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Introduction

In recent years, multiple groups consisting of researchers and/or industry partners

have developed and published guidelines/frameworks designed to be a helpful

resource for those planning an activity monitor validation study (1–8). However,

problems arise for those planning validation studies when inconsistencies among

these recommendation papers exist. This poses a challenge in the design and analysis

stages for researchers, as well as for journal reviewers in evaluating whether strict

adherence to published guidelines were followed.

The purpose of this opinion article was to highlight some of the consistent and

divergent recommendations for conducting activity monitor validation studies. The

following recent articles (i.e., within the last ∼4 years) form the basis of this

document (1–8). This will not be an exhaustive list of (in)consistencies, but rather a

focus on aspects such as statistical analysis and interpretation, which we feel are

among the most salient to conducting a validity study.
How to statistically assess the validity of activity
monitors?

The interpretation of study outcomes relies heavily on the results of statistical tests

implemented that compare the device of interest to a criterion measure. While simple

correlations are typically implemented to determine if the values observed between the

comparator-criterion are associated with each other, the determination of validity from

correlations alone is insufficient (1). The interpretation of results, and thus conclusions

drawn, may vary depending on the specific statistical tests implemented. This poses an

issue when guidelines suggest divergent statistical tests be utilized. This point is

particularly evident with current guidelines, as the Towards Intelligent Health and Well-

Being Network of Physical Activity Assessment (INTERLIVE) group recommends

Bland-Altman analyses (i.e., fixed/proportional biases) and mean absolute percent error
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(MAPE) (2, 3, 5), whereas the Consumer Technology Association

(CTA) recommends MAPE only (6, 7), and Welk et al. (1)

recommends additional tests (i.e., comparison of means,

correlations, and equivalence tests). The Welk et al. (1)

guidelines specifically emphasized the inclusion of equivalence

testing, which was the only suggested statistical test

recommended by Kozey-Keadle et al. (4) to assess validity.

Determining a device to be “not different” to a criterion (e.g.,

via ANOVA or fixed bias) does not necessarily imply that two

measures are statistically equivalent. Equivalence testing (9–11)

has been utilized to determine whether or not two measures

provide statistically equivalent outcomes (12). A primer on

equivalence testing is presented elsewhere (13). While

challenges to implementing equivalence testing exist, such as

the establishment of thresholds to denote “equivalence”

(14, 15), the overarching idea of establishing whether two

measures statistically produce values within an acceptable level

of error seems pertinent to device based validation studies.

Despite the heterogeneous recommendations, it is our position

that equivalence testing be implemented alongside bias testing

(i.e., Bland-Altman), difference of means, and MAPE.

Conducting these detailed statistical analyses may help better

characterize the validity of the measure of interest, permit

between-study comparisons, and aid in the establishment of

acceptable error levels with further use.
How to interpret validation
study results?

While we position that the same statistical battery should be

conducted for research and commercial monitors, the

acceptable level of error may be higher for commercial

monitors, depending on the overarching objective. In

agreement with Argent et al. (5), if improving health is the

primary objective and users are depending on commercial

devices for general proxies of step accumulation or energy

expenditure, a less strict threshold of error is likely reasonable.

However, specifics on what constitutes a monitor as valid/

invalid are challenging to discern.

Bland-Altman analyses provide useful information regarding

whether a comparator measure consistently over- or under-

predicts activity as a function of the average of the comparator

and criterion (i.e., fixed bias) or if the magnitude of the error

changes as a function of the average (i.e., proportional bias)

(16, 17). Limits of agreement (LoA) are calculated as 1.96 ×

standard deviation (SD) of the difference between the

comparator-criterion and are encouraged by INTERLIVE to be

the primary determinant of validity (2, 3, 5). Welk et al. (1)

also highlighted the potential utility of Bland-Altman analyses.

While we agree that Bland-Altman analyses are useful, there

are also limitations of using this test as the primary

determinant of whether monitors are valid or not. While LoA
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describe the range of error between measures, it is unclear how

this value should be interpreted. Specifically, the magnitude of

LoA that constitutes a small, medium, and large error have not

been established. It is plausible that with the same LoA, two

researchers may interpret the validity of the device differently.

An “appropriate” LoA likely depends on the study protocol,

criterion measure, minimal error of interest, and outcome

metric utilized. Nevertheless, there is not a harmonized guide

to assist researchers to best interpret their outcomes. Similarly,

MAPE provides an indication of individual level error, but the

interpretation of this outcome is unclear. CTA recommends

heart rate monitors have a MAPE <10% to be deemed valid

based on standards established for electrocardiography (7).

Whether it is reasonable or not to extrapolate this to

commercial wearable monitors is arguable. For monitors to be

a valid measure of step counts, the CTA recommends <20%

MAPE (6), whereas INTERLIVE recommends <5% for activity

trackers to be used in clinical trials but <10%–15% for general

public use (3). The justification for these thresholds is unclear.

Whether a MAPE of <5%, <10%, <20%, or <50% is indicative

of a low individual level error is unclear and may be

interpreted differently depending on what researchers perceive

as an acceptable level of error considering the context of their

study (e.g., a larger error may be more acceptable in an

uncontrolled free-living protocol vs. more controlled laboratory

protocol). Therefore, this introduces human error and biases

into the interpretation of findings. This is problematic for

putting forth consistent conclusions across research labs,

evaluating between-monitor validity, and the amalgamation of

studies for meta-analyses.

Consistent with some guidelines (1, 4), we encourage that

equivalence testing be conducted and that the equivalence zone

required for the two measures to be deemed statistically

equivalent reported. This avoids the use of arbitrary a priori

thresholds (e.g., ±10% or ±20%) that produce dichotomous

outcomes that are sensitive to minor deviations in threshold

selection (14). Specifically, a review on the topic demonstrated

that a 5% change in threshold selection altered the conclusions

of 75% and 71% of validation studies in children/youth and

adults, respectively (14). In the absence of clinically acceptable

equivalence zones, we also recommend that researchers

consider reporting the zone required for the measures to be

deemed equivalent as a percentage and/or as a proportion of

the SD (e.g., 0.5 SD). Examples for calculating exact

equivalence zones as a relative percentage or as a proportion of

SD can be found elsewhere (18–20).

For activity monitor validation studies, analyses will likely

continue to be heterogeneously implemented without more

guidance of how results should be interpreted. This is especially

important when minor effects are statistically significant and/or

multiple statistical tests produce divergent outcomes. Effect

sizes should be consistently reported. From a guidelines point-

of-view, it would be beneficial to provide some consistent
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insight into what are acceptable, evidence-based LoA/MAPE and

how individual researchers should interpret the results of these

statistical tests when making claims about device validity.
How many people should be
collected?

The number of participants recruited for a validation study

should ideally be based on a power calculation. Sample sizes

should consider the effect size of interest, study design, study

hypothesis, planned statistical tests, and resources of the study

(e.g., equipment available, personnel involved, etc.) (21). It

should be appreciated that minor differences may be

statistically significant with enough participants. Accordingly,

sample size calculations that rely on difference-based

hypothesis testing (e.g., between-monitor t-test, one sample

t-test to a value of zero, ANOVAs, etc.) are estimating the

number of participants needed for that difference to be

statistically significant. Based on this logic, it should be

unsurprising when statistically significant differences are

observed when the number of participants recruited are based

on a difference-based calculation. As outlined in (1), we agree

that if the hypothesis is that a monitor will be equivalent to a

criterion, then the sample size calculation should be based on

equivalence testing [see (13, 22) for tips on how to do this].

While other guidelines do not provide a specific number of

participants needed for validity studies (1, 4, 6, 7), the

INTERLIVE group recommends a sample size calculation

based on the comparator-criterion difference (5) or a sample

of 45 people if insufficient evidence exists (2, 3, 5). If 45

people have multiple observations (e.g., repeated treadmill

stages that get progressively faster), it is more probable that a

minor fixed/proportional bias will be statistically significant.

While we do not dismiss the use of Bland-Altman analyses,

we feel that: (1) more emphasis should be placed on the

magnitude of the fixed/proportional bias, (2) we need a better

understanding of what are acceptable magnitude of biases, (3)

we should not blindly follow statistically significant results,
FIGURE 1

Aspects that are consistent and divergent between physical activity monitor va
that may impact an individual researcher planning on conducting a monitor va
divergent recommendations, respectively.
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and (4) that the results of the Bland-Altman should be

interpreted alongside other statistical tests. In addition, this

provokes further thought on the use of 1 data point vs.

multiple datapoints per participant. Guidelines that provide

researchers with clear instructions of how to deal with

multiple observations, evidence-based optimal sample size

calculations, and analytical processing strategies would

facilitate the adoption of a consistent process and help move

the field in the same direction.
What is consistent between
recommendation guidelines?

Figure 1 presents the inconsistent and consistent

recommendations between guidelines for activity monitor

validation studies that apply to researchers conducting these

types of studies.

The INTERLIVE group (2, 3, 5), CTA (6–8), and Kozey-

Keadle et al. (4) provide useful frameworks for step-by-step

procedures in designing validation studies. The first phase of

the framework presented by Kozey-Keadle et al. (4) outlines

mechanical testing to determine the validity/reliability of the

devices underlying electronics in the absence of the variability

introduced by human movement (4). This highly controlled

testing is essential for ensuring acceleration characteristics

respond as expected to a known stimulus (e.g., via wheels,

orbital shakers, etc.), and that the responses are the same

when the identical stimulus is applied.

Groups (2–5, 8) advocate for the initial implementation of

laboratory-based validation studies involving highly controlled

protocols and accurate criterion measures (e.g., video-recorded

steps). If validated in laboratory conditions, then the

transition to semi-structured settings that involve general task

instructions (e.g., household chores) are warranted, these tasks

may include aspects of personal care, household chores, work/

education, and leisure activities (4). The final stage of

validating a device is to test it in a free-living or naturalistic

setting, where there is the least amount of experimental
lidation recommendations (1–8). This figure depicts the considerations
lidation study, with checkmarks and “x”marks indicating consistent and
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control but is the setting where devices are typically used (8).

CTA provides important considerations for validation studies

in naturalistic settings (8). This spectrum from most-to-least

researcher control and least-to-most external applicability

provides a useful guide for the design of physical activity

monitor validation testing protocols.

It is likely that the device of interest is being studied for use

among a heterogeneous general population. Therefore, the

recruitment of a diverse group of participants should also be

encouraged, with considerations for age, sex, race, body mass

index, occupational status, physical activity level, atypical gait

patterns, etc. (2–6). The INTERLIVE groups idea of a

checklist may serve as a useful resource in establishing

minimum participant characteristic and analytical strategy

reporting (e.g., epoch length, device version, sampling rate,

etc.) (2, 3, 5).
Conclusion

Inconsistencies across different recommendation guidelines

in the same field of study create challenges. In the absence of

guidelines that recommend the same thing, it is unclear which

specific procedures researchers should adhere to. We highlight

such challenges and pose further questions that may be of

interest to help develop and/or revise future

recommendations. The information presented in this opinion

article is a call to action for wearable researchers to

acknowledge these inconsistencies and work towards

recommendations that advance the activity monitoring field.

Rather than researchers establishing recommendations in silos

with their colleagues, the establishment of a set of harmonized

guidelines that incorporates a more extensive number of

experts across the world (e.g., using the Delphi method) is

needed to adopt a consistent set of experimental and

analytical guidelines. Such procedures would establish a
Frontiers in Digital Health 04
stronger consensus-based guidelines and may be a major step

towards establishing evidence-based guidelines.
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