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Artificial Intelligence (AI) analytics has been used to predict, classify, and aid clinical

management of multiple eye diseases. Its robust performances have prompted

researchers to expand the use of AI into predicting systemic, non-ocular diseases and

parameters based on ocular images. Herein, we discuss the reasons why the eye is

well-suited for systemic applications, and review the applications of deep learning on

ophthalmic images in the prediction of demographic parameters, body composition

factors, and diseases of the cardiovascular, hematological, neurodegenerative,

metabolic, renal, and hepatobiliary systems. Three main imaging modalities are

included—retinal fundus photographs, optical coherence tomographs and external

ophthalmic images. We examine the range of systemic factors studied from ophthalmic

imaging in current literature and discuss areas of future research, while acknowledging

current limitations of AI systems based on ophthalmic images.

Keywords: artificial intelligence, eye, retina, fundus photography, optical coherence tomography, imaging,

machine learning, deep learning

INTRODUCTION

Artificial Intelligence (AI) has revolutionized clinical diagnosis and management of diseases in
modern day healthcare. Most AI algorithms built for healthcare applications are supervised
machine learning (ML) models—the desired solutions, or labels, are provided as inputs alongside
the training examples. Iterative optimization and pattern recognition then allows trained models to
predict labels in previously unseen test examples. Deep learning (DL) is a subset of ML comprising
neural networks, which are adept at computerized visual perception and image recognition. DL
algorithms have thrived in image-centric specialties such as ophthalmology (1–3), dermatology (4),
radiology (5, 6), pathology (7, 8), and many other specialties. In ophthalmology, the applications
of AI in detecting ophthalmic diseases based on images have been well-established. These include
diabetic retinopathy (9–11), age-related macular degeneration (11–14), glaucoma (11), refractive
error (15), and retinopathy of prematurity (16, 17). In recent years, application of AI-based
analytics in ophthalmic images have not only shown its ability in detecting of ocular diseases, but
also estimating systemic parameters and predicting non-ocular diseases (18–47).

The eye is a uniquely accessible window that allows direct visualization of neuro-vasculature
using non-invasive imaging modalities. Because the retina and other end organs, such as the
brain and kidneys, share similar anatomical and physiological properties, retinal vessels are
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an indirect representation of the systemic microvasculature
(48–50). Analysis of microvascular changes provides valuable
information, as such changes often precede macrovascular
diseases such as stroke and ischemic heart disease. Additionally,
the retina is an extension of the central nervous system
(CNS), and optic nerve fibers are effectively CNS axons.
Many neurodegenerative conditions that involve the brain and
spinal cord have ocular manifestations (51, 52). Retinal nerve
fiber layer (RNFL) thickness (53) and visual acuity (54, 55)
have been associated with early-stage cognitive impairment.
Furthermore, the external eye (i.e., conjunctiva) is a primary
area where clinical signs of jaundice, cholesterol deposits
and anemia manifest. Finally, the technology-dependent and
image-centric nature of ophthalmology greatly facilitates the
accumulation of imaging datasets required for the development
of AI algorithms. Hence, ophthalmic imaging coupled with AI
analytics have great potential to predict systemic biomarkers
and disease.

This review discusses the applications of AI analytics in
predicting systemic parameters or disease from ophthalmic
images. We provide an overview of the major ophthalmic
imaging modalities currently used in AI and discuss how these
images were used in the prediction of demographic parameters,
body composition factors and diseases of the cardiovascular,
hematological, neurodegenerative, metabolic, endocrine, renal,
and hepatobiliary systems.

METHODS

For this narrative review, electronic bibliographic searches were
conducted in PubMed, EMBASE and Web of Science up
to 1 February 2022. MESH terms and all-field search terms
were searched for “artificial intelligence,” “neural networks,”
“machine learning,” “deep learning,” “imaging,” “eye.” Search
results were screened for relevance. References cited within the
identified articles were used to further augment the search.
Abstracts, Reviews, Correspondence, Opinions, Editorials, and
Letters were excluded. Studies were included if they used
an ophthalmic imaging modality to predict or quantify a
systemic, non-ocular condition or laboratory parameter. This
review encompassed an international search, but only articles
published in English were used. Information extracted for
qualitative analysis includes study details, model architecture,
dataset, population, imaging modality, body system/disease,
internal/external validation methods, reference standard, raw
data of diagnostic accuracy. This review is limited to articles
published from 2012 onwards.

OPHTHALMIC IMAGES AS INPUT TO
PREDICTIVE MODELS

Many imaging modalities are clinically available in
ophthalmology—retinal fundus photography (RFP), optical
coherence tomography (OCT), OCT-Angiography (OCT-A),
fluorescein angiography, ultrasound biomicroscopy, anterior
segment photographs; this list is non-exhaustive. Regarding

input images, the development of robust AI models requires
meaningful data at a sufficient scale, which can be difficult to
acquire. Khan et al. (56) conducted a global review of publicly
available datasets for ophthalmological images, and identified 94
open access datasets, of which the top imaging modalities were
RFP (54/94, 57%), OCT or OCT-A (18/94, 19%) and external
eye photographs (7/94, 7%). The three largest datasets were
contributed by Kermany et al. for OCT images (3), the Eye
Picture Archive Communication System (EyePACS) for RFP
(36), and Media Research Lab Eye (MRL Eye) for external eye
photographs (57). In the prediction of systemic biomarkers and
diseases, a similar trend holds—the most widely used ophthalmic
imaging modality is RFP, followed by OCT, then external eye
images (such as anterior segment photographs or slit lamp
photographs) (Table 1, Figure 1).

RETINAL FUNDUS PHOTOGRAPHY

RFP is a low-cost, simple imaging technique with widespread
applications. Fundus cameras have evolved over time, from
traditional table-top cameras to hand-held and smartphone-
based cameras. In addition to portability, advancements in
medical technology have allowed sharper images, non-mydriatic
wide-field options and pupil tracking. Panwar et al. (64) reviewed
the twenty-first century advancements in RFP technology and
discussed the pros and cons of various types of fundus cameras.
While the portability and reduced cost of newer devices are
welcome for mass screening purposes, traditional office-based
fundus cameras are a mainstay for research purpose because
they generally provide the best image quality and have strong
clinical validation in comprehensive clinical trials. The study
by Poplin et al. (36), published in March 2018, was one of the
earliest major studies that predicted systemic biomarkers from
RFP. The study, conducted by a team of researchers from Google
AI and Stanford School of Medicine, introduced the idea that
robust RFP-based models can be trained to predict a wide range
of non-ocular parameters. Supplementary Table 1 summarizes
performances of RFP-based models in predicting non-ocular
diseases and parameters. Anatomically, the fovea, macula, optic
disc, and retinal vessels have all been described as essential
structures used by AI models for prediction and classification
(Figure 2).

Predicting Age and Gender From RFP
Nine studies predicted age or gender from RFPs (30, 31, 34, 36,
38, 45–47, 60). Age as a continuous parameter showed robust
predictability in internal datasets (R2: 0.74–0.92). Rim et al.
(38) additionally investigated model performance in external
datasets (R2: 0.36–0.63), showing limited generalizability. In
subgroup analysis of the Singapore Epidemiology of Eye Diseases
(SEED) dataset, age was well-predicted across Chinese, Indian,
and Malay ethnic groups. As a follow-up to Poplin et al.
(36) which showed that RFP could be used to predict gender,
Yamashita et al. (45) tried to understand what features are
identified by algorithms as useful in predicting gender. They
performed logistic regression on several features identified to be
associated with sex, including papillomacular angle, tessellation
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TABLE 1 | Summary of studies in current literature.

References Imaging

modality

Predicted parameter Model Test datasets Recruitment Test set size Type of internal

validation

External

validation

(Yes/No)

Reference

standard

Appaji et al.

(58)

Fundus

photographs

Schizophrenia CNN National Institute

of Mental Health

and

Neurosciences,

Bengaluru, India

Retrospective 56 images Random split No Clinical diagnosis

Aslam et al.

(18)

OCT-A Diabetic status Random forest Manchester Royal

Eye Hospital, UK

Retrospective 152 scans Leave-one-out

cross validation

No Biochemical

testing

Babenko

et al. (59)

External eye

images

HbA1c Inception-v3 EyePACS (CA

cohort)

Retrospective 41,928 images Random split EyePACS (non-CA

cohorts from 18

states)-−27,415

images

EyePACS (non-CA

cohorts from 18

other

states)-−5,058

images

Atlanta Veterans

Affairs, Georgia,

USA-

−10,402 images

Biochemical

testing

Benson et al.

(19)

Fundus

photographs

Diabetic peripheral

neuropathy

VGG-16 University of New

Mexico,

Albuquerque, USA

Retrospective 112 images Random split No Monofilament and

vibration testing

Betzler et al.

(60)

Fundus

photographs

Gender VGG-16 SEED Prospective 34,659 images Random split No Demographics

Cavaliere

et al. (20)

OCT Multiple sclerosis SVM Miguel Servet

University

Hospital, Spain

Retrospective 96 scans Leave-one-out

cross validation

No Expert consensus

(clinical diagnosis)

Cervera et al.

(61)

Fundus

photographs

Diabetic peripheral

neuropathy

CNN SNDREAMS Retrospective 23,784 images Random Split No Vibration

perception

threshold testing

Chang et al.

(21)

Fundus

photographs

Carotid artery

atherosclerosis

CNN Health Promotion

Center, Seoul

National University

Hospital, South

Korea

Retrospective 1,520 images Random split No Expert consensus

(ultrasonography)

Chen et al.

(22)

Images of

palpebral

conjunctiva

Hemoglobin (anemia) SVM

CNN

Saint Mary’s

Hospital,

Luodong, Taiwan

Retrospective 50 images 10-fold cross

validation

No Biochemical

testing

Chen et al.

(23)

OCT Hemoglobin (anemia) Linear discriminant

analysis classifier

Second Xiangya

Hospital of Central

South

University, China

Retrospective 571 scans Leave-one-out

cross validation

No Biochemical

testing

(Continued)
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TABLE 1 | Continued

References Imaging

modality

Predicted parameter Model Test datasets Recruitment Test set size Type of internal

validation

External

validation

(Yes/No)

Reference

standard

Cheung et al.

(24)

Fundus

photographs

Retinal vessel caliber CNN SEED Prospective 1,060 images Random Split 10 external

datasets-−5,636

images

Expert graders

Dai et al. (25) Fundus

photographs

Hypertension CNN He Eye Specialists

Hospitals,

Liaoning, China

Retrospective 2,012 images 5-fold cross

validation

No Clinical

measurement

Garcia-Martin

et al. (26)

OCT Multiple sclerosis CNN Miguel Servet

University

Hospital, Spain

Prospective 768 scans 10-fold cross

validation

No Expert consensus

(clinical diagnosis)

Gerrits et al.

(47)*

Fundus

photographs

Age, Gender

Smoking status

Systolic BP, Diastolic BP

HbA1c

BMI, Relative fat mass

Testosterone

MobileNet-V2 Qatar Biobank Prospective 2,400 images Random split No Biochemical

testing

Clinical

measurement

Patient questionnaire

Jain et al. (27) Images of

palpebral

conjunctiva

Hemoglobin (anemia) SVM

CNN

Maulana Azad

National Institute

of Technology,

Bhopal, India

Retrospective with

artificial

augmentation

601 augmented

images

Random split No Not reported

Kang et al.

(28)

Fundus

photographs

eGFR VGG-19 Chang Gung

Memorial Hospital,

Taoyuan, Taiwan

Retrospective 2,730 images Random split No Biochemical

testing

Khalifa et al.

(29)

External eye

images

Gender CNN Al-Azhar

University, Cairo,

Egypt

Retrospective with

artificial

augmentation

3,000 augmented

images

Random split No Demographics

Kim et al. (30) Fundus

photographs

Age, Gender ResNet-152 SBRIA Retrospective 24,366 images Random split No Demographics

Korot et al.

(31)

Fundus

photographs

Gender CNN UK Biobank Prospective 1,287 images Random split Moorfields Eye

Hospital-−252

images

Demographics

Mitani et al.

(33)
†

Fundus

photographs

Hemoglobin (anemia)

Hematocrit

RBC Count

Inception-v4 UK Biobank Prospective 22,742 images Random split No Biochemical

testing

Munk et al.

(34)

Fundus

photographs

OCT

Age, Gender CNN University Clinic

Bern, Switzerland

Retrospective 13,566 images

8,554 OCT scans

Random split No Demographics

Nunes et al.

(35)

OCT Alzheimer’s Disease

Parkinson’s Disease

SVM University of

Coimbra, Portugal

Retrospective 75 scans 10-fold cross

validation

No Expert consensus

(clinical diagnosis)

(Continued)
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TABLE 1 | Continued

References Imaging

modality

Predicted parameter Model Test datasets Recruitment Test set size Type of internal

validation

External

validation

(Yes/No)

Reference

standard

Pérez Del

Palomar et al.

(62)

OCT Multiple sclerosis Random Forest

with Adaboost

Miguel Servet

University

Hospital, Spain

Retrospective 260 scans 10-fold cross

validation

No Expert consensus

(clinical diagnosis)

Poplin et al.

(36)

Fundus

photographs

Age, Gender

Smoking status

Systolic BP, Diastolic BP

HbA1c

BMI

Major adverse

cardiovascular events

Inception-v3 UK Biobank

EyePACS

Prospective UK Biobank

24,008 images

EyePACS

1,958 images

Random split No Biochemical

testing

Clinical

measurement

Patient questionnaire

Rim et al.

(38)‡
Fundus

photographs

Age

Gender

Body muscle mass

Height

Weight

Creatinine

Diastolic BP

Systolic BP

Hematocrit

Hemoglobin

RBC Count

VGG-16 Severance Main

Hospital, Seoul,

South Korea

Retrospective and

prospective

datasets

21,698 images Random split Severance

Gangnam

Hospital-−9,324

images

Beijing Eye

Study-−4,324

images

SEED-−63,275

images

UK Biobank-

−50,732 images

Biochemical

testing

Clinical measurement

Rim et al. (37) Fundus

photographs

Coronary artery calcification

RetiCAC §
EfficientNet Severance Main

Hospital, Seoul,

South Korea

Retrospective and

prospective

datasets

8,930 images Random split Philip Medical

Center, South

Korea-−18,920

images

CMERC-HI, South

Korea-−1,054

images

Expert graders

(cardiac CT)

Sabanayagam

et al. (39)

Fundus

photographs

Chronic kidney disease cCondenseNet SEED Prospective 2,594 images Random split SP2-−7,470

images

Beijing eye study-

−3,076 images

Biochemical

testing

Samant and

Agarwal (40)

Infrared iris images Diabetes Random forest Thapar University

Patiala, India

Retrospective 338 images 10-fold cross

validation

No Biochemical

testing

Son et al. (41) Fundus

photographs

Coronary artery calcification Inception-v3 Seoul National

University

Bundang Hospital,

South Korea

Retrospective 44,184 images 5-fold cross

validation

No Expert graders

(cardiac CT)

Tian et al. (42) Fundus

photographs

Alzheimer’s disease SVM UK Biobank Prospective 122 images 5-fold cross

validation

No Expert consensus

(clinical diagnosis)

Vaghefi et al.

(43)

Fundus

photographs

Smoking status CNN Auckland Diabetic

Eye Screening

Database, New

Zealand

Prospective 33,020 images Random split No Patient

questionnaire

(Continued)
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TABLE 1 | Continued

References Imaging

modality

Predicted parameter Model Test datasets Recruitment Test set size Type of internal

validation

External

validation

(Yes/No)

Reference

standard

Xiao et al. (44) External eye (slit

lamp) images

fundus

photographs

Hepatobiliary diseases

Liver cancer

Liver cirrhosis

Chronic viral hepatitis

NAFLD

Cholelithiasis

Hepatic cyst

ResNet-101 Third Affiliated

Hospital of Sun

Yat-Sen University,

Guangzhou, China

Huanshidong

Medical Center of

Aikang Health

Care,

Guangzhou, China

Prospective 1,069 slit lamp

images

800

fundus images

Random split No Expert consensus

Biochemical

testing

Hepatobiliary

ultrasound/CT/MRI

Yamashita

et al. (45)

Fundus

photographs

Gender Logistic regression Kagoshima

University

Hospital, Japan

Prospective 112 images Leave-one-out

cross validation

No Demographics

Zhang et al.

(46)

Fundus

photographs

Hypertension

FPG, TG

Age, Gender

Alcohol status

Smoking status

BMI, Waist-Hip ratio

hematocrit

Total bilirubin

Direct bilirubin

Inception-v3 Rural villages in

Xinxiang County,

Henan, China

Prospective 122 images Random Split No Biochemical

testing

Clinical

measurement

Patient questionnaire

Zhang et al.

(63)

Fundus

photographs

Chronic kidney disease

Type 2 diabetes

ResNet-50 CC-FII Tangshan

City, Hebei

Province, China

Prospective 17,454 images Random Split Guangdong

Province-−16,118

images

COACS-−6,162

images

Biochemical

testing

BMI, body mass index; BP, blood pressure; BPPV, Benign Paroxysmal Positional Vertigo; CA, California; CAC, coronary artery calcium; CC-FII, China Consortium of Fundus Image Investigation; CMERC-HI, Cardiovascular and Metabolic

Disease Etiology Research Center-High Risk; CNN, convolutional neural network; COACS, China suboptimal health cohort study; CT, computed tomography; EyePACS, Eye Picture Archive Communication System; FPG, fasting plasma

glucose; HbA1c, Hemoglobin A1C; HCT, hematocrit; MRI, magnetic resonance imaging; NAFLD, non-alcoholic fatty liver disease; OCT, optical coherence tomography; OCT-A, optical coherence tomography angiography; RBC, red

blood cell; RetiCAC, deep-learning retinal coronary artery calcium; SBRIA, Seoul National University Bundang Hospital Retinal Image Archive; SEED, Singapore Epidemiology of Eye Diseases; SNDREAMS, Sankara Nethralaya Diabetic

Retinopathy Epidemiology and Molecular Genetics Study; SP2, Singapore Prospective Study Program; SVM, support vector machine; TG, triglyceride; VGG, Visual Geometry Group.

*Gerrits et al. (47) reported results on 17 cardiometabolic risk factors. Only 9 parameters deemed “predictable” are shown.
†
Mitani et al. (33) reported prediction results of 31 complete blood count components, detailed results can be found in their Supplementary Material.

‡
Rim et al. (38) reported results on 47 systemic biomarkers. Only 10 parameters deemed “predictable” are shown.

§RetiCAC score defined as the probability of the presence of CAC based on retinal fundus photographs.
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FIGURE 1 | Overview of predictable systemic biomarkers from ophthalmic imaging modalities.

fundus index, retinal vessel angles and retinal artery trajectory.
This was the only study utilizing logistic regression models for
gender, and it achieved an area under the receiver operating
curve (AUC) of 0.78. Other studies in this section used DL
and neural network architectures. Some derived very robust
predictive results for gender (AUC: 0.93–0.97) (30, 31, 36, 38,
47), while others had lower performances (AUC: 0.70–0.80)
(34, 46). The reasons for this disparity could include the field
of view of the RFP dataset, and whether they were derived
from healthy or diseased patient populations. Gerrits et al.
(47) performed similar analysis of age and gender in a Qatari
dataset and suspected that their algorithm could be indirectly
predicting age or gender during their performance on other
intended biomarkers. For example, substantial differences in
model performance were found between females and males for
relative fat mass and testosterone. However, the performance
of gender prediction in age-stratified subgroups, and vice-versa,
were similar, suggesting that the features used during age and
gender prediction are largely independent (47). In analysis
of activation maps, Munk et al. (34) and Poplin et al. (36)
reported that the optic disc, macula, peripapillary area, and
larger blood vessels within the posterior pole seem crucial for
gender and age prediction. Non-random sex prediction using
RFP seems only possible if the fovea and optic disc were visible
(34). Korot et al. (31) experimented with a code-free model
to predict gender (AUC: 0.93). The Google Cloud automated
machine learning (AutoML) platform was used to provide a
graphical user interface (GUI), allowing physicians with no
coding background to craft ML models for medical image
analysis. This suggests that a code-free framework could be
comparable to state-of-the-art algorithms designed for similar
tasks by coders. Nevertheless, we note that using AI to predict
age and gender inherently has poor clinical utility; however, these
were two of the earliest parameters to be predicted from RFPs
by neural networks as they are unambiguous, and easily available
as data.

Predicting Smoking and Alcohol Status
From RFP
Regarding smoking and alcohol status, current models describe
notable prediction performance (36, 43, 46, 47). AUC of smoking
status ranged from 0.71 to 0.86. Only one study by Zhang et al.
(46) predicted alcohol status (AUC: 0.95). “Alcohol status” was
defined as “current alcohol drinkers of >12 times in the past
year” (46). One must note that the “ground-truths” for these
parameters are self-reported from patients via questionnaires.
Hence, model performance would be limited by information bias
and patients’ truthfulness when stating their smoking frequency
and alcohol intake.

Predicting Body Composition Factors
From RFP
Body composition factors predicted from RFP include body mass
index (BMI), body muscle mass, height, weight, relative fat mass,
and waist-hip ratio (WHR) (36, 38, 46, 47). Performance of
current algorithms in BMI prediction is generally poor with
low R2-values (R2: 0.13–0.17). Model generalizability across
ethnically distinct datasets was poor as well. Rim et al. (38)
found that DL algorithms for prediction of height, body weight,
BMI (and other non-body composition factors), trained on a
South Korean dataset, showed limited generalizability in the
UK Biobank dataset (majority White ethnicity) (R² ≤ 0.08).
Proportional bias was observed, where predicted values in the
lower range were overestimated and those in the higher range
were underestimated. While BMI is a parameter of interest due
to its well-established associations with all-cause (65) and cause-
specific mortality (66), prediction of other plausible parameters
of body composition have been described. The prediction of body
muscle mass is noteworthy, as it is a potentially more reliable
biomarker than BMI for cardiometabolic risk and nutritional
status (38). Rim et al. (38) reported that body muscle mass
could be predicted with an R² of 0.52 (95% CI: 0.51–0.53) in
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FIGURE 2 | Example heatmaps overlaid on retinal fundus photographs

highlighting areas of interest. These examples were derived from the authors’

research database. (A) Original photograph with no overlay; (B) red blood cell

count; (C) systolic blood pressure; (D) Weight; (E) age; (F) body mass index;

(G) creatinine; (H) diastolic blood pressure; (I) hemoglobin; (J) height.

the internal test set, and 0.33 (0.30–0.35) in one external test set
with muscle mass measurement available (Severance Gangnam
Hospital). If future DL algorithms exhibit improved prediction
results and generalizability, this could have clinical utility is
screening for sarcopenia. Zhang et al. achieved an AUC of 0.70
in predictingWHR, which has been described in association with
diabetes and cardiovascular complications (67, 68). While the
prediction results seem more promising than BMI, this needs
more validation.

Predicting Cardiovascular Disease and
Parameters From RFP
Cardiovascular parameters predicted from RFP include
systolic and diastolic blood pressure (BP), hypertension,
retinal vessel caliber, coronary artery calcium (CAC) and
carotid artery atherosclerosis (21, 24, 36–38, 41, 46, 47, 69).
RFP are thought to be robust input images for predicting
cardiovascular disease, as they can directly capture many
retinal features associated with increased cardiovascular risk,
including vessel caliber, tortuosity, and bifurcations (70, 71).
CAC is a pre-clinical marker of atherosclerosis, derived from
cardiac CT measurements (72). Based on the American
College of Cardiology Foundation/American Heart Association
(ACCF/AHA) consensus (73), compared to patients with CAC
score of zero, a CAC score of 100–400 had a relative risk (RR) of
4.3 (95% CI 3.1–6.1) for major cardiovascular events. CAC scores
of 401–999 had RR of 7.2 (95% CI 5.2–9.9), and CAC score of
1,000 had RR of 10.8 (95% CI 4.2–27.7) (73). Son et al. (41)
predicted abnormal CAC scores at various thresholds, producing
an AUC of 0.832 when the threshold was set at >100 units.
Furthermore, Rim et al. (37) derived a deep learning-based CAC
score predicted from RFP (RetiCAC) and used this new RetiCAC
score for cardiovascular risk stratification. Based on RetiCAC, a
new three-tier cardiovascular disease risk stratification system
was proposed, which showed comparable performance to cardiac
CT scans (the current clinical imaging method of choice) in
predicting future CVD events (37). Therefore, this study suggests
that RFP could be adopted as a more cost-effective method
than cardiac CT, as a non-radiation-based imaging modality
for cardiovascular risk stratification in low-resource settings.
Cheung et al. (24) developed a DL to automatically measure
retinal vessel calibers from RFP. They showed high agreement
between human and DL measurements and quantified the
correlations between specific retinal vessel features and CVD
risk factors. Poplin et al. (36) constructed models to predict
future onset of major adverse cardiovascular events within 5
years. The AUC of 0.70 using RFPs was comparable to the AUC
of 0.72 using the composite European Systematic Coronary
Risk Evaluation (74) (SCORE). It was acknowledged that hybrid
models where fundus photography was augmented with clinical
parameters were able to yield slightly better predictions (36).
With regards to BP, predictions from fundus photographs have
been suggested to be more reflective of accumulated damage
over time (75), resembling how HbA1c levels are reflective of
blood glucose levels over months. However, model performance
for systolic and diastolic BP prediction in current literature was
relatively poor, with R2-values ranging from 0.16 to 0.40.
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Predicting Hematological Parameters
From RFP
Hematological parameters predicted from RFP include
anemia, hemoglobin concentration, red blood cell (RBC)
count and hematocrit (33, 38, 46). Ophthalmic imaging-based
DL algorithms have been used to predict cut-off points of
hematological parameters (as a classification task). For instance,
Mitani et al. (33) predicted anemia categories and Zhang et al.
(46) predicted hematocrit ranges from fundus photographs with
AUC > 0.75. There were also attempts to predict continuous
parameters, such as RBC count (33), hemoglobin (38), and
hematocrit (33, 38) from fundus photographs were poorer (RBC
count: R2 0.14–0.35; hemoglobin: R2 0.06–0.56; hematocrit: R2

0.09–0.57). Mitani et al. (33) further studied the importance of
different anatomical features to anemia by blurring and cropping
the RFPs during both training and validation. Notably, when the
upper and lower hemispheres of the images were progressively
masked, performance declined only after ∼80% of the image
was covered. Masking using a central horizontal stripe (covering
the disc and macula) caused a drop in AUC when only 10%
of the image was masked. The models performed better than
chance even after high-resolution information was removed with
substantial Gaussian blurs, and after image pixels were randomly
scrambled, suggesting that the models could make use of the
general pallor of the retina to predict anemia.

Predicting Neurodegenerative Disease
From RFP
Most studies in current literature that predicted
neurodegenerative disease used OCT-based models. These
will be elaborated on in sections below. One study by Tian
et al. (42) used RFP to predict Alzheimer’s Disease, producing
promising results (Accuracy: 0.82, Sensitivity: 0.79, Specificity:
0.85). Saliency maps showed that small retinal vessel morphology
was critical to the classification decision, more so than large
vessels, which aligns with previous investigations on the
constriction of small cerebral arterioles in the pathogenesis of
neurovascular dysfunction in Alzheimer’s Disease (76). Tian
et al. (42) further described their automated, multi-stage ML
pipeline used to construct the RFP-based model, demonstrating
the preliminary potential of retinal vasculature analysis using
ML for Alzheimer’s Disease screening. It comprised of an image
quality selector and excluder, U-net based vessel map generator,
and a support vector machine (SVM) classifier (42).

Predicting Metabolic Disease and
Parameters From RFP
Metabolic disease states/ biomarkers predicted from RFP include
diabetes, diabetic peripheral neuropathy, fasting plasma glucose
(FPG), HbA1c, triglycerides and testosterone (19, 36, 46, 47, 61).
Testosterone levels were predictable from RFP, but Gerrits et al.
(47) learnt in further analysis that the model indirectly predicted
gender. Model performance decreased when trained solely on
male and female subgroups, implying that structural features
on RFP that are important for gender prediction are used in

estimating testosterone. Given the rise of teleophthalmology-
based screening systems for diabetic retinopathy (DR) (77),
and pre-existing associations of diabetic peripheral neuropathy
with retinal vascular features (78, 79). Benson et al. (19)
proposed leveraging RFP from annual DR screenings to assess for
diabetic peripheral neuropathy as well. The workflow consisted
of partitioning RFP images into 50 × 50 patches, using a neural
network to extract features from individual patches, applying
dimensionality reduction and combining them for use in an SVM
classifier. By partitioning RFP images, the risk of diluting small,
focal structural features throughout the retina was removed. This
system produced promising results (Accuracy: 0.89, Sensitivity:
0.79, Specificity: 0.85) (19), although external validation and
trials in clinical implementation are required. Additionally,
Cervera et al. (61) trained a neural network to detect diabetic
neuropathy from RFPs. AUC to predict DN on the whole cohort
was 0.801 on the validation set and 0.710 on the external test
set. The AUC increased to 0.8673 in the subgroup of patients
with DR.

Prediction Renal Disease and Parameters
From RFP
Renal parameters predicted by RFP include chronic kidney
disease (CKD), estimated glomerular filtration rate (eGFR) and
serum creatinine. In predicting CKD, the RFP-based model by
Sabanayagam et al. (39) showed good performance in internal
testing (AUC: 0.91), and external testing (AUC of 0.73–0.84).
They additionally constructedmodels with CKD risk factors (age,
sex, ethnicity, diabetes, hypertension status) as inputs, and a
hybrid model with both RFP and risk factors, demonstrating that
RFP images and risk factor information have similar predictive
powers, when used as inputs for CKD risk assessment. In
addition, performance of the RFP-only model in subgroups of
patients with diabetes and hypertension was comparable to the
entire cohort, supporting the clinical utility of RFP and DL as
an alternative CKD screening tool. This study was followed by
another paper by Zhang et al. (63), who constructed DL models
to identify CKD and type 2 diabetes solely from fundus images or
in combination with clinical metadata (age, sex, height, weight,
BMI and blood pressure) with AUCs of 0.85–0.93. Using 6-year
longitudinal data, individual images at baseline were stratified
into low, medium, and high-risk groups on Kaplan–Meier curves
for developing future CKD or T2DM. DL models were able
to significantly distinguish between these groups (p < 0.001).
Such time-to-critical-event modes based on longitudinal cohorts
could provide great utility in managing patients during their
early disease course. Prior to these two studies, only one DL
algorithm based on kidney ultrasonography was described for
CKD screening by Kuo et al. (80) (AUC: 0.90, Sensitivity: 0.61,
Specificity: 0.92). This lacked external validation (80). Kang
et al. (28) sought to predict early renal impairment from RFP,
defined as eGFR < 90 ml/min/1.73 m2, but observed poor
specificity. They noted false positives arising from RFP with
retinal scarring, subretinal fluid, or optic disc swelling. Hence,
clinical utility might be limited as many concomitant ophthalmic
pathologies can cause such retinal structural manifestations.
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Features used to identify CKD or predict eGFR are unclear—
saliency maps (28, 39) have highlighted changes in retinal
vasculature (dilatation of venules, rarefaction of vessels) and
abnormal lesions characteristic of retinopathy (hemorrhages and
exudations). A model by Rim et al. (38) showed moderate
performance in predicting creatinine levels (R2: 0.38) when
trained and tested on a South Korean dataset but was unable
to generalize to a European dataset (UK Biobank, R2: 0.01).
Predictive performance of creatinine was similarly poor inWhite
and non-White groups.

Predicting Hepatobiliary Disease and
Parameters From RFP
Hepatobiliary disease and biomarkers predicted by existing
studies include total and direct bilirubin levels, liver cancer,
cirrhosis, chronic viral hepatitis, non-alcoholic fatty liver disease
(NAFLD), cholelithiasis, and hepatic cysts (44, 46). Rim
et al. (38) had earlier tried unsuccessfully to predict alanine
aminotransferase (ALT) and aspartate aminotransferase (AST)
from RFP as continuous variables (R2 ≤ 0.10). While Xiao
et al. (44) achieved moderate to good predictive performance
in various hepatobiliary pathologies (AUC ranging from 0.62
for chronic viral hepatitis to 0.84 for liver cancer), the retinal
structural changes that result from hepatobiliary dysfunction
remain undescribed in current literature. Xiao et al. (44)
speculated that imperceptible retinal changes may be attributable
to hyperammonemia, hypoalbuminemia, and decreased estrogen
inactivation. Elevated portal venous pressure secondary to
cirrhosis or splenomegaly can remodel retinal vascular beds (81),
while anemia secondary to splenic sequestration can be detected
on fundus photography. This would be a topic of interest in
future research.

Implications and Clinical Utility
Prediction of systemic disease from RFPs is a hotly studied
topic, and seems like the logical next step, given robust
existing algorithms for predicting ocular diseases (for instance,
diabetic retinopathy, age-related macular degeneration, and
glaucoma) from RFPs (82). Prediction of certain outcomes,
such as age, gender, weight, and BMI, may not be particularly
meaningful, given the ease of determination or measurement
of these outcomes without a complex computer algorithm.
For more novel outcomes, such as Alzheimer’s Disease,
CKD, atherosclerosis, and CAC, crafting algorithms to predict
incidence of these conditions, rather than prevalence, might
serve more clinical utility for early intervention. However,
in reality, robust incidence data is more logistically difficult
to acquire than prevalence data. Next, the introduction of
smartphone-based fundus imaging in recent years presents a
low-cost alternative to conventional RFP (83). There are several
advantages of smartphone-based imaging, including portability,
built-in connectivity and processing, and minimal need for
training. This could make it suitable for telemedicine or primary
screening purposes, particularly in lower income settings where
tertiary care may not be easily accessible. However, smartphone
fundus image quality varies considerably, and there is a need

for inter-device comparison, leading researchers to consider a
necessary reference standard for grading (83).

OPTICAL COHERENCE TOMOGRAPHY

OCT is a non-invasive diagnostic technique that provides high
resolution in vivo cross-sectional images of retinal and choroidal
structures. As OCT is a safe, fast, and non-invasive imaging
modality with wide applicability in eye clinics, this technology
has produced large volumes of clinical images (secondary only
to RFP), making it a suitable candidate for training AI models.
Kapoor et al. (84) has previously reviewed the applications
of AI and OCT in ophthalmology, including the detection of
macular edema (85), age-related macular degeneration (86),
and glaucoma (87, 88). OCT-A is an advancement of OCT
technology, based on the variable backscattering of light of
moving red blood cells. This motion-contrast imaging accurately
depicts retinal vessels through different segmented areas of the
eye, eliminating the need for intravascular dyes (89).

Unlike RFP-based AI models, the systemic applications of
AI and OCT or OCT-A are more limited in current literature
(Table 2). Only one study by Aslam et al. (18) predicted diabetic
status with OCT-A using various supervised ML architectures,
reporting an AUC of 0.80 on the best performing, random
forest model. However, the model was troubled by low specificity
rates. OCT-A based outcome measures that were used to predict
diabetes included ischemic areas around the foveal avascular zone
(FAZ), FAZ circularity, mean capillary intensity and mean vessel
intensity (18). Readers should be aware that using such OCT-A
derived metrics as inputs, compared to the OCT-A image itself, is
a fairly different task compared to using RFPs as inputs.

OCT models were largely used to predict neurodegenerative
diseases, including multiple sclerosis (MS), Alzheimer’s Disease
and Parkinson’s Disease (PD) (20, 35, 62). We observed that the
models in this sectionwere shallow learning algorithms—support
vector machine (SVM) and random forest—as opposed to
neural networks. Clinical studies have shown robust differences
between the retinas of people with MS and healthy controls
in the peripapillary RNFL, and macular ganglion cell layer—
inner plexiform layer (90). Cavaliere et al. (20) and Pérez Del
Palomar et al. (62) designed models around these thickness
metrics (not the actual OCT images), predicting MS with an
area under the receiver operating curve (AUC) of 0.97 and
0.99, respectively. They reported different methodologies of
segmenting the retina to elucidate an optimal area of interest—
Cavaliere et al. (20) divided the retina by TSNIT (temporal,
superior, nasal, inferior, temporal) sectors and the Early
Treatment of Diabetic Retinopathy Study (ETDRS) grid, while
Pérez Del Palomar et al. (62) compared macular, peripapillary
and wide protocols. Furthermore, using neural networks to
analyze OCT scans, Garcia-Martin et al. (26) achieved an AUC
of 0.95 in predicting MS. The diagnosis of MS is typically clinical,
based on neurological symptoms and signs, alongside evidence of
disseminated CNS lesions in space and time (91). The promising
results of these studies suggest that OCT scans incorporated
with AI analytics could have some utility as a screening adjunct.
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TABLE 2 | Performances of OCT or external eye imaging AI models in predicting systemic disease and parameters.

Imaging modality Predicted

parameter

AUC 95% CI Sensitivity 95% CI Specificity 95% CI Accuracy Study Dataset Internal/

External

validation?

OCT Alzheimer’s

disease

0.80 0.93 0.82 (35) University of Coimbra, Portugal Internal

OCT Parkinson’s

disease

0.78 0.98 0.82 (35) University of Coimbra, Portugal Internal

OCT Anemia* 0.82 0.82 0.84 (23) Second Xiangya Hospital, China Internal

OCT Multiple sclerosis 0.97 0.89 0.92 0.91 (20) Miguel Servet University Hospital, Spain Internal

OCT Multiple sclerosis 0.95 0.88–0.99 (26) Miguel Servet University Hospital, Spain Internal

OCT Multiple sclerosis 0.99 0.972 (62) Miguel Servet University Hospital, Spain Internal

OCT B scans Gender 0.84 (34) University Clinic Bern, Switzerland Internal

OCT C scans Gender 0.90 (34) University Clinic Bern, Switzerland Internal

OCT-A Diabetic status 0.80 0.73–0.87 0.49 0.31–0.69 (18) Manchester Royal Eye Hospital Internal

External eye images Gender 0.94 (29) Al-Azhar University, Cairo, Egypt Internal

External eye images HbA1c > 9% 0.70 0.69–0.71 (59) EyePACS-−18 states External

External eye images HbA1c > 9% 0.73 0.72–0.75 (59) EyePACS-−18 other states External

External eye images HbA1c > 9% 0.70 0.68–0.71 (59) Atlanta veterans affairs External

External eye images HbA1c > 8% 0.69 0.68–0.70 (59) EyePACS-−18 states External

External eye images HbA1c > 8% 0.74 0.73–0.76 (59) EyePACS-−18 other states External

External eye images HbA1c > 8% 0.66 0.65–0.67 (59) Atlanta veterans affairs External

External eye images HbA1c > 7% 0.67 0.66–0.68 (59) EyePACS-−18 states External

External eye images HbA1c > 7% 0.74 0.73–0.76 (59) EyePACS-−18 other states External

External eye images HbA1c > 7% 0.64 0.62–0.65 (59) Atlanta veterans affairs External

Infrared iris images Diabetic status 0.99 0.97 0.90 (40) Thapar University Patiala, India Internal

Palpebral conjunctiva Anemia < 11

g/dL†
0.78 0.83 (22) Saint Mary’s Hospital Luodong, Taiwan Internal

Palpebral conjunctiva Anemia < 11

g/dL‡
0.75 0.83 (22) Saint Mary’s Hospital Luodong, Taiwan Internal

Palpebral conjunctiva Anemia* 0.99 0.95 0.97 (27) Bhopal, India Internal

Slit lamp images Cholelithiasis 0.58 0.55–0.61 0.57 0.46–0.68 0.58 0.55–0.61 (44) Third Affiliated Hospital of Sun Yat-Sen University Internal

Slit lamp images Chronic viral

hepatitis

0.69 0.66–0.71 0.55 0.45–0.65 0.78 0.76–0.81 (44) Third Affiliated Hospital of Sun Yat-Sen University Internal

Slit lamp images Hepatic cyst 0.66 0.63–0.68 0.68 0.58–0.79 0.57 0.54–0.60 (44) Third Affiliated Hospital of Sun Yat-Sen University Internal

Slit lamp images Hepatobiliary

diseases

0.74 0.71–0.76 0.64 0.60–0.68 0.73 0.69–0.76 (44) Third Affiliated Hospital of Sun Yat-Sen University Internal

Slit lamp images Liver cancer 0.93 0.91–0.94 0.89 0.79–0.99 0.89 0.87–0.91 (44) Third Affiliated Hospital of Sun Yat-Sen University Internal

Slit lamp images Liver cirrhosis 0.90 0.88–0.91 0.78 0.66–0.90 0.91 0.89–0.92 (44) Third Affiliated Hospital of Sun Yat-Sen University Internal

Slit lamp images NAFLD 0.63 0.60–0.66 0.69 0.64–0.74 0.53 0.50–0.57 (44) Third Affiliated Hospital of Sun Yat-Sen University Internal

AUC, area under the receiver operating curve; CI, confidence interval; HbA1c, Hemoglobin A1c; NAFLD, non-alcoholic fatty liver disease; OCT, optical coherence tomography; OCT-A, optical coherence tomography angiography.

*Chen et al. (23) and Jain et al. (27) did not describe how anemia was defined.
†
Chen et al. (22) constructed a SVM model and CNN model. This row represents the SVM.

‡
Chen et al. (22) constructed a SVM model and CNN model. This row represents the CNN.

None of the studies in this table reported R2-values as a performance metric, or 95% CI for Accuracy.
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Nevertheless, we note that MS is an idiopathic, heterogenous
disease, making it difficult to generalize the predictive results of
an OCT AI model from one population to another. Nunes et al.
(35) achieved notable results in predicting and distinguishing
between patients with Alzheimer’s Disease or Parkinson’s Disease
from OCT images. However, extensive preprocessing required
in their research workflow meant that the final OCT data used
to train the model differed greatly from the raw data typically
obtained in clinical settings. For instance, they used retinal layer
thickness measurements to compute multivariable texture data.
While this improved the discrimination power of the model, it
reduces the likelihood that such models can be translated into
clinical use.

Thanks to an abundance of OCT scans in modern tertiary
eye centers, AI-based analysis of OCT images has expanded to
improve patient screening and facilitate clinical decision-making.
Given that OCT parameters evaluate retinal and choroidal
layers, a further step for future research could be exploring the
utility of such parameters via machine learning techniques (for
instance, choroidal thickness, choroidal vascularity index, retinal
nerve fiber layer thickness) relative to deep learning techniques,
where the algorithms are fed whole images. Regarding future
trends, most current published studies in AI and OCT imaging
focus on the posterior segment of the eye, but recent studies
have started to explore its use in the anterior segment as
well (84).

EXTERNAL EYE IMAGING

Photographs of the external eye, often either captured with
cameras mounted on slit lamps, are often used to document
anterior segment disease in ophthalmology. Systemically, AI
studies in current literature have reported the use of such images
to predict gender, HbA1c levels, diabetic status, anemia, and
various liver pathological states (Table 2) (22, 27, 29, 40, 44, 59).
As described in earlier sections, Xiao et al. (44) constructed
two sets of models (slit lamp based and RFP based) to predict
hepatobiliary disease states—model performances on slit lamp
images was better than RFP in liver cancer, cirrhosis, and
chronic viral hepatitis. Excessive bilirubin accumulation causing
yellowing of the sclera and conjunctiva is a common presentation
in compromised liver function. These robust manifestations,
detectable on external eye images, could explain the difference in
performance. Visualization techniques showed that in addition to
the conjunctiva and sclera, iris morphology and color contained
important predictive features (44), suggesting the presence of iris
morphological changes secondary to liver damage that have yet
to be elucidated.

Babenko et al. (59) predicted HbA1c at various cut-offs
of 7, 8, and 9% using external eye images from EyePACS,
a teleretinal screening service in the United States (92). Low
resolution images of 75 × 75 pixels (0.1% of the resolution
of an 8-megapixel smartphone camera) as inputs achieved
moderate model performances of AUC 0.64–0.74. Ablation
analysis and saliency maps indicated that information from the
center of the image (pupil/lens, iris, cornea, limbus) was most

related to HbA1c (59). Uses for such a screening system are
manifold. Thresholds of HbA1c > 9% could highlight diabetic
patients with difficulties controlling blood glucose levels, and
in need closer follow-up or medication changes; thresholds
of HbA1c > 7% could identify asymptomatic patients at risk
for early or mild diabetes, allowing referral for a confirmatory
blood test. Regarding anemia, while phlebotomy remains
the gold standard of diagnosis, physical examination of the
palpebral conjunctiva is a quick and arbitrary clinical assessment
method. Chen et al. (22) managed to predict hemoglobin
levels of < 11 g/dL from external eye images of the palpebral
conjunctiva. However, dataset size was small (50 images).
The model thus requires more input data, and validation on
external datasets.

Looking beyond diabetes, liver diseases and anemia, the
findings of the above studies raise the interesting possibility
that external eye images could contain useful signals, both
familiar and novel, related to other systemic conditions. For
example, hyperlipidemia and atherosclerosis can manifest with
xanthelasma (93). Thyroid eye disease can manifest with
chemosis, conjunctival injection, lid retraction and lower scleral
show (94). Obstructive sleep apnea is associated with floppy
eyelid syndrome (95). Neurofibromatosis Type 1 manifests
with melanocytic hamartomata of the iris (Lisch nodules) (96).
Myasthenia Gravis can present with ptosis and ocular dysmotility
(97). Dry eyes, conjunctival injection, and uveitis are all possible
manifestations of systemic lupus erythematosus (98), while
corneal deposits of uric acid have been reported in hyperuricemia
and gout (99). Such manifestations could be readily captured
on external eye photography for systemic disease prediction
models. While these suggested diseases are relatively common,
the practicality of such models would depend on the rarity of the
associated eye signs, the fact that laboratory screening tests are
much more commonplace, and whether such theoretical models
can be built in the first place.

CURRENT LIMITATIONS, DIFFICULTIES,
AND AREAS OF FUTURE RESEARCH

Areas of Potential Improvement
We have noted several limitations of existing work and areas
with untapped potential. Firstly, many current studies lack
external validation (Table 1), which is critical for establishing
robust and generalized AI models. Sole internal validation
cannot support firm conclusions regarding the algorithms’
value for disease screening in new populations. The ability
of predictive models to generalize across various ethnic and
geographical datasets is not a guarantee, or a simple task
to achieve, but will add greatly to the clinical utility of the
constructed AI system. Second, the field of ophthalmic imaging
has unrealized potential in predicting additional systemic
parameters. Several studies attempted predictions of other
markers in addition to those reported, albeit with varying
(and often poorer) results (38, 46, 47). For instance, Rim
et al. (38) performed analysis on 47 biomarkers in total,
although only 10 were eventually deemed “predictable.” The
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fields of predicting hepatobiliary and neurodegenerative disease
from ophthalmic imaging are particularly nascent. The models
described by Xiao et al. (44) in 2021 was the first to establish
qualitative associations between ocular features, liver cancer
and cirrhosis, and future studies are needed to reaffirm their
findings. Much of the ongoing work bridging neurodegenerative
disease and retinal imaging involves OCT, although vascular
features on RFP have shown meaningful associations with
cognitive decline (75). Third, OCT-based algorithms to predict
renal disease have not been explored in current literature.
OCT, unlike RFP, allows imaging of the choroidal vasculature,
and choroidal thinning has been associated with lower eGFR
and higher microalbuminuria independent of age and other
vascular risk factors (100, 101). Whether these OCT-based
metrics reflect renal microvascular damage better than standard
creatinine/eGFR/albumin-creatinine-ratio measurements could
be tested in future studies, although we expect that this is
unlikely, and it would be difficult to conduct such a comparative
study. Fourth, given the widespread availability of OCT, slit-lamp
imaging and RFP in ophthalmic clinical practice, AI systems
built on two or more different ophthalmic imaging methods
would provide alternatives and improve adaptability. Fifth, there
is good potential for AI systems built on ophthalmic imaging
in community screening programs or primary care settings. In
principle, addition of various predicting models for systemic
biomarkers to current teleophthalmology software could enable
low-cost, non-invasive screening for multiple diseases in the
general population. Aside from clinical validation, economic
viability and cost-effectiveness would have to be evaluated as
well. Sixth, most studies predicting systemic parameters from
ophthalmic imaging are estimating current or prevalent disease.
To predict incidence of these conditions, rather than prevalence,
might serve more clinical utility; much potential utility of AI
systems would be unlocked if they were able to detect disease
where standard clinical examinations or laboratory tests fail to
do so. Seventh, studies evaluating the ability of AI ophthalmic
imaging algorithms to detect longitudinal changes in systemic
disease, or to stage systemic disease severity, are currently lacking.
This could be an area of future interest.

Challenges in Research
There are several challenges to be appreciated as AI becomes
more integral to medical practice. Firstly, using ophthalmic
imaging to predict systemic disease would require collaborative
efforts across departments. This might pose difficulties as
systemic parameters are not always required for management in
ophthalmic clinics, and vice versa. Hence, input images and target
variables may need to be collected separately and deliberately
(102). Secondly, barriers of access to ophthalmic imaging datasets
can be reduced—including issues of cost, time, usability, and
quality (56). Third, labeling processes for publicly available
datasets are often poorly defined; assurance of labeling accuracy
is paramount because the standards used for labeling of ground
truths have implications on any AI model trained on the dataset.
Fourth, it may sometimes be necessary to acquire datasets from
different local and international centers for training or external
validation purposes. State privacy and data regulatory rules need

to be respected, the process of which is time consuming and
cost-incurring. Fifth, most of the datasets used for developing or
testing DL models are based on retrospective datasets. Further
validation using well-characterized prospective datasets would be
needed to assess clinical utility.

Challenges in Real-World Applications
Regarding real-world applications, high-quality ophthalmic
images may be difficult to acquire in patients with small
pupils. Such patients may require pupil dilation with topical
pharmaceuticals, increasing collection time per image. Databases
to save and transfer high quality images are needed. Also,
the potential for bias or error must be respected. Algorithmic
outcomes reflect the data used to train them; they can only
be as reliable (but also as neutral) as the data they are based
on (103). Projection of biases inherent in the training sets by
AI systems is a concern for medical ethics (104), and ensuring
generalizability across different geographical and ethnic groups is
essential to avoid inadvertent, subtle discrimination in healthcare
delivery (105). Next, cost-effectiveness studies are required before
real world implementation. Retinal images are currently used
in diagnosis of ophthalmic pathologies. For systemic disease,
however, the use of retinal images is not part of standard care.
Cost effectiveness studies are needed to justify their use over
or alongside current standard tests (for example, diagnosing
anemia using retinal images vs. a full blood count), many of
which are well-integrated into existing healthcare practice and
infrastructure. Finally, DL algorithms suffer from the “black box”
problem, because it is a program that discloses the input and
output but gives no view of the intermediate processes. While
it is common for many studies to provide overlay saliency maps
for explanatory purposes, it remains unclear how the algorithms
arrived at such predictions.

CONCLUSIONS

To date, RFP, OCT, and external eye imaging are the
leading ocular imaging modalities for systemic AI applications.
Ophthalmic AI models for predicting systemic disease is a novel
field in its nascency, but there is great capacity for translation
into wider practice in the future, if the technology is carefully
designed, operated, and monitored under the supervision of
clinicians. Further efforts are underway to explore other systemic
risk factors and parameters that could be predicted from the
ophthalmic images. If validated, these algorithms could be
implemented as adjunctive screening in primary care settings.
Prospective studies are needed to evaluate real-world reliability,
efficacy, and cost-effectiveness, and to gain acceptance from
various stakeholders. Collaborative efforts are needed to ensure
the best medical technology available is incorporated into
practice for the benefit of patients.
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