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Association of digital measures
and self-reported fatigue:
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inflammatory rheumatic disease
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Monika Sopala2 and Valeria De Luca1*
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Background: Fatigue is a subjective, complex and multi-faceted phenomenon,
commonly experienced as tiredness. However, pathological fatigue is a major
debilitating symptom associated with overwhelming feelings of physical and
mental exhaustion. It is a well-recognized manifestation in chronic inflammatory
rheumatic diseases, such as Sjögren’s Syndrome and Systemic Lupus
Erythematosus and an important predictor of patient’s health-related quality of
life (HRQoL). Patient reported outcome questions are the key instruments to
assess fatigue. To date, there is no consensus about reliable quantitative
assessments of fatigue.
Method: Observational data for a period of one month were collected from 296
participants in the United States. Data comprised continuous multimodal digital
data from Fitbit, including heart rate, physical activity and sleep features, and
app-based daily and weekly questions covering various HRQoL factors including
pain, mood, general physical activity and fatigue. Descriptive statistics and
hierarchical clustering of digital data were used to describe behavioural
phenotypes. Gradient boosting classifiers were trained to classify participant-
reported weekly fatigue and daily tiredness from multi-sensor and other
participant-reported data, and extract a set of key predictive features.
Results: Cluster analysis of Fitbit parameters highlighted multiple digital
phenotypes, including sleep-affected, fatigued and healthy phenotypes. Features
from participant-reported data and Fitbit data both contributed as key predictive
features of weekly physical and mental fatigue and daily tiredness. Participant
answers to pain and depressed mood-related daily questions contributed the
most as top features for predicting physical and mental fatigue, respectively. To
classify daily tiredness, participant answers to questions on pain, mood and
ability to perform daily activities contributed the most. Features related to daily
resting heart rate and step counts and bouts were overall the most important
Fitbit features for the classification models.
Conclusion: These results demonstrate that multimodal digital data can be used to
quantitatively and more frequently augment pathological and non-pathological
participant-reported fatigue.
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1. Introduction

Without a doubt, an experience of fatigue, a phenomenon most

people are familiar with, is a subjective matter. However, the

reasons for fatigue vary (1). Tiredness after a long, physically or

mentally demanding day is a sign to rest, so that we can carry

on the next day as normal. Such is an experience of most healthy

individuals. However, in disease, especially in chronic illnesses

like cancer, neurological or autoimmune disorders, fatigue may

be exhausting, constantly present and debilitating. It may

interfere with ability to function (2–6). This feeling of chronic

exhaustion or pathological fatigue is very poorly understood (7).

Symptoms of fatigue in individuals suffering from inflammatory

rheumatic diseases, such as Sjögren’s Syndrome (SjS) and Systemic

Lupus Erythematosus (SLE) (8) are often major, debilitating, and

have significant impact on daily life causing functional limitation

and morbidity (9, 10). Fatigue in SLE is found to be associated

with increased likelihood of poor sleep quality, depression and

anxiety (11, 12). SjS participants also complain of chronic and

intractable fatigue, not evident to others (13). Individuals suffering

from both SjS and SLE have reported reduced physical activity

levels, exercise and aerobic capacities, and muscle weakness, which

might be attributed to fatigue (14, 15).

While the impact of fatigue on health-related quality of life

(HRQoL) in participants with chronic inflammatory rheumatic

diseases is high, there is no consensus regarding quantitative

approaches which could be employed. The primary instruments

to assess fatigue are self-administered patient reported outcome

(PRO) questionnaires. Fatigue PRO assessments can be part of a

generic, multi-dimensional questionnaire [e.g., the 36-item short-

form health survey (SF-36) (16)], included in disease-specific

instruments [e.g., EULAR Sjögren’s Syndrome Patient Reported

Index (ESSPRI) (17)], the primary target of the PRO instrument

[e.g., the extensively validated 13-item Functional Assessment of

Chronic Illness Therapy – Fatigue Scale (FACIT-Fatigue) (18)] or

Multidimensional Fatigue Inventory (MFI) (19). Fatigue PROs

are commonly used in both clinical practice and clinical trials.

These instruments can also cover various domains of HRQoL

factors (including usual daily activities, mood, sleep) and hence

reflect the broad impact of a disease on various aspects of

participants’ lives and their overall well-being. Yet PRO data

collection has some limitations, which include bias (completion

in clinical setting of a hospital or doctor’s office; recall of 1 week

or longer; responses influenced by fatigue level at a particular

day or moment, inconsistent compliance (when completed at

home), and lack of proximity to the disease or treatment (20–22).

In recent years, global availability of affordable digital health

technologies, in particular wearable devices, has gained

tremendous interest in the clinical field, offering a unique

opportunity to collect more frequent, continuous, and objective

data on activity and patient status (23, 24), which can augment

PRO data. Common digital measures focus on physical activity

(e.g., number or steps from accelerometers), and vital signs (e.g.,

heart rate from photoplethysmography). Successful applications

of digital measures also include cognition (25, 26), gait and
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mobility (27), pain (28, 29) and stress (29). A feasibility study

was previously conducted on healthy participants to explore the

relationship between self-reported, non-pathological physical and

mental fatigue and behavioural and physiological time-series data

acquired from a multisensor wearable device (30). Results from

this study suggested that data from multiple sensors are needed

simultaneously to classify and characterize subjective, non-

pathological fatigue.

In this study, we have applied a similar approach on a larger

observational dataset, which included data from healthy

individuals, and individuals diagnosed with chronic inflammatory

rheumatic diseases: SLE and SjS. Descriptive statistics, supervised

and unsupervised machine learning approaches were used to

characterize patient groups and the association between daily

behaviors (using passively-collected wearable device data) and

self-reported fatigue. The key contributions of this work are: (i)

the characterization and exploration of differences in physical

activity and reported HRQoL factors, including fatigue, in

healthy volunteers (HV) vs. participants with chronic

inflammatory rheumatic diseases by using both digital sensor

measures and participant-reported data; (ii) development of a

machine learning-based framework to combine multi-sensor and

participant reported outcome data to classify participant-reported

scores on fatigue and hence (iii) identify a set of key predictive

metrics of fatigue. These multi-modal, composite metrics may be

further explored in the context of clinical trials as digital

biomarkers or patient stratification criteria.
2. Materials and methods

2.1. Data

Observational data were acquired by Evidation Health, Inc.1

between August and October 2020 from a total of 296

individuals (19–80 years of age, mean age 45) in the United

States, of whom 105 were HV, 104 SLE and 87 SjS participants.

Each individual participated in the study for a period of one

month. Survey data on demographics, medical history, symptoms

and current treatment for autoimmune disease(s) have been

collected at baseline. All participants were English speakers.

Financial incentives of up to 47 were provided for participation

to the study. The compensation for completing the baseline

survey and connecting the Fitbit device to the Evidation

Achievement platform was of $10. The study was approved by

the relevant Institutional Review Boards and written consent was

obtained from every participant. An overview of the study

population is provided in Table 1 and Figures S1–S4 in

Supplementary Material A. A higher percentage of female

participants were recruited in this study (overall percentage of
frontiersin.org
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TABLE 1 Study cohorts characteristics including age, sex and ethnic background.

HV SLE SjS Total Overall percentage
Number of participants 105 104 87 296 –

Sex
Female 79 103 87 269 90.9

Male 26 1 0 27 9.1

Mean age + sd 43:9+ 11:1 43:2+ 11:2 43:9+ 9:4 45:4+ 11:0 –

Race
American Indian or Alaska Native 2 4 0 6 2.0

Asian 7 6 2 15 5.1

Black 14 10 8 32 10.8

Native Hawaiian Pacific Islander 1 0 0 0 0.3

White 84 87 76 247 83.4

Other 4 3 1 8 2.7

Ethnicity
Non-Hispanic Latino 94 92 83 269 90.9

Hispanic Latino 11 12 4 27 9.1

HV: healthy volunteers; SLE: systemic lupus erythematosus; SjS: Sjögren’s syndrome; sd: standard deviation.

Rao et al. 10.3389/fdgth.2023.1099456
female in the data set is 90.9%) to reflect the fact that both SLE and

SjS are overrepresented diseases in women, with the sex ratio of

approximately 9:1 female to male (31, 32).

Objective, continuous data on physical activity, sleep and heart

rate (HR) were collected over one month using participants’ owned

multi-sensor wearable devices from Fitbit.2 Minute-by-minute

Fitbit data were divided into three categories (HR, sleep and steps)

and multiple features were provided or computed at different time

resolutions (monthly, weekly, daily and hourly). In this work, we

focused on 93 daily-aggregated Fitbit features. All Fitbit features

are listed in the Supplementary Material B, Tables S3–S5.

In addition to providing their wearable Fitbit device data,

participants were asked to answer to daily and weekly lists of

questions, see Sections 3.1 and 3.2 in Supplementary Material A.

The questions aimed to collect the participants perspective and

own assessment on various HRQoL factors and symptoms, namely

pain, mood, general physical activity and functioning, sleep,

physical (PhF) and mental fatigue (MF), and daily tiredness (T).

Questions were administered via mobile app. Daily questions were

assigned to the same calendar day as the daily Fitbit data. The

daily list consisted of a total of 9 questions with some reporting

both intensity and frequency of the HRQoL factor. Weekly list of

17 questions included 13 question of the validated FACIT-Fatigue

scale v4 (under license from FACIT.org3) (18). The remaining 4

questions were related to mood, physical (PhF) and mental fatigue

(MF). The last two were as follows:

† Physical fatigue score (PhF): Physically, in the last week how

often did you feel exhausted?

Possible answers: “never”, “sometimes”, “regularly”, “often”,

“always”
2https://fitbit.com
3https://www.facit.org/
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† Mental fatigue score (MF): Mentally, in the last week how often

did you feel exhausted?

Possible answers: “never”, “sometimes”, “regularly”, “often”,

“always”

Except for FACIT-Fatigue, this survey did not rely on validated

clinical outcome measures. We will therefore refer to the

categorical answers to each question of the daily and weekly list

of questions as participant-reported (PR) features.
2.2. Data pre-processing

To ensure high quality data for our analysis, we excluded data

from participants with low adherence. Only 207 of the involved

participants worn the Fitbit device during the study. The total

number of days available for the Fitbit users before data cleaning

was 6,992. Regarding participant-reported data, 293 participants

filled in at least one daily list of questions and 272 participants

have at least 15 overall days of completed list of questions.

Additional information about study adherence is reported in

Section 2 of Supplementary Material A. For each participant

and monitored day, we included only days when (i) the wearable

device was worn for at least 60% (empirical threshold) of the

total wear-time computed as the number of minutes in which

the fitbit was worn and recording data; (ii) participants

responded to the complete daily list of questions and (iii) the

corresponding weekly one. Furthermore, missing values in any

feature categories were excluded from the analysis. This step

resulted in an exclusion of 113 participants. Data from a total of

183 participants (68 HV, 57 SjS and 58 SLE) were used for

further analysis.

93 digital features (33 HR, 27 sleep, 33 steps) were computed

by aggregating fitbit data at the day level. PR features,

corresponding to the daily questions without daily tiredness,

were derived. This set of features was used for the classification

tasks of weekly fatigue and daily tiredness. Dimensionality
frontiersin.org
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reduction was performed to extract features carrying higher

variance and hence to lower the size of the data while retaining

interpretability. For this purpose, we used principal component

analysis (PCA) on the numerical daily Fitbit features for each set

(HR, sleep and steps) independently. The numerical features

were normalized to have standard deviation equal to 1. A

threshold of 80% for the cumulative percentage of total variance

was set to select the top principal components (PCs). Factor

analysis of mixed data (FAMD) was applied to the categorical

daily PR features. Similarly to PCA, we used the threshold of

80% for the cumulative percentage of total variance to select the

top PCs. Further method details are reported in Section 5 of the

Supplementary Material B. The dimension of the feature space

was finally reduced from a total of 93 to 65 digital features (23

HR, 21 sleep, 21 steps) and 6 daily PR features. The features

contributing to most of the variances in the top PCs were then

considered for descriptive statistics and clustering of digital

features. The full list of Fitbit features and PR features is

provided in the Supplementary Material B (Tables S2–S5).
2.3. Descriptive statistics and clustering of
digital features

For each of the 65 PCA-selected daily digital features, we

computed participant-specific descriptive statistics over the

observed period of time. In our analysis, we considered a single

day for each participant as an independent observation. Statistics

were conducted by comparing the observations (days) computed

for different participant groups based on diagnosis (HV, SjS and

SLE). Data was checked for normality using Kolmogorov–

Smirnov test with p-value , 0:05, indicating that the majority of

Fitbit features in each participant group were not normally

distributed. Non-parametric test Kruskal–Wallis one-way

ANOVA test was then used to highlight significant differences of

each feature among the three participant groups. Post hoc

pairwise analysis was performed with the non-parametric Dunn’s

test to identify differences between two groups, p-values were

adjusted using the Holm–Bonferroni method. Finally, the

association between daily PR features, including tiredness, was

measured with Goodman and Kruskal’s t test.

To further investigate the relationship between objective

behavioral data and subjective fatigue scores and extract potential

digital phenotypes, Ward’s agglomerative hierarchical clustering

with Euclidean distance was applied on the 65 daily Fitbit

features for 3950 observed days, similarly to (30). The number of

clusters and feature sets were determined based on the

hierarchical structure of the dendrograms showed in Figures S32

and S33 in Supplementary Material C.
2.4. Classification of participant-reported
fatigue

Two classification tasks were carried out to demonstrate

whether subjective fatigue scores reflecting both pathological
Frontiers in Digital Health 04
and/or non-pathological fatigue can be linked to digital

parameters from wearable devices and other survey data.

Extreme Gradient Boosting (XGBoost) (33) classifiers were

trained to classify (i) binary labels of weekly physical (PhF) and

mental fatigue (MF), independently; and (ii) multi-class labels of

daily tiredness score (T).

For binary classification, the different levels of MF and PhF

fatigue questions were converted into binary labels yMF and yPhF ,

respectively, using the following criteria:

y ¼ 0 for MF or PhF ¼ never
1 for MF or PhF [ fsometimes; regularly; often; alwaysg

�

The weekly questions were replicated retrospectively over the

7 days prior the day of the questions to match the observation

period of the respective question. The day of the questions was

included only if the questions had been completed after 6 p.m.

The predictions for weekly PhF and MF were made for each day.

For multi-class classification, the different levels of daily

tiredness (T) were encoded as ordinal to yT :

yT ¼

1 for T ¼ not at all
2 for T ¼ a little bit
3 for T ¼ some what
4 for T ¼ quite a bit
5 for T ¼ very much

8>>>><
>>>>:

Input features for both classification tasks were: (i) the 8 PR

features, corresponding to the daily questions excluding reported

daily tiredness; (ii) 93 Fitbit features; and (iii) participant

diagnosis (HV, SjS or SLE) and age. Different combinations of

features sets were tested to determine the effect of the modalities

on the classification performance. To evaluate the models a leave

one group out (LOGO) validation strategy was used. In LOGO,

observations (i.e., single days) in the train and test sets are

stratified by label distribution, grouped by participants, and

repeated five times guaranteeing that data of the same

participants are not in the two sets concurrently. Similar

proportion of observations across HV, SjS and SLE groups was

maintained in the train and test sets. The LOGO strategy is

participant-independent and enables to test the ability of the

model to generalize to unseen participants. Within the train set

we used a grid-search stratified 5-fold cross-validation (CV)

scheme to derive the set of hyperparameters of the XGBoost that

maximises the balanced accuracy. Due to the skewed

distributions of labels, balanced accuracy and F1-score metrics

were used to evaluate the performance of the weekly fatigue

classification. Balanced accuracy, unweighted average of the per-

class F1-score and the macro-averaged mean absolute error

(MMAE) were used to evaluate the performance of the daily

tiredness classification. Further details on experimental setup,

hyperparameter tuning, validation, model evaluation and

implementation are described in the Supplementary Material C,

Section 8.
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3. Results

3.1. Characterization of HV vs. participants
with chronic inflammatory rheumatic
diseases using statistical analysis

This section reports results from the statistical analysis

described in Section 2.3 for the characterization of HV vs. SjS

and SLE patients. On average, daily PR features indicated overall

poorer scoring in all HRQoL factors in disease (SjS and SLE)

cohorts compared to healthy participants. An overview of all

daily answers to the daily survey, stratified by participant groups

is provided in Figure S8 in Supplementary Material A. Low

association was found between survey domains (t , 0:3), yet

association was high between the same domain’s intensity and

frequency (t . 0:6). The full association map can be found in

the Supplementary Material A, Figure S9.

Participants with SjS and SLE reported on average lower

FACIT-Fatigue scores and hence higher levels of fatigue4

compared to healthy participants. SjS participants reported the

lowest FACIT-Fatigue score (mean score of 30:6+ 0:8), followed

by SLE (31:5+ 0:7), and HV (39:2+ 0:4). Difference in fatigue

scores was consistent between participant groups among all time

points (see Figure 1). Similar trends but not substantially

different between SjS and SLE participants were observed for

weekly MF and PhF scores and daily tiredness scores. Figure S13

in Supplementary Material A shows the ratio of different levels

of PhF and MF across participant groups and Supplementary

Material A, Figure S8 (bottom right) the different levels of daily

tiredness across cohorts.

From the PCA-filtered Fitbit features, eight out of 23 HR

features and two out of 21 steps features were statistically

significantly different (p-value < 0.001) across all three studied

groups, while no sleep features were significantly different across

all three studied groups. Figure 2 shows two examples, namely

resting HR, which was the lowest in HV and highest in SjS

participants, and the number of minutes with at least one step,

which was the lowest in SLE and SjS participants and highest in

HVs. Figures S21–S31 in Supplementary Material B show the

overlay of violin and box plots for all 65 PCA-filtered Fitbit

features.
3.2. Description of digital phenotypes using
clustering of wearable features

This section reports results from the clustering analysis (see

Section 2.3) for the description of the identified digital

phenotypes. Figure 3 shows the output of hierarchical
4The 13-item FACIT-Fatigue Score ranges between 0 and 52. A score lower

than 30 indicates severe fatigue. The higher the score, the better the QoL

(34).
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clustering of the daily wearable features, where each row

corresponds to one observation (monitored day per

participant) and each column the Z-score normalized values of

the 65 Fitbit features. For each observation, the corresponding

physical (yPhF) and mental fatigue (yMF), and daily tiredness

(yT ) labels, and demographics are reported. We observed 3

groups of features and 4 clusters of 517, 671, 1227 and 1535

observations each.

Feature set 1 consists only on HR features (e.g., mean resting

and daily HR). Sleep features are all clustered in feature set 2,

along with a HR feature (i.e., HR standard deviation while

asleep) and steps features. Feature set 3 has a combination of

steps-based and heart rate features, mostly related to physically

active periods (e.g., walking bouts and maximum number of

steps in specified time windows).

Four clusters have been identified. Cluster 1 is mainly

composed of observations from SLE (18% of total SLE

observations) and SjS (21% of total SjS observations) and of

participants belonging to middle age groups (29-58 years old).

This cluster reports low physical activity, higher HR compared to

other clusters and high levels of daily tiredness. Cluster 2 groups

observations characterized by high values for physical activity

parameters. This cluster includes more HVs (39% of total HV

observations) compared to disease groups (SjS and SLE) and 48%

of observations with no reported fatigue are in this cluster. Daily

tiredness levels in this cluster are comparatively low. Cluster 3 is

driven by very low values for HR and physical activity

parameters and includes a similar proportion of HV, SLE and

SjS participants. Furthermore, it has the highest proportion

(73%) of participants belonging to the oldest age group, that is

69-78 years of age. Finally, cluster 4 is characterized by high

values for sleep parameters during awake (daytime) periods and

low scores for sleep efficiency.

Statistically significant differences of selected Fitbit features and

distribution of survey answers for each domain in the four

clustered groups are displayed in Figures S36 and S37 in

Supplementary Material C, respectively. Within-participant

observations were split across the different clusters and details

are provided in Figure S38 in Supplementary Material C.
3.3. Machine learning-based framework to
classify participant-reported weekly fatigue
and daily tiredness

In this section, we report the main results from the

classification analysis described in Section 2.4 in terms of

classification performance and feature importance, the latter to

highlight the key predictive metrics of of participant-reported

fatigue.

Tables 2 and 3 summarize respectively the binary classification

results on the test set for predicting binary labels of weekly PhF and

MF. In both classification tasks the highest performance was

achieved when using multimodal data from Fitbit, PR features

and diagnosis state, with a balanced accuracy of 0:78+ 0:08 and

0:76+ 0:05 for PhF and MF respectively. The F1-score of the
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FIGURE 1

Temporal plot showing mean FACIT-Fatigue (FACIT-F) score per week stratified by disease cohort.
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positive class (F11), achieved by the best model, was of 0:87+ 0:03

and 0:84+ 0:03 for PhF and MF respectively.

Using daily PR features alone led to a decrease in performance

especially of F11 (about 7% for both MF and PhF), while using

Fitbit features alone substantially decreased the balanced accuracy

for both tasks (17% decrease for PhF and 83% for MF). Feature

importance from the XGBoost classifier was extracted for all

experiments, see Figures 4A,B for predicting PhF and MF,

respectively. For the best performing XGBoost classifier for PhF

classification (trained on all features), the top 5 important features

include pain PRs, PR features related to problems in performing

daily activities and resting HR. For MF, the top 5 important
FIGURE 2

Overlay of violin plots and box plots for three representative Fitbit features th
namely daily mean resting heart rate (A), number of minutes with at least on
Bonferroni method, are reported on the top of each plot and the number of
median values (m̂median).
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features of the best XGBoost classifier included PR features related

to depressed-like mood and reporting problems in performing

daily activities, followed by HR during rest or sedentary behaviors.

In the overlapping top 20 important features to classify both PhF

and MF labels using the best performing models, there were 6 PR,

6 HR and 6 steps and 2 sleep features, see Figure S40 in

Supplementary Material C. Some of the features were specific to

predicting only PhF (e.g., the diagnosis state of SjS, proportion of

minutes in asleep state) and others specific to MF (e.g., depressed-

like mood PR, mean heart rate while not moving).

Table 4 summarizes the multiclass LOGO classification results

for predicting labels of daily tiredness yT . Similar experiments as
at are significantly different among participant groups (HV, SjS and SLE),
e step (B). p-values from Dunn’s pairwise test, adjusted using the Holm–
observations (n) at the bottom. Red dots highlight the participant group
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FIGURE 3

Hierarchical clustering overview with dendrograms and heatmap of ranked features. Each row corresponds to one observation and each column to the Z-
score normalized values of the 65 Fitbit features. Corresponding PhF, MF and T labels, age and diagnosis are displayed in the annotations on the right.

TABLE 2 Classification results of binary labels of weekly physical fatigue
yPhF .

Input features Balanced
accuracy

F10 F11

PR 0:76+ 0:07 0:50+ 0:09 0:79+ 0:08

HR 0:55+ 0:03 0:28+ 0:04 0:73+ 0:06

Sleep 0:54+ 0:02 0:27+ 0:02 0:71+ 0:05

Steps 0:57+ 0:04 0:29+ 0:05 0:78+ 0:03

All Fitbit 0:61+ 0:06 0:35+ 0:07 0:77+ 0:05

All Fitbitþ PR 0:78+ 0:04 0:56+ 0:08 0:86+ 0:06

All FitbitþDemographics 0:63+ 0:12 0:37+ 0:16 0:83+ 0:05

All Fitbitþ PRþ
Demographics

0:78+ 0:08 0:55+ 0:10 0:87+ 0:03

Evaluation metrics are summarized as the cross-validation mean+ standard

deviation. The top two set of results are highlighted in bold font.

F1: F1-score; PR: features from participant-reported data (daily questions); HR:

heart rate features (Fitbit).

TABLE 3 Classification results of binary labels of weekly mental fatigue
yMF .

Input features Balanced
accuracy

F10 F11

PR 0:73+ 0:04 0:52+ 0:04 0:77+ 0:03

HR 0:54+ 0:02 0:32+ 0:03 0:7+ 0:07

Sleep 0:52+ 0:01 0:28+ 0:03 0:72+ 0:06

Steps 0:59+ 0:03 0:37+ 0:03 0:77+ 0:04

All Fitbit 0:58+ 0:04 0:36+ 0:05 0:73+ 0:07

All Fitbitþ PR 0:74+ 0:05 0:54+ 0:05 0:82+ 0:02

All FitbitþDemographics 0:59+ 0:08 0:34+ 0:12 0:77+ 0:05

All Fitbitþ PRþ
Demographics

0:76+ 0:05 0:57+ 0:06 0:84+ 0:03

Evaluation metrics are summarized as the cross-validation mean + standard

deviation. The top two set of results are highlighted in bold font.

F1: F1-score; PR: features from participant-reported data (daily questions); HR:

heart rate features (Fitbit).
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FIGURE 4

Top 20 features to classify (A) physical fatigue (PhF), (B) mental fatigue (MF) and (C) daily tiredness (T). The feature importance was extracted from the best
performing model for each task (PhF and MF trained on all Fitbit, PR and diagnosis features; daily tiredness: trained on all Fitbit and PR features). The mean
importance of each feature across the LOGO iterations, is measured as the mean of the average gain across the trees splits in which the features was
used. The higher the value of the gain score, the higher importance of that feature in the model. Bars in the graph are colored based on the
importance coefficient, the higher the importance the darker the color.
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for binary classification were performed by subsetting input features.

Similar performance was achieved when using PR features alone or

in combination with all Fitbit. Specifically, PR features only

achieved a balanced accuracy of 0:46+ 0:03, a mean F1 score of

0:47+ 0:02 and a macro-averaged MAE of 0:72+ 0:04, when

combined with Fitbit features a balanced accuracy of 0:46+ 0:02,

a mean F1 score of 0:46+ 0:03 and an MMAE of 0:74+ 0:05.
TABLE 4 Classification results of multi class labels of daily fatigue yT .

Input features Balanced
accuracy

F1 MMAE

PR 0:46+ 0:03 0:47+ 0:02 0:72+ 0:04

HR 0:21+ 0:01 0:18+ 0:03 1:47+ 0:04

Sleep 0:23+ 0:01 0:21+ 0:01 1:39+ 0:08

Steps 0:24+ 0:02 0:23+ 0:03 1:38+ 0:05

All Fitbit 0:23+ 0:02 0:21+ 0:02 1:38+ 0:07

All Fitbitþ PR 0:46+ 0:02 0:46+ 0:03 0:74+ 0:05

All FitbitþDemographics 0:24+ 0:03 0:23+ 0:03 1:34+ 0:08

All Fitbitþ PRþ
Demographics

0:45+ 0:03 0:45+ 0:03 0:74+ 0:06

Evaluation metrics are summarized as the cross-validation mean + standard

deviation. F1 score is the unweighted mean of all the classes’ F1 scores. The

MMAE is the macro-averaged mean absolute error. The top two set of results

are highlighted in bold font.

PR: features from patient-reported data (daily questions); HR: heart rate features

(Fitbit).
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The confusion matrix of the experiment combining PR and Fitbit

features is shown in Figure 5. Among extreme errors, six

observations belonging originally to class yT ¼ 5 (T¼ “very much”

tired) were falsely classified as class 1 (T¼ “not tired at all”).

These observations belong to 3 HV and 2 SLE participants. PR

features for these observations showed low scores, indicating

overall good HRQoL. Distributions of top 10 features of the 1 and

5 classes as well as misclassified observations are shown in

Figure S41 in Supplementary Material C. Although not strongly

associated to PR daily tiredness scores (see Figure S9 in

Supplementary Material A), both activity performance and pain

PR scores showed higher importance to classify daily tiredness.

Mainly HR features (e.g., related resting HR) ranked among the

top 20 important Fitbit predictors of daily tiredness, which are

listed in Figure 4C.
4. Discussion

4.1. Characterization of HV vs. participants
with chronic inflammatory rheumatic
diseases

Results from the statistical analysis of both sensor features and

daily questions on the characterization of HV vs. SjS and SLE
frontiersin.org
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FIGURE 5

Confusion matrix for multi class classification of daily fatigue labels.
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patients (Section 3.1) highlighted some key differences between

groups of participants included in this survey. From Fitbit data,

we observed that several features were significantly different

among HV, SLE and SjS groups: median resting HR was higher

for SjS (68 bpm) and SLE (67 bpm) participants compared to

HV group (63 bpm). SLE and SjS groups also showed lower

levels of physical activity compared to the HV group. Although

relying only on non-clinically validated patient-reported and

Fitbit data, this observation is in line with previous studies which

suggest that an increased HR (without known cardiovascular

diseases) and physical inactivity are associated with systemic

inflammation (35, 36). Chronic systemic inflammation is one of

the key features of autoimmune rheumatic diseases like SLE and

SjS (37, 38). These observations suggest a clear direction of

change for these features when quantifying improvement due to

treatment, e.g., in clinical trials. Literature confirms sleep is

affected in both SjS and SLE. SjS patients report range of sleep

disturbances including prolonged sleep onset time and frequent

night awakenings (39). Sleep can affect the disease activity in SLE

and pain and fatigue in these patients are known to be associated

with sleep disorders (40). However, sleep features show small or

no substantial difference among disease cohorts in our data.

As expected, SjS and SLE participant groups reported on

average higher levels of both physical and mental fatigue and

daily tiredness than the HV group, indicating that fatigue and

tiredness should be closely monitored and included already in

early-phase clinical trials with repeated measures. While there is

no validated instruments to assess fatigue in the diseases

included in this study, there was a consistency in FACIT-Fatigue

scores and self-reported physical and mental fatigue from the

weekly questions, as seen by the negative correlation of FACIT-

Fatigue score with PhF and MF as well as with daily questions in

Supplementary Material A, Figures S13 and S14. Future work

could focus on further exploration and collection of data from

different instruments to assess fatigue symptoms and derive more

sophisticated fatigue labels.
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Other HRQoL factors, such as those related to pain and mood,

also show on average poor ranking in disease groups (SLE and SjS)

compared to HVs. An important point to note here is that the data

were collected during the COVID-19 pandemic. Participants did

not test positive for COVID during the study, however the

pandemic restrictions might have had an impact on their

behaviour, further affecting the quality of life in these

participants. Eventual changes in behaviors might also limit the

generalization of results and wearable device data. No significant

association between treatment or medication and participant-

reported fatigue levels was found as shown in Figure S14 in

Supplementary Material A. In both treated and untreated

groups of SLE and SjS participants, the majority reported

physical and mental fatigue as “regular”, “often” or “sometimes”

present. Five and 11 out 87 participants with SjS had no

experience of physical or mental fatigue, respectively, regardless

of treatment/no treatment. Always present mental fatigue was

experienced by 4 out of 104 participants within SLE and 6 out of

87 participants in SjS group. No significant association was also

found between FACIT-Fatigue score and medication, tested using

Mann–Whitney U-test, as shown in Figure S15 in

Supplementary Material A.

To analyse the variability of reported fatigue in a non-

interventional setting, a longitudinal FACIT-Fatigue score

analysis was performed using a linear mixed-effect model

repeated measures, with diagnosis, sex and analysis visit (week)

as factors and baseline, age and FACIT-Fatigue score as

continuous covariates. A compound symmetry structure was

assumed for this model in order to take into account the within-

participant correlation of different measurements. No statistical

effects of time (week) from this model was observed. For the

daily PR questions a multiple correspondence analysis was

performed with all timepoints to assess the association between

all items of the daily list of questions. Similarly to FACIT-Fatigue

yet less strongly, the results obtained from the this analysis

suggested that the first axis carries the main real information. As

confirmation, the first axis was strongly associated with the

FACIT-Fatigue score. The intra-participant variability of Fitbit

measures was higher, possibly due to contextual events affecting

daily behaviours. In this work, we computed statistical analyses

considering single days for each participant as independent

observations. Additional time-aware analyses (e.g., repeated

measures ANOVA) and investigation of individual participant

trajectories could be further explored in future work.
4.2. Digital phenotyping

Results from the cluster analysis of daily Fitbit data on the

description of digital phenotypes, reported in Section 3.2 did not

reveal disease-specific groups of observations, suggesting that

such behavioral data might not be prognostic. Yet we observed

different digital, behavioral phenotypes. Cluster 2 is presumably

the ’healthy’ phenotype in this dataset with the highest levels of

measured physical activity, percentage of HVs and high

percentage of observations of no fatigue or tiredness. Cluster 4
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can be characterized as ’sleep affected’ phenotype cluster as it

includes high values for parameters associated with proportion of

sleep minutes in “restless” or “awake” sleep patterns and low

scores for sleep efficiency parameters. Previous studies on

association of sleep and inflammatory diseases have shown that

poor sleep is associated with biomarkers for high level

inflammation (41). Interestingly, this cluster also includes more

observations with reported fatigue compared to no fatigue,

indicating this kind of fatigue might be associated with less sleep

or poor sleep efficiency (40). Cluster 1 with participants mostly

from middle-age groups can be described as ’fatigue’ phenotype

as it includes several days where both PhF and MF and high

level of daily tiredness were reported. Fatigue in this cluster is

correlated with low physical activity (36) yet higher HR values

across all age ranges. Previous studies suggest that increased

heart rate is observed in patients suffering from inflammatory

diseases (42). Aging is also an important factor in low grade

inflammations resulting in reduced physical activity (43).

Distinguishing participants through cluster analysis was not

clear. We observed that observations belonging to same

participants were often split across the 4 clusters, highlighting the

longitudinal variability of participant behaviors and hence

phenotype. This is in line with observations of other research

groups (44, 45) and may reflect diurnal fluctuations in fatigue,

possibly associated with temporal changes as a consequence of

sleep, rest, and physical activity throughout the day (46). For

future work, aggregating the observations from participants

might help us better characterize individual participants or

patients and not just behaviours, however a large population is

needed for this purpose. Digital phenotyping strategies could be

applied to a broader spectrum of complex diseases that require

the interpretation of highly multidimensional integrative data

through disease and patient stratification. The advantage of

longitudinal data collection will be crucial in clinical trials when

investigating disease symptoms, and their potential change in

response to treatment and after stopping of the treatment.
4.3. Classification of weekly fatigue and
daily tiredness and identified key predictive
metrics

Results reported in Section 3.3 on the classification of weekly

fatigue and daily tiredness, show that the highest performance

was achieved by XGBoost for both physical and mental fatigue

classification when using features from all data modalities. The

resulting best set of XGBoost hyperparameters for these

configurations are learning rate of 0.05, a maximum depth of 2

and number of threes of 100. By extracting the top predictive

features from the best performing model to classify weekly PhF

and MF, we observed that from digital data, mostly physical

activity (e.g., maximum rolling of step) and HR (e.g., resting HR)

contributed to the classification while only three sleep features

(e.g., proportion of asleep minutes, minutes of “restless” and

“awake” sleep patterns and fraction of minutes during the main

sleep spent in “asleep” sleep pattern) were present. This suggests
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that multimodal data are necessary towards a quantitative

assessment of fatigue. The top predictive features from daily PR

data to classify physical fatigue are mainly related to pain and

problems in performing daily activities. For mental fatigue, in

addition to pain and problems PR features, depressed mood

resulted highly relevant. This suggests that physical fatigue is

mainly associated with physical exhaustion, while mental fatigue

is more like a psychobiological state (30, 47). Observations on

classification results for the multi-class classification of daily

tiredness show that, again features from both PR and Fitbit are

among the top 20 important predictors of daily tiredness. The

best XGBoost hyperparameters for this configuration are learning

rate of 0.05, a maximum depth of 2 and number of threes of

100. However, the top 5 features comprises only of PR features.

This could possibly be related to the moderate association

(Goodman Kruskal t of around 0.2) between the daily tiredness

label and the other PR features.

When comparing the top predictive Fitbit features for the three

fatigue types [PhF, MF and daily tiredness (T)], we observe that the

resting heart rate is common in predicting all three fatigue types.

Sleep features from Fitbit are more relevant in predicting PhF

and daily tiredness and have less importance in predicting MF.

The step features related to physical activity have similar

importance in predicting all three fatigue types.

We further tested the performance of the classification method

using only the top 20 features identified by XGBoost. We noticed

that for all the three classification tasks, similar performance

were obtained compared to when using all the features in the

task-specific best approach. This shows the possibility of using a

simplified model in real applications leveraging only the top 20

features in input to XGBoost. Additional analysis, not reported

in this manuscript, was performed including reported daily

tiredness as features for the recognition of weekly mental and

physical fatigue. Results showed an improvement of 2–3

percentage point in balance accuracy compared to when this

feature was not added. Future work could also focus on the

inclusion of daily tiredness, as automatically derived from a

multi-class model, to improve weekly fatigue recognition. Other

classifiers i.e., logistic regression, support vector machine and

random forest were tested, however they were outperformed by

XGBoost. Additional future research following our initial

exploratory approach, could extend the prediction tasks to

regression or multi-class and multi-label classification for finer

discrimination of different levels of weekly reported fatigue.

A unique feature of our study is that it included the

participants in their real-life environment. However, several

limitations must be recognized including no formal inclusion/

exclusion criteria related to fatigue level, specific medications, or

clinically-assessed disease activity for the SjS and SLE participant

groups. Furthermore, participants in our study are mostly of

white race, leading to a potential bias in the results. A downside

is the smaller sample size (68 HV, 57 SjS and 58 SLE

participants) used for the analysis, resulting from the exclusion

of data from 113 participants with low data quality. Moreover,

data points from participants with low adherence were also

excluded from the analysis. This resulted in an imbalance
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between the participant groups used for the analysis with more HV

than disease groups (SjS and SLE). Future work could potentially

expand the adherence analysis by including exploration of

additional behavioural patterns and the influence of contextual

information (e.g., day of the week, hour of the day). Another

limitation of our work consists in being potentially affected by

variability in participants’ Fitbit device model and firmware

version. The only device-specific inclusion criteria was the

requirement of minute-level data that implicitly excluded older

version of Fitbit. In this study, we did not perform additional

validation of the consumer-grade wearable device (Fitbit)

parameters. We instead relied on previous work on validating the

main Fitbit parameters (48–50). We believe the results presented

in our exploratory study could be used to inform future

confirmatory work. Yet additional validation should be done

before applying our method to clinical practice.

In our current modeling strategy, which we refer to as

population model, data of participants from both HV and disease

groups were used concurrently during training. Even though the

type of diagnosis was used as a feature in the models, cohort-

specific patterns might not be well-captured by the model,

limiting its performance capability. In an initial attempt, cohort-

specific models were trained using an incremental weeks strategy,

where data of subsequent weeks were incrementally added to the

training set to classify fatigue levels of the last week. Using this

strategy, even if participant-dependent, we noticed an increment

in performance compared to when using a population model,

especially for SjS and SLE participants and for the recognition of

non-fatigue weeks. In this study, data were collected over a

period of 1 month. Longer studies would need to be considered

to better understand and predict the phenomenon of chronic

fatigue and fatigue related to chronic illness. Future work could

further explore this aspect focusing, for instance, on fine-tuning

population models with cohort-specific data. For instance, the

population model trained on healthy volunteers and patients

from an observational study, could be adapted to a cohort from

a new clinical trial, leveraging previous knowledge but also

refining to the new cohort characteristics. Both binary and multi-

class classification analyses help to make practical

recommendations for the clinical trials and support digital

biomarker strategy for fatigue. Use of multi-sensor wearable

device to measure vital signs and physical activity along with

collecting frequent ePROs (e.g., on the same day as wearable

data) should be considered in clinical trials. This approach would

enhance research on quantitative measurement of fatigue and

facilitate development of therapeutic strategies to address

pathological fatigue (e.g., in SLE and SjS). Furthermore, machine-

learning approach could be used to build a simplified model of

fatigue and define a single, composite score to describe and

validate a digital endpoint of fatigue as an objective measure. At

the end of the study, we asked each participant through a final

short survey, their level of satisfaction with their experience with

this remote digital study. As a result, 52% of participants

reported to be “extremely satisfied” and 39% “satisfied”. As also

suggested by the aforementioned participant feedback, growing

overall popularity and acceptance of using digital health
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technologies and wearable tools, combined with ease of their use

in everyday life, creates opportunities for studying large cohorts

of healthy individuals and in patient in future.
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