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Introduction: Overall performance of machine learning-based prediction
models is promising; however, their generalizability and fairness must be
vigorously investigated to ensure they perform sufficiently well for all patients.
Objective: This study aimed to evaluate prediction bias in machine learning
models used for predicting acute postoperative pain.
Method: We conducted a retrospective review of electronic health records for
patients undergoing orthopedic surgery from June 1, 2011, to June 30, 2019, at
the University of Florida Health system/Shands Hospital. CatBoost machine
learning models were trained for predicting the binary outcome of low (≤4)
and high pain (>4). Model biases were assessed against seven protected
attributes of age, sex, race, area deprivation index (ADI), speaking language,
health literacy, and insurance type. Reweighing of protected attributes was
investigated for reducing model bias compared with base models. Fairness
metrics of equal opportunity, predictive parity, predictive equality, statistical
parity, and overall accuracy equality were examined.
Results: The final dataset included 14,263 patients [age: 60.72 (16.03) years,
53.87% female, 39.13% low acute postoperative pain]. The machine learning
model (area under the curve, 0.71) was biased in terms of age, race, ADI, and
insurance type, but not in terms of sex, language, and health literacy. Despite
promising overall performance in predicting acute postoperative pain,
machine learning-based prediction models may be biased with respect to
protected attributes.
Conclusion: These findings show the need to evaluate fairness in machine
learning models involved in perioperative pain before they are implemented
as clinical decision support tools.
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Introduction

Acute postoperative pain is a significant public health

problem. Eighty percent of surgical patients report

experiencing postoperative pain, with as high as 88% of those

reporting moderate or higher levels of pain (1, 2). Severe

acute postoperative pain is associated with the development of

persistent postoperative pain, although the nature of this

relationship remains unclear (3–5). Poorly managed acute

postoperative pain may lead to adverse outcomes, including

lower patient satisfaction with pain management, delayed

inpatient recovery and discharge, increased costs of care,

chronic pain, inappropriate opioid prescribing, increased risk

of opioid misuse and opioid use disorder, overdose, and death

(2, 6–10).

One reason for suboptimal pain management is the

difficulty in predicting severe acute postoperative pain. A

preoperative prediction model for acute postoperative pain

could, for instance, suggest a preoperative application of

regional anesthetic techniques in patients whose surgical

procedures may not otherwise qualify for such therapies based

on local procedure-based heuristics. Over the past several

decades, numerous models have been proposed to understand

patient and procedural risk factors for severe acute

postoperative pain (11–13). Although these models helped

determine relevant predisposing and precipitating factors of

moderate to severe postoperative acute pain, they often

incorporated features that required extra clinical assessments,

such as pain catastrophizing, anxiety, and functional disability

tests (11, 14–16). Additionally, most previous research in this

domain has focused on determining risk factors for

postoperative pain using statistical methodology. Prior work

suggests that given similar features, machine learning models

can outperform linear statistical models in classifying

outcomes related to postoperative pain (17, 18). Previous

work using machine learning to predict pain with

perioperative data shows promising performance with an area

under the curve (AUC) of 0.70 for predicting acute

postoperative pain (19).

Although machine learning methods have significantly

improved the accuracy of predictions, questions remain

concerning their interpretability and fairness. Those aspects

are especially important for future implementation and

translational research. Previous research using machine

learning in healthcare primarily focused on the model’s

overall performance, which was evaluated based only on how

well the model predicted the decided outcome for the test

dataset. Recently, there has been growing concern about the

performance of these models among underrepresented and

marginalized groups that may not be well represented in the

dataset used for training the model. This is a crucial

consideration for physicians applying population-level models
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on individual patients from underrepresented backgrounds

who may ask how well such models apply to them personally.

Here, concerns over machine learning “fairness” refer to the

algorithmic bias in machine learning approaches, where the

developed models will systematically predict an outcome more

likely for one group than another, especially when these

groupings are based on sensitive attributes that should not be

correlated with the outcomes (e.g., ethnicity, gender, disability

status). Using a model with a strong performance in the

general population but that is biased against unprivileged

groups might be harmful to patients in the unprivileged

subcohorts.

To date, there have been no formal assessments of fairness

in machine learning models used to predict postoperative pain.

This retrospective cohort analysis examines the fairness of a

best-in-class machine learning model that predicts acute

postoperative pain among patients presenting for orthopedic

surgery. We hypothesized that even in models that performed

well overall in classification accuracy and the AUC, select

population subgroups may suffer from much poorer

performance regarding acute postoperative pain risk

stratification.
Materials and methods

The study protocol was approved by the University of

Florida Institutional Review Board (IRB #201601338), which

waived informed consent. This retrospective single-center

machine learning study was designed and conducted

according to Guidelines for Developing and Reporting

Machine Learning Predictive Models in Biomedical Research:

A Multidisciplinary View (20).
Dataset

The retrospective cohort consisted of adult surgical patients

undergoing orthopedic surgery at the University of Florida

Health system/Shands Hospital between June 1, 2011, and

June 30, 2019, and residing in Florida at the time of surgery.

Orthopedic surgical procedures are among the surgical

procedures with the highest postoperative pain (21–23). The

cohort of patients undergoing orthopedic surgery was not

constrained to any specific sociodemographic group. Data

were provided by the UF Health Integrated Data Repository

via an honest data broker; all variables were validated via a

continuous quality control process.

Our primary diagnostic outcome was mean pain on

postoperative day 1 (POD1; during the day after the surgery).

We used clinical pain intensities assessed using the Defense

and Veterans Pain Rating Scale (DVPRS, ranging from 0 to 10)

(24) and entered into the electronic health record (EHR)
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system as part of routine clinical care. Notably, the EHR

implementation contains user prompts providing instruction in

the bedside application of the DVPRS. The mean of all

numerical pain scores of the patients on POD1 was calculated

and dichotomized into a binary outcome: no pain or mild pain

class (discussed as “low pain” in subsequent sections; pain

scores 0–4) and moderate or severe pain class (discussed as

“high pain”; pain scores >4). The observation unit for the

outcome and predictors was patient-based. This threshold was

based on prior work establishing cutpoints for mild pain

intensity (25–28).

Pain management guidelines at this institution have been

developed in concert with the surgical service and acute pain

medicine service. These guidelines heavily emphasize

multimodal analgesic strategies with regular use of

preoperatively placed continuous catheter-based peripheral,

paravertebral, and neuraxial regional anesthesia by faculty

with fellowship training in regional anesthesia and acute pain

medicine. All patients who receive blocks are reviewed upon

arrival to the recovery room or intensive care unit, and block

adjustments or additions are made accordingly. The central

tenants of these guidelines have largely remained intact over

the past decade, with annual review and updates as needed.

Additional details of this process have been published

previously (16).

We included common sociodemographic and clinical

variables routinely available for surgical patients, including

age, sex, race, ethnicity, marital status, body mass index

(BMI), language, health literacy, insurance, area deprivation

index (ADI) (29) of patient’s residence, diagnosis categories,

current procedure terminology (CPT) category, combined

comorbidity score (30, 31), and the American Society of

Anesthesiologists physical status (ASA-PS) classification (32).

Health literacy was determined using the Rapid Estimate of

Adult Literacy in Medicine-Revised (REALM-R) assessment

(33), and patients who could correctly pronounce all of the

eight proposed words were recorded as having adequate

health literacy. Procedure and diagnosis categories were

determined via the clinical classification software (CCS),

which is a Healthcare Cost and Utilization Project (HCUP)

research tool, using patients’ CPT codes and International

Classification of Diseases (ICD 9 and 10) codes (34–36).

These variables were chosen given their general widespread
FIGURE 1

Analytical workflow. EHR, electronic health records; ML, machine learning.

Frontiers in Digital Health 03
availability in administrative datasets. CPT categories are

referred to as CCS-CPT in this article.

We used “sociome” and “sf” packages in R for extracting

patient ADI information (37, 38). ADI scores were extracted

from the “sociome” R package for each census tract in the

state of Florida using 15 variables from the American

Community Survey for the year 2019 (5-year data)

(Supplementary Table S1). The ADI encompasses education,

employment, poverty, and environment indicators in the

census tract, with higher values showing worse neighborhood

deprivation. We used the shapefiles of census tract borders

available from the US Census Bureau (39). Latitude and

longitude coordinates of the patients’ residences at the time of

surgery were spatially joined with the polygons of the census

tract borders. The extracted neighborhoods’ US Census

Bureau geographic identifiers (GEOIDs) were used to find

neighborhood tract attributes from the census data tables.

ADI is a continuous variable and was used as such in the

prediction models. We transformed its value into tertiles for

our analysis of fairness.
Machine learning models and statistical
considerations

Figure 1 shows the analytical workflow. The variables used

in POD1 pain prediction models were summarized and

compared between the two patient groups using the student

t-test for continuous variables and chi-squared test for

categorical variables.

We used the CatBoost machine learning classification

models to predict pain using EHR data. We used fourfold

nested cross-validation for parameter tuning using AUC as

the loss function and reported models’ performance as the

mean (SD) of the model performance metrics on the unseen

test data for each of the four outer folds (internal validation

with threefold cross-validation with patient-based split). We

reported the model performance in terms of accuracy and

balanced accuracy, AUC, precision, recall, and F1-score. We

used the “CatBoost” library for developing CatBoost models.

We did not use stratification based on the outcome in

training the models because the outcome was not significantly

imbalanced. Similarly, we did not use stratification based on
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any categorical variables in training the model because the aim

of the study was to investigate the severity of algorithmic bias in

the machine learning models developed for pain prediction used

as decision support tools, which usually relay data reflective of

the real patients’ data. We reported the ranking of the

variable importance in the model’s training using variable

importance extracted from the model, based on the change in

the loss function. Observing the variable importance ranking

is helpful for feature selection and informed dimensionality

reduction. Information on variable importance ranking in the

model also provides insight into the data and the model. A

higher importance ranking of protected attributes may cause

concern for fairness in that attribute. Further details of data

cleaning and preprocessing steps and model developments are

reported in the Supplementary Methods, Supplementary

Tables S2, S3 and Figure S1.
TABLE 2 Model performance metrics definitions.

Performance
metric

Formula Machine
learning
concept

Fairness
metric
Fairness

Investigating bias
We studied model bias for the following sociodemographic

attributes: age, sex, race, language, health literacy, ADI, and

insurance type. In this context, the privileged group was

defined as subcohorts with a lower risk of adverse clinical

outcomes. The unprivileged groups were determined as

subcohorts with a higher risk of adverse clinical outcomes.

Table 1 shows the classes of protected attributes and their

corresponding privileged and unprivileged values. We used

the “Dalex” library in Python to evaluate model fairness (40).

In investigating the fairness of the classifier concerning each

of the attributes mentioned, several model performance
TABLE 1 Privileged and unprivileged values of the protected attributes
studied.

Protected
attribute

Privileged value Unprivileged value (s)

Age Younger adults (40 years old
or younger)

Middle-aged (between 40 and
65 years old)
Older adults (65 years or
older)

Sex Male Female

Race White Non-White

Language English speaking Non-English speaking

Health literacy Adequate Limited

ADI Lowest ADI tertile Middle ADI tertile
Highest ADI tertile

Insurance type Private (“Blue Cross”,
“Commercial”, “Managed
Care”, “Medicare HMO”,
“Workers Com”, and
“Federal” insurances)

Public (“Medicaid”, “Medicaid
HMO”, “other”, and “self-pay”
insurances)
Medicare (Medicare
insurance)

ADI, area deprivation index.
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metrics were calculated and compared between the privileged

and unprivileged subcohorts. For each protected attribute,

model performance was calculated based on the performance

metrics defined in Table 2 for each unprivileged subcohort

separately and compared to the model’s performance for the

privileged group (41, 42).

More specifically, we calculated the ratio (Equation 1) for

each unprivileged class and each model performance metric.

The closer this ratio is to 1, the fairer the model performance.

With ε a value between 0 and 1, we used the value of 0.8 as a

threshold to determine bias in our models’ performance as a

threshold for bias in other domains (known as the “80%

rule”) (43). ε value of 0.8 resulted in an acceptable range of

model performance ratio between 0.8 and 1.25, meaning that

if the ratio defined in Equation 1 was between 0.8 and 1.25,

the model was reported to not be biased for that metric and

that attribute class:

8i[ a; b; ...; zf g 1 ,
metrici

metric privileged
,

1
1

(1)
Mitigating bias
To address the algorithmic bias in the prediction models, we

used a reweighing approach to adjust the weight of observations

in each attribute-outcome combination in training the model

and compared the bias in the new models to the base models.
True positive rate
(TPR)a

TP
TPþ FN

the probability
that an actual
positive will test
positive

Equal
opportunity

False positive rate
(FPR)b

FP
FPþ TN

the probability
that an actual
negative will test
positive

Predictive
equality

Positive predictive
value (PPV)

TP
TPþ FP

the probability
that a positive
test is actually
positive

Predictive
parity

Accuracy
TPþ TN

TPþ FPþ TNþ FN
number of true
predictions/
numbers of
prediction

Overall
accuracy
equality

Statistical parity
(STP)

TPþ FP
TPþ FPþ TNþ FN

the probability of
positive
prediction for
either class

Statistical
parity

TP, true positive rate; FN, false negative; TN, true negative; FP, false positive.
aAlso known as sensitivity and recall.
bFPR: 1-True negative rate.

frontiersin.org

https://doi.org/10.3389/fdgth.2022.970281
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


Davoudi et al. 10.3389/fdgth.2022.970281
In this approach, a new model was built using the observation

weights defined based on the number of observations

(patients) in each unprivileged and privileged group.

Data preparation and analysis were performed in R V4.0.0

and Python V3.8.5.
Results

Dataset

Between June 1, 2011, and June 30, 2019, 37,493 patients

had orthopedic surgery at the University of Florida Health

Hospital. Figure 2 shows the cohort selection process in the

study. Our final cohort included 14,263 patients. The mean

(SD) age was 60.72 (16.03) years and 53.87% were women

(Supplementary Table S4). Figure 3 shows the distribution of

mean pain scores on POD1. There were 5,581 (39.13%)

patients with no pain to low mean pain (low pain) and 8,682

(60.87%) patients with moderate to severe pain (high pain) on

POD1. Sex, ethnicity, health literacy, and the combined

comorbidity score were not significantly different between the

two groups. Patients with low pain on POD1 were generally

older, predominantly White, and married, and they generally
FIGURE 2

Cohort selection process. POD1, postoperative day 1.
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had lower BMIs, better socioeconomic status in terms of ADI,

and higher ASA-PS class. The distribution of only four

diagnosis categories, (1) coma, stupor, and brain damage; (2)

other gastrointestinal disorders; (3) anxiety disorders; and (4)

mood disorders), and CCS-CPT were also significantly

different between the two patient groups. We kept diagnoses

that were present in at least 1% of the patients (101 diagnoses).
Machine learning models

CatBoost classifiers used were able to predict mean pain on

POD1 for all patients with accuracy 0.67 and AUC 0.71

(Supplementary Table S5, calibration plot reported in

Supplementary Figure S2). Supplementary Figure 3 shows

the ranking of the importance of the top 20 variables for the

CatBoost model using the importance calculated in the model.

Age (mean importance: 50.15) and insurance (mean

importance: 14.51) were the most important variables. The

distribution of age and insurance were also significantly

different between the patient group with high POD1 pain and

the patient group with low POD1 pain (Table 3). The

rankings of ASA-PS, ADI, CCS-CPT category, and marital

status were similar. Sex, BMI, health literacy, ethnicity, race,
frontiersin.org
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language, combined comorbidity score, and diagnosis categories

had less important contributions to the model.
Fairness

Investigating bias
Model biases were examined for the classifier with the best

performance. We evaluated the fairness of the models for the

following attributes: age, sex, race, speaking language, ADI

tertile, health literacy, and insurance type.

Table 3 shows the distribution of the outcome in each level

of the protected attributes. Among the patients in the younger

adult age group, more than 80% had high pain on POD1,

whereas 71.02% had high pain in the middle-aged age group

and 46.20% had high pain in the older adult age group. The

percentage of high pain patient groups increased with higher

ADI tertile, and it was higher among English-speaking

patients. Although the Medicare insurance group had a

similar percentage of high pain and low pain prevalence,

more than 80% of public insurance patients were in the high

pain groups. The percentage of high and low pain prevalence

was not significantly different between the different classes of

sex and health literacy attributes.

Table 4 shows the models’ performance in different

subcohorts considering single protected attributes in each

analysis. When considering age alone, the prediction model

was not fair; bias was detected in all five examined metrics.

Performance was unbiased for the middle-aged group and

biased for the older adult group compared to the model

performance for the younger adult group (the privileged

group). We considered “younger adults” the privileged group

because younger patients generally have a lower risk of

adverse clinical outcomes. However, in our dataset, the

younger adult group was in the minority (13.16% of the

dataset). Although the desired performance metrics [true

positive rate (TPR), accuracy (ACC), and positive predictive
Frontiers in Digital Health 06
value (PPV)] were highest for this group, the undesired

performance metric [false positive rate (FPR)] was also the

highest for this group (FPR = 1.00). This means that most

negative events (low pain) of the younger adult patients were

predicted to be the positive event (high pain). Although the

older adult age group was in the majority in our dataset

(46.36% of the whole dataset), the models’ performance in

terms of TPR, ACC, and PPV was significantly worse (outside

of the 0.8–1.25 range) for the older adult age group than the

younger adult age group. However, their FPR and statistical

parity (STP) were also lower. Lower FPR meant that there

were fewer true negative samples misclassified as positive

(high pain).

The models were biased regarding race only in the FPR

metric (non-White patients had 1.39 times higher FPR than

White patients). The models had bias with respect to ADI in

three of the five examined metrics: TPR, FPR, and STP. The

patients residing in the neighborhoods with ADI in the

highest tertile had 1.38 times higher TPR than those residing

in the lowest-tertile ADI. Patients living in neighborhoods

with middle- and highest-tertile ADI also had higher FPR and

STP than those residing in neighborhoods with the lowest-

tertile ADI (Table 4). Higher ADI tertile groups had a larger

percentage of patients in the high pain group than patients in

the low pain group patients (Table 3). In three out of the five

examined metrics, the model performance was also biased

regarding patient insurance type. We did not find any bias in

the models with respect to sex, health literacy, and language.

We also examined fairness for attribute pairs

(Supplementary Table S6), but we did not investigate a larger

number of combinations (more than two attributes together)

because when considering more attributes together, the

number of combinations would increase significantly. The size

of minority groups would also become very small for most of

the groups.

For attribute pairs where no bias was detected for either of

the attributes (language-health literacy, sex-health literacy, sex-

language), there was almost no bias in their composite

subcohorts (except for in TPR and STP for the female-non-

English–speaking subcohort, compared to the male-English–

speaking subcohort).

In attribute pairs where the models were not biased in terms

of one of the attributes, the same bias patterns as in the attribute

with the bias generally persisted. For example, for the age-health

literacy attribute pairs, the model performance was biased

regarding the older adult patient group with both adequate

and limited health literacy in a similar direction as the model

bias regarding the older adult group alone.

In attribute pairs where the models were biased in both

attributes, the bias patterns did not necessarily follow the

same patterns as every single attribute if the bias direction

(larger or smaller than the privileged group) differed in the

two attributes. For example, predictive equality and STP ratios
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were larger than 1.25 for middle tertile ADI; equal opportunity,

predictive equality, and STP ratios were larger than 1.25 for the

highest tertile ADI than the lowest tertile ADI. Predictive

equality and STP ratios were larger than 1.25 for the public

insurance type but smaller than 0.8 for Medicare when

compared to the private insurance type. When observing the

model bias for insurance type and ADI tertile attribute pairs,

predictive equality and STP ratios were larger than 1.25 for

private insurance type and highest tertile groups and public

insurance type and all ADI tertiles. However, this direction

was reversed for the Medicare insurance type subcohort, with

some bias detected in Medicare insurance type and lowest and

middle ADI tertile.
Mitigating bias

To reduce the algorithmic bias in our models, we examined

the effect of reweighing the observations (patients) with respect

to their belonging to each subcohort created based on protected

attribute classes. Supplementary Figures S4–S11 show the

effect of reweighing on bias in the models’ performance. The

reweighing did not change this case for sex and health literacy

attributes, which did not have any bias in the model

performance. However, for the language attribute, reweighing

the observations based on the language group caused bias in a

case where there was no bias before. (The fairness metrics for

the non-English–speaking subcohort deteriorated for the equal

opportunity ratio from 0.91 to 1.35, for the overall accuracy

ratio from 0.96 to 1.30, and for the predictive equality from

0.84 to 0.29.). Although reweighing might help reduce the

bias, as is the case for the ADI attribute (Supplementary

Figure S8), reweighing based on one attribute can hurt the

model fairness in terms of other protected attributes. For

example, prediction models reweighed based on the ADI

tertile label added to the algorithm bias in the models’

performance with respect to race (Supplementary

Figure S11). Supplementary Figure S6 shows that reweighing

the observations using the race attribute improved model

fairness regarding race. In contrast, Supplementary

Figure S11 shows that reweighing based on the ADI attribute

exacerbated the algorithm bias regarding race. In comparing

the two figures, we can see that not only is the bias in

predictive equality not resolved, but the model has also

become biased in terms of STP.
Discussion

We used machine learning models to predict acute

postoperative pain in a retrospective study of a single-center

cohort of orthopedic surgical patients. Patients’ age and

insurance type were the two most important variables for
Frontiers in Digital Health 07
training the CatBoost model. We also examined the

prediction models with respect to bias regarding multiple

attributes, including age, sex, race, health literacy, ADI,

language, and insurance type. The models did not show any

significant bias regarding sex, language, and health literacy,

although the unprivileged groups for both language and

health literacy were in a clear minority. Bias was found for

variables where the distributions of the outcome labels

between the privileged and unprivileged subcohort were

significantly different, except for the speaking language

protected attribute, which had a very low variable importance

ranking (Table 3 and Supplementary Figure 3).

The model was biased against the patients with other (non-

White) races in terms of FPR. FPR was 1.36 times higher for

races other than White, meaning that they would incorrectly

be labeled as the positive event (high pain in our study) 1.36

times more often.

The bias detected with respect to age showed that even

though the privileged class (younger adult) was in the

minority in our dataset (13.16% of the study cohort), it had

higher TPR, ACC, and PPV than the middle-aged and older

adult groups. Put another way, even though the model was

trained and evaluated with a larger number of older adult

patients than younger adult patients, the model performance

was more unsuccessful among older adults in predicting high

pain (positive event). This is somewhat counterintuitive given

that an oft-cited reason for model unfairness for a minority

subgroup is their underrepresentation in the training data

(44–46). One reason for these results could be that the high

pain group was significantly younger (on average

approximately 10 years) than the low pain. This difference

might have made the model more inclined to predict high

pain labels for the younger adult age group, particularly as

age was the most important variable for the model training.

This rationale would comport with prior literature associating

younger age with greater acute postoperative pain intensity

(12, 22, 47, 48). This is further supported by the high FPR of

1.00 for the younger adult group, which along with the TPR

of 1 showed that all younger adult patients were predicted to

have high pain, whereas 18.65% of them were in the low pain

group. In the older adult group, the ratio of high and low

pain labels was almost the same (46.20% in the high pain

group), probably leading to lower model performance in this

group because the age variable was not very informative

anymore. Similarly, insurance was the second most important

variable in the developed pain prediction models, and its

distribution was significantly different between the two pain

groups (Supplementary Table S4). Moreover, Medicare

patient groups had almost the same chance of experiencing

high or low pain during their first postoperative day, whereas

60.80% of patients using private insurance and 82.01% of

patients using public insurance were in the high pain group

(Table 3).
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TABLE 3 Distribution of outcome in each protected attribute level.

Protected
attribute levels

Low pain
(N = 5,581)

High pain
(N = 8,862)

P-value

Age <0.0001

Younger adult 350 (18.65%) 1,527 (81.35%)

Middle-aged 1,673 (28.98%) 4,100 (71.02%)

Older adult 3,558 (53.80%) 3,055 (46.20%)

Race <0.0001

White 4,610 (40.42%) 6,795 (59.58%)

Non-White 786 (32.29%) 1,648 (67.71%)

Sex 0.6105

Male 2,590 (39.36%) 3,990 (60.64%)

Female 2,991 (38.93%) 4,692 (61.07%)

Health literacy 0.4179

Adequate 3,957 (38.71%) 6,266 (61.29%)

Limited 494 (37.51%) 823 (62.49%)

ADI <0.0001

Lowest tertile 2,200 (46.61%) 2,520 (53.39%)

Middle tertile 1,895 (38.56%) 3,020 (61.44%)

Highest tertile 1,485 (32.10%) 3,141 (67.90%)

Language 0.0099

English speaking 5,472 (38.99%) 8,562 (61.01%)

Non-English speaking 109 (47.60%) 120 (52.40%)

Insurance type <0.0001

Private 2,394 (39.20%) 3,713 (60.80%)

Public 463 (17.99%) 2,110 (82.01%)

Medicare 2,724 (48.79%) 2,859 (51.21%)

ADI, area deprivation index.

Bold values indicate p-values < 0.05.
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The model had a higher correct prediction of the positive

class (high pain) for the unprivileged groups for the ADI

attribute than the privileged (lowest-tertile) ADI group. The

rates of the positive event (high pain) in the two unprivileged

subcohorts were higher (61.44% and 67.90%, respectively)

than the 53.39% in the lowest-tertile ADI group. However,

these two groups also had higher FPR and STP than the

lowest-tertile ADI.

The bias detected in attribute-pair analyses followed patterns

that were similar to the bias of the specific attributes in the pair.

For example, almost all attribute pairs, including age, were

biased regarding the older adult group, similar to the bias

pattern detected in the single attribute analysis. When the model

was biased regarding both attributes in the pair, the bias pattern

would generally be more substantial. However, if the biases in a

metric for two protected attributes were in opposite directions,

they might cancel each other to some extent. For example, the

higher increase in the highest ADI tertile seems to have canceled

out the decreased direction of Medicare insurance class. There

were few exceptions to these two patterns, such as the non-

English–speaking and middle-aged group and non-English–
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speaking and female group. One potential reason for these

exceptions might be the much smaller size of the subcohorts

(<1% of the dataset). Sometimes, the much smaller size of the

subcohort seemed to lead to bias as well. For example, although

the model was not biased in terms of sex or language attributes,

the model was biased against the subcohort of female and non-

English–speaking patients (0.86% of the whole cohort) with

lower TPR, FPR, and STP. However, the model was not biased

against the subcohort of male and non-English–speaking

patients (0.74% of the entire cohort), which could partially be

because one of the attributes was from the privileged group (male).

Reweighing the prediction models based on each protected

attribute helped reduce the bias for some cases (e.g., ADI), but it

introduced bias in some other cases where there was no bias

(language). Speaking language was not an important variable

in training the model, and this change in the model bias

might have resulted from any potential change in the

distribution of other attributes in the training data. Similarly,

reweighing based on one attribute can hurt the model fairness

in terms of other protected attributes, which might have

resulted from potential changes in the distribution of other

attributes in the training data.

We also did not investigate the effect of reweighing for

addressing bias in attribute pairs because the combination of

two protected attributes and the outcome class would have

created too many subcohorts for analysis.

This is the first study to assess the fairness performance of

machine learning-based pain prediction models in different

subcohorts, considering several protected attributes, including

age, sex, race, insurance type, socioeconomic status at

neighborhood level (ADI), language, and health literacy. The

bias we detected in the developed models clearly shows that

despite the promising overall performance of the model

(AUC, 0.71; balanced accuracy, 0.64), the performance suffers

significantly for some of the subcohorts.

One implication of these findings is that machine learning-

based pain prediction models need to be validated in different

subcohorts before they are used in practice. Another possible

direction is to develop separate pain prediction models for each

subcohort (hierarchical stratification). Our findings showed that

unprivileged subcohorts experienced more bias in pain

prediction based on age, ADI, and insurance types attributes.

These findings show the need to assess and address the

algorithmic bias in the prediction systems developed as decision

support systems in the healthcare outcomes domain.

Implementing fair systems to predict postoperative pain helps

ensure the patients, surgical team, and healthcare team have a

more accurate picture of a patient’s risk of high postoperative pain.

Machine learning approaches have increasingly been used to

produce robust decision support systems in healthcare research

and clinical applications. Although fairness in healthcare

services for different demographic populations has been

discussed previously (49–52), the issue of fairness in the
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TABLE 4 Model performance for each unprivileged group compared to privileged group.

Attribute Group Equal opportunity
ratio

Accuracy equality
ratio

Predictive parity
ratio

Predictive equality
ratio

Statistical parity
ratio

Age Younger adulta

(13.16%)
1.00 0.81 0.81 1.00 1.00

Middle-aged
(40.48%)

0.98 0.88 0.89 0.92 0.96

Older adult
(46.36%)

0.52 0.76 0.74 0.29 0.40

Race Whitea (79.96%) 0.80 0.68 0.71 0.50 0.68
Other (17.07%) 1.13 1.05 1.05 1.36 1.22

Sex Malea (46.13%) 0.83 0.70 0.72 0.51 0.70
Female (53.87%) 0.98 0.98 0.99 1.05 1.01

Health
Literacy

Adequatea (71.67%) 0.83 0.68 0.71 0.55 0.72
Limited (9.23%) 0.98 1.03 1.05 0.87 0.95

ADI Lowest tertilea

(33.33%
0.69 0.65 0.67 0.39 0.55

Middle tertile
(33.33%)

1.23 1.07 1.07 1.37 1.32

Highest tertile
(33.33%)

1.32 1.10 1.10 1.76 1.53

Language Englisha (98.39%) 0.82 0.69 0.71 0.53 0.71
Non-English
(1.61%)

0.91 0.96 0.92 0.84 0.85

Insurance Privatea (42.82%) 0.87 0.66 0.67 0.66 0.79
Public (18.04%) 1.14 1.24 1.23 1.45 1.26
Medicare (39.14%) 0.73 0.98 1.00 0.50 0.61

ADI, area deprivation index.

The performances with bias detected are shown in bold. Younger adult is defined as younger than 40 years; middle-aged is between 40 and 64 years; and older adult

is older than 64 years. The numbers in parentheses show the percentage of each subcohort in the dataset.
aThe privileged group for each attribute.
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healthcare applications of machine learning has come into focus

only recently (45, 53–58). Recent attention to fairness in

machine learning, particularly machine learning approaches in

healthcare, has been placed on the performance of the

developed models in subcohorts that are differentiated based

on protected attributes. To date, most of the research on bias

in machine learning in healthcare has been focused on bias

against non-White races. For example, Park et al. (54) showed

that machine learning-based approaches using the IBM

MarketScan Medicaid Database to predict postpartum

depression and mental health service use were biased against

Black women. The study also reported that reweighing race (the

protected attribute) improved the model’s fairness in terms of

disparate impact (similar to STP) and equal opportunity

difference without compromising the model performance in

terms of balanced accuracy. Bias toward non-White races has

been shown in other healthcare algorithms as well (53).

This was a retrospective study, and consequently, we could

not include many of the factors relevant to the prediction of

acute postoperative pain, such as preoperative pain, anxiety,

and pain catastrophizing (11). However, developing acute

postoperative pain prediction models using real-world data

may be more helpful in translating such models to pragmatic

clinical decision support systems.
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Our investigation used pain intensity as the primary outcome.

Pain intensity is a common outcome used for assessing

postoperative pain experience in the perioperative pain

management literature, and it is amenable to classification

exercises given the nature of its measurement (59). However, it

is important to note several related aspects of the perioperative

pain experience including analgesia, function (e.g., mobility,

return of bowel function), pain quality, and the potential for

partial causative relationships with postoperative complications

(60). Future work is necessary to classify pain-related outcomes

across a multiobjective front.

Another limitation in supervised machine learning research

stems from feature definition and capturing. Our preprocessing

steps for missing values might affect the prediction of patients

with missing values for some predictors. This effect might

vary based on whether the missingness was informative or

random. In our cross-validation, to prevent any data leakage

from testing data to the model development, we used the

information extracted from training data when imputing

missing variables in the test data, as described in

Supplementary Content. Regrouping levels with a smaller size

for factors such as marital status is another limitation of the

feature preprocessing. Limited degrees of granularity for

variables such as sex (female or male) and health literacy
frontiersin.org

https://doi.org/10.3389/fdgth.2022.970281
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


Davoudi et al. 10.3389/fdgth.2022.970281
(limited testing) affect the usefulness of captured information.

Another limitation in the study was that some of the

categorical variables had small classes for some levels. Because

we treated the pain prediction model as a decision support

tool, we did not perform any further preprocessing on such

categorical variables. Another related limitation of the study

was that some of the subcohorts in the fairness analyses were

very small (less than 1% of the whole cohort). The small size

of some subcohorts might reduce the robustness of the

results; however, this issue is inherent to real-world clinical

studies. One primary reason for bias in machine learning is

the insufficient representation of unprivileged groups in the

training dataset used to develop the model. Moreover, our

dataset was obtained from a single-center cohort and is

reflective of the population of orthopedic surgery patients in

the state of Florida, limiting the generalizability of the findings.

We also used a threshold of 0.8 for determining bias when

comparing the model’s performance for the unprivileged

subcohorts to its performance for the privileged subcohort. This

threshold was adopted from the hiring practices, and a more

appropriate bias threshold for the differences in machine

learning model performance in the healthcare domain, and

particularly pain prediction for different subcohorts, needs to be

investigated and established.

The detected bias in our prediction models (whose overall

performance is similar to the recent models in the published

literature) shows the need to examine the diversity in different

attributes of the training dataset and the model performance

in unprivileged subcohorts before implementing and using

decision support systems to predict acute postoperative pain.
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