of a new signal-
processing method among future potential customers.
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1. Introduction

Driven by the rapid development in smartphone technologies, Ecological Momentary

Assessment (EMA), also known as Ambulatory Assessment or Experience Sampling, has

become a popular method particularly in behavioral research. The main motivation is that EMA

is expected to achieve better ecological validity than conventional tests performed in a laboratory

(1). In EMA, each study participant is requested to respond to an electronic questionnaire

during everyday life, typically several times per day. Some questions may address the current

real-life situation, for example, the physical environment and the user’s activity and intentions in

that particular situation. The participant may also be asked to rate various perceptual attributes

of interest in the study. Most conveniently, the questions are presented and responses collected

by a special-purpose app installed on a smartphone. The timing of assessments may be
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determined randomly by the app, and users may also be allowed to

initiate an assessment at any time of their own choice.

Although EMA is a general method that can be used in many

scientific fields, we now focus on applications in audiology. In this

context, EMA is often used to investigate the benefit and subjective

quality of hearing instruments in the user’s real life (e.g., (2–7)). So

imagine the purpose of an EMA-based study is to evaluate, for

example, a new hearing aid in comparison to a base-line reference.

Then the goal of a statistical analysis is to determine whether the

intervention yields a true benefit, such that an apparent improvement

is not just a random effect caused by a limited number of study

participants or a limited number of assessments by each respondent.

In other words, the researcher needs to determine the statistical

credibility of any observed changes in EMA response patterns. Here,

the word “credibility” can mean three quite different quantities:

1. The predictive probability that the result is true for an unseen

random individual in the population from which the study

participants were recruited.

2. The predictive probability that the result is true for the mean (or

median) in the population from which the study participants were

recruited.

3. The probability that the result is true for each and any participant

in the study.

The first of these probability measures may be most important in, for

example, a study designed by a hearing-aid manufacturer to predict

the success of a new product among future customers. The second

probability measure is most closely related to the statistical

significance as estimated by conventional hypothesis tests. The

third measure might be most important in a clinical study to

quantify the benefit for individual clients.

Against this background, the present report proposes a Bayesian

probabilistic model and presents a freely available python package

EmaCalc, RRID:SCR_022943, that can help researchers meet the

challenges of EMA data analysis. This work is not a comparative

study of Bayesian versus frequentist approaches. We do not claim

that EmaCalc is generally superior to existing advanced frequentist

analysis methods for ordinal and nominal data, although we think

the Bayesian approach offers some advantages, and the package is

easy to use. We applied this new tool in a re-analysis of data from

the study “Individual Hearing Aid Benefit in Real-Life (IHAB-RL)”

(6), which included heavily skewed, scarce, and clustered ratings

that were collected on ordinal scales. The results will show effects

of a hearing-aid fitting intervention on subjective judgements of

Loudness, Involvement in group conversations, and Disability.
2. Challenges of EMA data analysis

The data set recorded in an EMA study presents several statistical

challenges, most of which were discussed in depth by Oleson et al. (8):

† There may be a large amount of data from each participant, but

the number of assessments can vary greatly among respondents.

† Some of the responses are nominal (categorical). For example, the

current real-life situation may be characterized in several
Frontiers in Digital Health 02
dimensions, e.g., as “indoors”/“outdoors” and “quiet”/“noisy,”

etc. The respondent might also report which hearing-aid

program was active.

† Other responses are ordinal. For example, the respondent may

rate the “Disability” by selecting one response from a range of

discrete alternatives like “not disabled at all,” “very slightly,”

“slightly,” “moderately,” “considerably,” “very” or “extremely”

disabled (6). The number of ordinal response alternatives may

differ among questions.

† With many assessments by each participant, the responses

collected in total from all participants are not statistically

independent. Therefore, a multi-level approach is needed, such

that the responses are analyzed as nested within each individual,

separate from the next level of variability across respondents.

† Typically, the ordinal ratings can not be encoded numerically to

represent points on an interval scale: We cannot take it for

granted that the steps between response categories are

perceptually equal in magnitude. Therefore, it may be

questionable to aggregate responses within individuals by

conventional measures such as mean and variance of integer-

encoded ordinal ratings.

† Individual respondents might interpret and use the ordinal

response scale in different ways. For example, some people

might tend to use the more extreme response alternatives, while

others hesitate to do so (9). Therefore, it may be questionable

to assume that ordinal responses have the same quantitative

meaning for everyone in a population.

† The subjective benefit of an intervention, such as hearing

instrument provision, may change with the real-life

environment. Therefore, it may be interesting to analyze the

ordinal responses about perceptual attributes as conditional on

the nominal responses to the situation questions.

† The responses about the real-life situation might also show the

benefit of an intervention. For example, if response patterns

indicate that hearing-aid users are more likely to visit a

challenging sound environment when using a particular

hearing-aid program, this might be interpreted as a benefit of

the signal processing methods in that program.

† A complete study may be designed to include two or more test

phases, yielding separate series of EMA data. For example,

participants may be asked to record baseline responses first

without hearing aids, and then to record a similar follow-up

series a few months later, after adaptation to their new hearing

aids (e.g., (6)).

It has been overwhelmingly common in the behavioral-science

literature to apply conventional statistical measures and models

such as mean and variance, t-test, ANOVA, linear or non-linear

regression, using the raw subjective ratings as input, although all

these analysis methods are metric, i.e., they presume that the input

data have interval-scale properties. The main reason is that these

conventional methods are readily available in statistical program

packages, so most researchers are experienced in using them and

interpreting their results. Considering the trade-off between

methodological appropriateness and interpretatbility, Oleson et al.

(8) suggested that general-purpose statistical approaches such as

linear or generalized-linear mixed regression models (GLM) can
frontiersin.org

https://doi.org/10.3389/fdgth.2023.1100705
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


Leijon et al. 10.3389/fdgth.2023.1100705
sometimes adequately capture the essential characteristics of EMA data,

in spite of the complex nature of the data. However, they also noted that

analyzing ordinal data as if they were metric can cause errors. The

errors might even have severe scientific consequences, such as

indicating a statistically significant effect in the wrong direction (10).

These potential errors cannot be detected by calculations such as

conventional normality tests. The only way to detect an error would

be to compare the analysis results with those of another model that

does not presume metric data. The GLM framework can be extended

to handle ordinal data, for example, as in the frequentist Cumulative

Linear Mixed Model (CLMM) used by von Gablenz et al. (6) for the

IHAB-RL data. Oleson et al. (8) also suggested that the full

complexity of EMA data might be handled properly by a hierarchical

Bayesian model, but noted that there is currently no software readily

available that can perform this type of analysis.

We now propose the Python software package EmaCalc, RRID:

SCR_022943 (https://www.pypi.org/EmaCalc) as a tool to fill this

gap. The following Sections 3.1 and 3.2 will present an overview of

the theoretical model, Section 3.3 discusses the usage of the

software, while Sections 3.4 and 4 present data and results from

the IHAB-RL study. All mathematical details of the model, the

Bayesian learning method, and the implementation, are specified in

a Supplement “EmaCalc Math Details” to this paper.
1If separate groups of participants are recruited from different populations, the

number of respondents N may, of course, differ among groups. The analysis

model has the same structure for each group, so the same math notation

can refer to any of the groups/populations.
3. Method

3.1. Bayesian versus frequentist

Although researchers using EMA might be most familiar with the

conventional frequentist viewpoint of statistics, Bayesian methods

have recently gained increased adoption in the social sciences and

require a slightly different way of thinking (11). The main

advantage of the Bayesian approach is that the statistical analysis

“will usually not result in a single estimate, but will yield a range of

estimates with varying plausibilities associated with them” (11).

For example, in the frequentist framework we can calculate a 95%

confidence interval for some unknown attribute value, based on a set

of observed data. However, this does not mean that there is 95%

probability for the true attribute value to fall within the confidence

interval. In the frequentist view, it is only the observed data that

are assumed to be drawn at random from some probability

distribution family, but the true value is just a fixed unknown

number without any associated probability distribution. Therefore,

the confidence interval is a random outcome, because its end

points are deterministic functions of the observed data, but the

true value is still just an unknown number. The confidence interval

is useful for practical purposes, because we know it has been

calculated by a method that is expected to include the true value

in about 95% of all similar studies where the same analysis method

is used.

In contrast, the Bayesian approach estimates an explicit

probability distribution for the true attribute value, given the

observed data set. The resulting probability distribution can be

described in many ways. For example, we can present the 2.5- and

97.5-percentiles of the obtained cumulative probability distribution

for the true attribute value. The Bayesian credible interval between
Frontiers in Digital Health 03
these percentile points by definition contains 95% of the

probability mass for the true attribute value. In this sense, the

credible interval can be used for practical purposes in a similar

way as the frequentist confidence interval, but the Bayesian

approach has a different theoretical background.

There is a similar theoretical issue in statistical hypothesis testing.

Assume a study was designed to test a hypothesis that A , B as

opposed to A � B, where A and B can be effects of two different

interventions, or some perceptual attribute value in two test

conditions. In a frequentist data analysis, we must start from the

null hypothesis, A ¼ B, and then show that there is a very small

probability (e.g., less than 5%) to obtain the observed result, or a

more extreme result, if the null hypothesis were true. However, we

still do not know the probability P(A , B), because no probability

measure is defined for the hypotheses themselves.

In contrast, the Bayesian approach yields explicit numerical

probability values P(A , B) and P(A � B), given all observed data.

Once the Bayesian analysis has derived a joint probability

distribution for all model parameters, it is also easy to calculate the

joint probability for multiple hypotheses combined, with no need

for further adjustments like the classical Bonferroni correction.

Interesting philosophical and historical discussions of the Bayesian

and frequentist perspectives are given in the literature (e.g., (11–13)).
3.2. EmaCalc: theory

3.2.1. Notation and model overview
For the EMA data analysis, let us now assume a study that

involves N participants,1 all describing the situation at each

assessment by a choice among K nominal categories. The

participants may also give an ordinal rating for each of I

questionnaire items about perceptual attributes evaluated in the

study. The study may include T � 1 test phases, but the situation

categories and attribute items are the same for each test phase.

Assume we have collected Rn complete EMA reports from the nth

participant, with each report identified by an index r [ {1, . . . , Rn}.

The mathematical derivation presented in Supplementary

Section A shows that the log-likelihood of all recorded EMA data

from the nth participant can be calculated as a function of an

individual parameter vector jn ¼ (jn1, . . . , jnD). This parameter

vector includes three separate classes of model parameters:

1. Parameters specifying the situation probabilities, i.e., the

probability for the respondent to visit different situations.

2. Regression parameters specifying the situation effects, i.e., how

the attribute ratings tend to differ across situations.

3. Parameters defining the ordinal response scale for each attribute

question.
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2In IRT, the thresholds are usually assumed identical across respondents, and

may even be further restricted to reduce the number of free parameters

(e.g., (17)). In EMA we typically have many records from each respondent,

with ratings ideally spanning the entire range of ordinal grades, so the

amount of data is usually sufficient to estimate individual thresholds.
3EmaCalc can be set up to use the same response thresholds for more than

one attribute question.
4The Cumulative Model can also use the normal distribution.
5The unity scale is no restriction of generality, as the model scale is arbitrary

anyway.
6The implemented model can also use the “ordinal-probit” variant (Thurstone

Case V) assuming normal (Gaussian) distribution for the latent variables.
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The distribution of individual parameter vectors in the population,

from which participants were recruited, is specified by a separate

population model. The number of EMA recordings may vary

among participants. If one participant provides unusually many

EMA records, this will tend to improve the precision of the

individual parameter estimate for that person, but this participant

will still automatically have the same weight as every other

participant in the estimation of population characteristics.

3.2.2. Nominal EMA situation responses
The model assumes that the occurrence of various situations in

the EMA records are determined by fixed but unknown situation

probability vectors unt ¼ (unt1, . . . , untK ). Here, untk [ [0, 1] is the

probability that the nth participant reports from the kth situation

category at any assessment in the tth test phase. Situations may be

defined as a combination of categories from one or several

situation dimensions, as mentioned in Section 2. For example, if

one dimension is “location,” with two alternatives, “indoors,

outdoors,” and another dimension is “noisiness” with three

categories “quiet, moderate, loud,” the total number of situation

categories would be K ¼ 2� 3 ¼ 6.

The array of situation probabilities is one of the main results to be

estimated from the data. The individual situation probabilities are

assumed to be the same for all EMA records from the same test

phase, but may vary between participants and between test phases.

3.2.3. Ordinal EMA attribute ratings
The ordinal rating responses are analyzed with a variant of Item

Response Theory (IRT). IRT is a family of probabilistic models

designed to handle issues common to test instruments for any

purpose in social, psychological, or educational research. The

variant implemented in EmaCalc includes individual parameters

that can account for the possibility that different people use the

ordinal response scales in different ways.

There is a rich literature on IRT, including several text books

(e.g., (14,15)) with good reviews of the literature. The Graded

Response IRT model (16), also called Cumulative Model (17,18), is

mathematically very closely related to signal-detection theory and

choice models that have a long history of use in psycho-acoustical

research (e.g., (19–22)). These models are sometimes called

“ordinal-probit” or “ordinal-logit.”

The basic feature of ordinal rating models is that subjective

responses are regarded as indicators (“symptoms”) that are only

probabilistically related to the individual attribute value that is to

be measured. The true individual attribute cannot be directly

observed. It can only be estimated on the basis of test responses.

The model treats each response as determined by an outcome of a

latent random variable. The location (mean or median) of the

probability distribution of that latent variable is the individual

attribute characteristic to be estimated, whereas the response

probabilities also depend on other parameters that may differ

among respondents.

In the model, illustrated in Figure 1, each ordinal response is

determined by an outcome of a continuous real-valued latent

random variable Ynik(r), with a probability distribution specific for

the ith attribute of the nth participant in the kth situation (as

reported in the rth EMA record). The lth ordinal response is given
Frontiers in Digital Health 04
whenever the latent variable falls in an interval tni,l�1 ,

Ynik(r) � tni,l , where the thresholds separating the intervals form an

increasing sequence (�1 ¼ tni,0 , tni,1, . . . , , tni,Li ¼ þ1). The

thresholds may differ between respondents2 and between attribute

items,3 but are assumed to be identical in all assessments of the

same attribute by each respondent in all situations. The latent

variable is drawn from a logistic4 probability distribution with

location unik and unity5 scale. The location unik is the desired

outcome measure for the perceptual attribute that is to be estimated

from the observed data. Although all responses are only discrete and

ordinal, the attribute value unik is continuous on an interval scale.

Thus, the unit of the resulting interval scale is defined by the fixed

scale parameter of the latent-variable distribution. This part of the

EMA model is very similar to a previous model for paired-

comparison data (23) with the Bradley-Terry-Luce (BTL) “ordinal-

logit” choice model6 (19), i.e., assuming a logistic distribution for the

latent sensory variables.

An ordinal regression model is used to estimate how the attribute

values tend to differ across situations. These situation effects may be

specified either (1) to include only a linear combination of main

effects of the test phase and categories in each situation dimension,

or (2) to also include interaction effects between the test phase and

any combination of categories in separate situation dimensions.

Since this regression model allows both the perceptual attribute

value unik and the threshold parameters tni,l to be freely variable

for each respondent, the model is under-determined: If a fixed

constant value is added to all unik and all tni,l , the probability of

observed responses does not change. Thus, the zero point on the

attribute scale is arbitrary. To make the model identifiable, the zero

point must be somehow restricted. The current implementation

allows the researcher either (1, default) to force the median

response threshold to zero, or (2) to force the average attribute

value to zero, for each respondent and each attribute.
3.2.4. Individual and population models
The nominal and ordinal response patterns are assumed

probabilistically determined by the individual parameter vectors jn.

Of course, these parameters cannot be directly observed. Their

values must be estimated from the recorded data. In the Bayesian

framework, all these parameters are regarded as random variables.
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FIGURE 1

Example of a conditional probability density function of the latent random variable Y whose outcomes determine responses to a question about a perceptual
attribute, e.g., Speech Understanding, given a true location parameter u ¼ 1:8 on the logit scale. Response intervals are exemplified for one study allowing five
ordinal response categories, “very bad,” “bad,” …, “very good,” with response thresholds (t1 , t2 , t3 , t4) ¼ (�3:2, �1:2, 0:6, 2:7), and for a second study
evaluating the same attribute with only two allowed responses, “bad” or “good,” with a single response threshold t(2)1 ¼ �0:3. The present model allows
separate location parameters u for each participant, attribute, and situation. The model allows different response thresholds for each participant and
attribute, but the thresholds are identical across situations.

Leijon et al. 10.3389/fdgth.2023.1100705
However, as all participants were recruited at random from the

same population, as defined by the researcher, the model treats

each individual parameter vector jn as a sample drawn at random

from a population distribution specified by another set of

parameters, as defined in Supplementary Section B. In this way
FIGURE 2

A hierarchical model is assumed to determine probabilities of all observed EMA d
responses yn about perceptual attributes in the current situation, for the nth parti
vector jn which is regarded as a sample from the distribution of parameter vec
observed data, the Bayesian learning algorithm estimates probability distribution
j in the population, as well as for parameters specifying the population Gaussia

Frontiers in Digital Health 05
the population model acts as a prior distribution for all individual

parameters. The structure of this hierarchical model is illustrated in

Figure 2.

The distribution of individual parameter vectors in the

population might have been formulated as, e.g., a multivariate
ata, including nominal responses zn about the listening situation and ordinal
cipant. The response probabilities are calculated as functions of a parameter
tors in the population from which the participants were recruited. Using all
s for parameters jn of each participant and the distributions of parameters
n Mixture Model (GMM).
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Gaussian (normal) distribution with full covariance matrix, i.e., with

a very large number of parameters to be estimated. For the present

purpose it is proposed instead to use a Gaussian Mixture Model

(GMM). Mixture models have the advantage that they can

represent arbitrarily complex non-linear dependencies between

vector elements, not only ordinary correlations,7 even if each

mixture component only allows independent (uncorrelated)

elements. Another advantage is that the model complexity is

automatically determined by the general Occam’s Razor feature of

Bayesian learning: After learning, the mixture model might

automatically come out as including only a single Gaussian

component with independent elements (if this is sufficient for the

given data set) or as a multi-component mixture (if the

data indicate a more complex statistical dependency among

the parameters).

If the respondents were recruited from separate populations, e.g.,

younger and older people, a complete separate GMM is learned

for each population, using the data from the corresponding group

of participants.
3.2.5. Variational model inference
As described in the Supplement Section C, variational learning

(e.g., (24, Ch. 10)) is used to derive approximate posterior

probability distributions for the parameters of each participant, as

well as a separate posterior distribution for the parameters of the

population GMM, given all observed data.

The individual distributions are estimated using the response

data from each participant, but these individual estimates are also

somewhat regularized by the population model: If the response

pattern from one respondent deviates a lot from the patterns of

many other participants, the hierarchical model will tend to

“explain” any such extreme deviations as a random effect of the

limited number of responses rather than as an extreme deviation

in the true individual characteristics.

This regularization also handles cases of missing data. It is not

too rare that an individual might produce very few responses (or

even no response at all) in some situations, especially if the study

defines many situation categories. In such a case, the distribution

of individual parameters will be influenced mostly by the

population model. The population model will still be determined

by all data that is available from all respondents.

The population model and all individual models are jointly

adapted to all response data together with a weakly informative

prior density defined in the Supplementary Section B.2 for the

population parameters. The combined hierarchical model

automatically includes measures of the uncertainty of each

individual result as well as the inter-individual variability in the

population.
7Random variables can be statistically dependent even if their correlation is

zero.
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3.2.6. Predictive distributions
The individual and population models can be used to calculate

three desired model-parameter distributions as defined in the

Supplementary Section D,

1. for an unseen random individual in the population from which a

group of participants was recruited,

2. for the population mean,

3. for each study participant.

These distributions are also used to evaluate the joint probability for

any combination of hypotheses about differences between attribute

values and/or situation probabilities. This calculation, as described

in (25, Appendix C), accounts for the effect of joint comparisons,

so no further corrections for multiple hypothesis tests are needed.
3.3. EmaCalc: usage

EmaCalc can be used by anyone with a basic knowledge of the

Python language. A supplied template script runs a complete

analysis which always includes the following steps:

1. Setup an experimental framework, specifying

† study phases, if more than one,

† situation dimensions, with nominal categories in each

dimension,

† attributes, with ordinal response categories for each attribute

2. Load EMA data, by specifying

† a directory containing all recorded data files,

† input file format(s),8

† participant groups, if more than one.

3. Learn the probabilistic model, after specifying

† effects to be included in the ordinal regression model,

† a time limit for the computation.

4. Display results, selecting

† situation probabilities to be shown,

† attribute values to be shown versus phase and/or situation

categories,

† results for random individual and/or population mean and/or

individual participants,

† optional properties for result figures and tables.

5. Save all results, selecting

† a directory for all result files

† figure file format(s) and table file format(s).9

The code package EmaCalc RRID:SCR_022943, is freely available

on PyPi: https://pypi.org. It uses a custom-made sub-package for

Hamiltonian sampling, also freely available with open source on
8Data files are accessed by sub-package pandas that can handle several table-

style file formats, such as xlsx, csv. Recorded data may be converted to

agree with variable names and labels defined in the setup step.
9Figures can be saved in any format allowed by Python sub-package

matplotlib, such as eps, pdf, png. Tabular results can be saved in any

format that sub-package pandas allows, such as txt, tex, xlsx, csv.
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PyPi. The package and its required sub-packages can be installed in

the user's Python environment by the command

python3 -m pip install –upgrade EmaCalc

The present results were produced by version 0.9.3 of EmaCalc.

To reproduce the analysis results presented in this paper, the

reader should contact the second author to access the data base,

and then run the script run_IHAB.py which can be obtained by

request to the first author.

This code script is adapted from the general template script

run_ema.py included in EmaCalc. The package also includes

simulation functions and a script run_sim.py, which allows the

user to quickly produce a simulated data set, save the data in files

as if produced in a real experiment, and run the analysis on the

simulated EMA data set.

3.4. EMA data

We have used the EmaCalc package to re-analyze data collected in

the study “Individual Hearing Aid Benefit in Real-Life (IHAB-RL)”

(6). A total of 24 adults with mild-to-moderate hearing loss

collected EMA data using the open-source EMA system olMEGA (26).

The present re-analysis includes data only for 13 first-time hearing-

aid users who collected EMA data without hearing aids as well as after

a period of HA adaptation, i.e., in two study phases, with a duration of

four days each. The participants described everyday listening situations

complemented by subjective ratings of different hearing-related

attributes. The description of listening situations allowed a retrospective

classification as one of seven CoSS10 intention and task categories (27).

A total of 1330 EMA records were collected from these 13 participants.

Further details are presented in the original publication (6).

The re-analysis will exemplify how the EmaCalc approach can

estimate effects of a hearing-aid fitting intervention at the three

separate levels mentioned in the Introduction and in Section 3.2.6.

Three of the rated attributes are now considered: Loudness, Involvement

in group conversations, and Disability. Figure 3 shows histograms of

the raw ratings for these attributes. These attributes were selected

because the distributional properties of the corresponding data differ

greatly from each other: Loudness ratings show a comparatively low

dispersion, Involvement has a scarce data basis with only 143 valid

records, and the Disability ratings are strongly skewed. As a check to

verify that the learned model fits the raw data, the corresponding

model-predicted response counts are also shown in the histogram plots.
FIGURE 3

Histograms of ordinal ratings of (A) Loudness, (B) Involvement in group
conversations, and (C) Disability in the two phases of the IHAB-RL study,
summed across all CoSS categories and all 13 participants in two study
phases, before and after hearing-aid fitting. Short vertical black lines on
top of the bars show corresponding model-predicted 95% credible
intervals for the response counts.
4. Results

Figure 4 shows overall effects of the hearing-aid fitting

intervention for attributes Loudness, Involvement, and Disability, in
10CoSS specifies situational intentions and tasks by seven main categories:

“Speech conversation, two persons,” “Speech conversation, more than two

persons,” “Speech by communication device,” “Focused listening (live),”

“Focused listening (media),” “Monitoring surroundings,” and “Passive listening.”
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the population from which the participants were recruited. The

predicted results for a random individual (panels A, C, E) and for

the population mean (panels B, D, F) suggest a credible effect

mainly on Disability.

The credibility of intervention effects in the population is reported by

EmaCalc in separate output tables showing the following results: The
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FIGURE 4

Predictive results for Loudness, Involvement, and Disability for a random individual in the population (A,C,E) and for the population mean (B,D,F), as estimated
by regression as a function of the test phase, i.e., before and after hearing-aid fitting. Vertical lines show 95% credible intervals for the marginal distributions of
attribute values. Marker symbols show 25-, 50-, and 75-percentiles. Thin horizontal lines across the plots show median estimated response thresholds for the
ordinal rating categories.
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probability for a random individualwas 60.3% for a decrease in Loudness,

53.0% for an increase in Involvement (i.e., very close to the 50% level

indicating no change), and 93.6% for a decrease in Disability. The
Frontiers in Digital Health 08
corresponding probability for an intervention effect on the population

mean was 90.0% for reduced Loudness, 59.6% for increased

Involvement, and higher than 99:9% for a decrease in Disability. The
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FIGURE 5

Predictive Disability results for a random individual in the population (A) and for the population mean (B), as estimated by regression for the combined effects
of test phase and CoSS categories. Vertical lines show 95% credible intervals for the marginal distributions for each category. Marker symbols show 25-, 50-,
and 75-percentiles. Thin horizontal lines across the plots show median estimated response thresholds for the seven ordinal rating categories.
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very high probability (.99:9%) for improved Disability in the

population mean can be interpreted in a similar way as a conventional

hypothesis test showing a highly significant benefit. The change in

Loudness had lower probability, and can not be considered clinically

relevant anyway, because the change corresponds to only a small

fraction within the same ordinal response category (Figure 4B).

Figure 5 displays the predicted intervention effects on Disability

separately across CoSS categories. The effect is similar in all CoSS

categories. The distributions of situation probabilities differ

markedly by CoSS categories as shown in Figure 6, but there is no

obvious effect of the intervention on situation probabilities in any

of the CoSS categories.

Figures 4, 5 also show estimated median response thresholds in

the population. Thus, the vertical intervals between the thresholds

show the latent-variable ranges for each of the ordinal response
FIGURE 6

Predictive results for the situation probabilities estimated for a random individual
credible intervals of the marginal distributions for each category. Marker symbo
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categories that are defined by their text labels in Figure 3.

Therefore, the results can also be interpreted in terms of the raw

ordinal response scale: For example, Figure 4E,F shows that the

estimated median Disability in the population improved from the

second or third category, “very slightly disabled” - “slightly

disabled,” to the lowest category “not at all disabled.” It is notable

that the thresholds are not equally spaced, so the widths of latent-

variable response intervals are markedly non-uniform across

ordinal response categories, for all three perceptual attributes.

Figure 7 shows individual intervention effects on Disability for

four participants denoted with the same numbers as in the original

paper (6, Figures 6, 7). Two of these participants showed clearly

reduced Disability after the intervention, while the other two

perceived no clear change. The displayed median response

thresholds make it possible to interpret these results also in terms
in the population (A) and for the population mean (B). Vertical lines show 95%
ls show 25-, 50-, and 75-percentiles.
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FIGURE 7

Predictive Disability results of four study participants, denoted by numbers as in the original IHAB-RL study (6, Figures 6, 7). Vertical lines show 95% credible
intervals for the marginal distributions of Disability values. Marker symbols show 25-, 50-, and 75-percentiles. Thin horizontal lines across the plots show
median estimated response thresholds for the ordinal rating categories. (A) Participant 10, (B) Participant 11, (C) Participant 12 and (D) Participant 13.
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of the raw ordinal response scale: For example, Figure 7C shows that

the estimated median intervention effect on Disability for participant

12 was three ordinal scale steps in CoSS categories C1, C2, C4, and

C5, improving from the fifth category “considerably disabled” to

the second category “very slightly disabled.” It is notable that the

estimated median response thresholds were markedly different

among these participants.

Some participants provided rather scarce EMA data, even no

ratings at all in some situations. For example, participants 11 and

12 had no Disability ratings at all in CoSS-task C3, neither Before

nor After fitting. In the study phase After fitting, participant 10

had no Disability ratings at all for CoSS-task C5, and participant

13 did not provide any ratings for CoSS-task C6. Participant 13

provided a total of 44 Disability ratings in phase After, of which 43

were in the lowest category “not at all disabled.”

The hierarchical Bayesian model (Figure 2) can produce individual

estimates even for participants who provided very few ratings in some

situations, because the population model acts as a prior distribution for

the individual models.11 Of course, with a lack of individual data, the
Frontiers in Digital Health 10
uncertainty range of the estimate can get very large, as exemplified in

Figure 7, and the results must be interpreted with caution.
5. Discussion

5.1. Bayesian analysis

The present Bayesian re-analysis of the real EMA data set of von

Gablenz et al. (6) revealed an intervention effect on perceived

Disability with very high statistical credibility for the population

mean as well as for a random individual in the population from

which the respondents were recruited. These results are in

qualitative agreement with the original analysis results.
A similar effect can be achieved by so-called “partial pooling” in conventional

frequentist GLM estimation.
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The original paper was mainly focused on individual effects, but

it also used a frequentist Cumulative Linear Mixed Model (CLMM)

regression analysis of data from the same subset of 13 respondents

to reveal effects on the group level. The results of von Gablenz

et al. (6, Figure 8) showed statistically significant (95% confidence

intervals) difference After vs. Before hearing-aid fitting for

Disability, a barely significant effect on Involvement, and no

significant effect on Loudness. The regression effect of test phase

on the Disability ratings amounted to �3:0 (�4:6; �1:5) logit

units in the estimated CLMM beta coefficient. The corresponding

median improvement was about 2.9 logit units12 in the EmaCalc

model (Figure 4F), but the effect scales are not exactly comparable

because EmaCalc allows the rating response thresholds to differ

between participants.

The CoSS probabilities estimated with the present re-analysis

(Figure 6) gave similar results as shown by the distribution of raw

EMA responses by CoSS categories in the original paper (6,

Figure 4). However, EmaCalc predicts the situation probabilities

automatically together with their estimated variance in the

population.

The EmaCalc model allowed the response thresholds to vary

between participants, and also allowed non-uniform steps between

ordinal response categories on the latent-variable scale. The results

in Figures 4, 5 show that the model achieved the best fit to the

observed data by using non-uniform steps between response

categories. Furthermore, the model found markedly different

response thresholds across participants (Figure 7). These results

suggest that it might be questionable to presume uniform step sizes

between ordinal response categories, and/or to presume that all

participants necessarily interpret and use the response alternatives

in the same way.

Overall, EmaCalc may be an interesting alternative to the CLMM

for the statistical analysis of EMA data. The main advantage with the

Bayesian method is that it automatically presents measures of the

uncertainty of all estimated parameters, both at the participant and

the population levels, for the given amount of input data.

Therefore, it can predict results both for an unseen random

individual in the population and for the population mean.

However, the EmaCalc learning is computationally demanding

when many variables are analyzed jointly. The present re-analysis

of the IHAB-RL data set used 75 model parameters in total for

each participant (2� 7 ¼ 14 for the situation probabilities,

3� 14 ¼ 42 for the regression effects on the three attributes, and

7þ 5þ 7 ¼ 19 for the response thresholds). The variational

learning procedure needed 212 iterations to converge, which took

about 1.5 h in a MacBookPro (M2, 2022) laptop. The

implementation learns model parameters for separate participants

in parallel processes, if running in a computer with several CPU

cores. Therefore, the computation automatically scales up to
12The “logit unit” in EmaCalc is the standard deviation of a logistic distribution

with unity scale, which corresponds to the logit link function used in the

CLMM.
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handle a large number of participants, limited only by the

available hardware.

A known weakness of EmaCalc (in its current version) is that it

can not use continuous-valued contextual and environmental

measures as covariates in the regression model. This may be

important for example in EMA studies using data-logging of

acoustic sound pressure levels or signal-to-noise ratios (e.g.,

(28,29)). The extension to continuous-valued metric input data will

be considered in a future version.
5.2. Alternative frequentist approaches to
EMA data analysis

Depending on the context and the objectives for which EMA is

used, some frequentist approaches might also serve for analyzing

the outcome data. The Cumulative Linear Mixed Model (CLMM),

that was used in the original analysis of the IHAB-RL data (6), is

theoretically adequate for ordinal EMA data and rather closely

related to the Graded Response Model used by EmaCalc.

Considering the questionable presumption that raw ordinal

scores are metric, von Gablenz et al. (6) used the Non-overlap of

All Pairs (NAP) (30) as an individual effect measure. The NAP

result is a point estimate of the probability that the respondent

rates condition B higher than A. Thus, the NAP uses only the

ordinal property of the ratings without assuming a metric scale.

Since the NAP is a well-defined single-value summary of all rating

differences of each participant, it is theoretically a safe aggregation

method when testing for differences at population level.
5.3. Simplified hypothesis test using
mean scores

Researchers might be tempted to use the simplest possible

statistical method, at least for a preliminary analysis. Although “By

itself, a p-value does not provide a good measure of evidence

regarding a model or hypothesis” (31), researchers may still consider

applying a conventional hypothesis test to the EMA data, rather

than the more advanced frequentist CLMM regression model (6) or

the Bayesian approach, which provide quantitative effect measures

that are more valid as evidence for scientific conclusions.

Since the raw ratings can be considered statistically independent

only between different participants, but not within participants, one

simple approach (suggested by (8)) is to first somehow aggregate all

responses for test conditions A and B separately within each

participant, and then apply a standard significance test for a

population difference between the two conditions. Although the

ratings are correlated within participants, the aggregated intra-

individual outcome measures might then safely be analyzed as

independent samples from the population of potential respondents.

There are many ways to define a single aggregate measure for

each respondent and test condition. Assuming that a researcher

primarily wants to compare the difference in mean score between

two test conditions, Oleson et al. (8) proposed using the average of

raw (integer-encoded) ordinal scores as an appropriate aggregate

measure. However, when deciding that the mean raw score is the
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most relevant quantity to be compared, the researcher must already

presume that the raw scores represent values on an interval scale, and

Oleson et al. (8) also noted that it may be difficult to address the

question whether the distances between ordinal categories are

actually uniform.

The original analysis of the IHAB-RL data presented mean and

standard deviations of raw scores for individual ratings (6,

Figure 6), although the authors also pointed to the questionable

assumption of metric raw data. Anyway, let us now temporarily

disregard these fundamental scale problems, and apply the mean-

score aggregation method also for a test on the population level.

In this case we cannot assume that the EMA data are normally

distributed: A Shapiro-Wilks test indicated significant non-

normality (p ¼ 0:009) for Disability, and the Involvement data are

too scarce for relying on the central limit theorem. Only the

data for Loudness might be a candidate for a test that requires

normal distribution. Therefore, the mean scores were instead

submitted to a two-tailed Wilcoxon signed-rank test

(scipy.stats.wilcoxon). The results indicated a highly

significant effect of hearing-aid uptake for Disability

(T ¼ 1:0; N ¼ 13; p , 0:001) but no significant effect on

Involvement (T ¼ 17:0; N ¼ 12; p ¼ 0:155) and Loudness

(T ¼ 30:0; N ¼ 13; p ¼ 0:305), again qualitatively in agreement

with the EmaCalc results for the population mean.

We think statistical tests using the mean scores should be

used with caution, although they may lead to similar

conclusions as a theoretically safer CLMM regression analysis

or a Bayesian approach.
6. Conclusions

As suggested in a recent tutorial about the statistical challenges of

EMA data (8), a hierarchical Bayesian latent-variable analysis model

has been developed and made freely available to researchers. The

EmaCalc implementation in Python can handle EMA input data

including nominal situation categories and ordinal ratings of

perceptual attributes, and can estimate the statistical relation

between these variables.

Although researchers may be tempted to use the simplest possible

“mean-score” methods, those methods presume that ordinal response

categories represent uniform steps on a perceptual scale, and this

presumption may be questionable and difficult to motivate.

The proposed latent-variable model avoids this fundamental

presumption by allowing non-uniform step sizes between ordinal

categories on the response scale. The model also allows response

thresholds to vary between participants, so it does not presume

that all participants necessarily interpret and use the ordinal

categories in the same way.

The new model was used to re-analyze an EMA data set (6)

including 13 first-time hearing-aid users reporting about listening

situations and subjective impressions in two study phases: before

and after hearing-aid fitting. The hierarchical model estimated

intervention effects in the population from which the participants

were recruited. The results for the population mean were similar to

those obtained in the previous analysis by an advanced frequentist

ordinal regression model.
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The Bayesian approach automatically estimated the inter-

individual variability in the population, based on the study

sample, and could show some statistically credible intervention

results also for an unseen random individual in the population.

Such results may be interesting, for example, if the EMA

methodology is used by a hearing-aid manufacturer in a study

to predict the success of a new signal-processing method among

future potential customers.
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