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Stress is an increasingly prevalent mental health condition that can have serious
effects on human health. The development of stress prediction tools would
greatly benefit public health by allowing policy initiatives and early
stress-reducing interventions. The advent of mobile health technologies
including smartphones and smartwatches has made it possible to collect
objective, real-time, and continuous health data. We sought to pilot the
collection of heart rate variability data from the Apple Watch electrocardiograph
(ECG) sensor and apply machine learning techniques to develop a stress
prediction tool. Random Forest (RF) and Support Vector Machines (SVM) were
used to model stress based on ECG measurements and stress questionnaire
data collected from 33 study participants. Data were stratified into
socio-demographic classes to further explore our prediction model. Overall,
the RF model performed slightly better than SVM, with results having an
accuracy within the low end of state-of-the-art. Our models showed specificity
in their capacity to assess “no stress” states but were less successful at
capturing “stress” states. Overall, the results presented here suggest that, with
further development and refinement, Apple Watch ECG sensor data could be
used to develop a stress prediction tool. A wearable device capable of
continuous, real-time stress monitoring would enable individuals to respond
early to changes in their mental health. Furthermore, large-scale data collection
from such devices would inform public health initiatives and policies.
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Introduction

Stress is an often overlooked determinant of health. High stress levels are linked to

severe health problems such as depression, obesity, and cardiovascular diseases (1).

Unfortunately, 1 in 5 Canadian citizens report experiencing high levels of stress daily

(2). Increased awareness of mental health has emphasized the need for more timely
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stress monitoring and early intervention, and the collection of

population-wide stress data could support public health

initiatives and interventions.

Self-reporting continues to be the gold standard for

monitoring stress. These methods face challenges and limitations

such as social and recall bias (3, 4), loss due to follow-up (3, 4),

delays between collection and reporting (5), and costs/logistics

(3, 5). However, the link between stress and multiple biomarkers

has revealed opportunities to develop technologies to quantify

stress. One such feature is heart rate variability (HRV) which is

now routinely quantified through an electrocardiograph (ECG).

ECGs have been widely used for stress prediction, and are

typically performed at a healthcare facility which limits their

accessibility. The development of rapid point-of-care or self-

monitoring devices would improve patient outcomes, providing

invaluable information for public health agencies and real-time

interventions (e.g., guided meditations) (6, 7).

Digital technologies, including smartphones and wearable

smartwatches, are pervasive in our lives. In 2020, the number

of Apple Watch users worldwide was estimated at 100 million

(8). In line with the modern health trend toward patient self-

care, these technologies now include sensors designed to

continuously collect health data with minimal user effort (9).

Collected health parameters include steps, heart rate, blood

pressure, and sleep. These technologies now generate massive

quantities of objective data. Further, the datasets obtained

from this novel, real-life data can be used to create prediction

models using Machine Learning (ML), allowing public health

agencies to better understand and study the prevalence of a

condition in a population.

Apple Health, a popular source of digital health data, has

recently introduced an ECG sensor to their Apple Watch

device (7, 10). The sensor, which is similar to a 1-lead ECG,

collects 30 s of data through an electrode placed on the

device’s digital crown (11). According to Apple, studies have

shown good agreement in classifying the rhythm of the Apple

Watch ECG compared to standard 12-lead ECGs, and in a

clinical trial of 600 participants the ECG sensor had 99.6%

specificity when classifying synus rhythm and 98.3%

sensitivity for atrial fibrillation (10).

ECG data collected from this wearable device could

potentially be employed to predict stress: users would simply

take a non-invasive 30-second ECG and get instant feedback

on their stress levels. It is currently unclear whether the brief

30-second ECG reading will be sufficient for stress prediction.

The goal of this work was to pilot the use of Apple Watch

ECG data for stress prediction. This analysis is part of the

development of a Mobile Health Platform (MHP), which

collects Apple Health data from several mobile and wearable

devices (6, 7). We collected ECG and stress questionnaire data

from 36 participants over 2 weeks with the platform. We

applied the machine learning models Random Forests (RFs)

and Support Vector Machines (SVMs), as these models have
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been successfully used in stress prediction literature (12). To

the best of our knowledge, this is the first work that utilizes

Apple Watch ECG for stress prediction. We found that the

models performed at the low end of the state-of-the-art stress

prediction technology. We were able to identify several HRV

features, as well as socio-demographic classes which impacted

the accuracy of the model. The results suggest that, with

further development, Apple Watch ECG sensors could be

employed for mobile, real-time stress prediction.
Related work

The authors of Can et al. (12) provide a survey of stress

prediction in real-life scenarios with mobile health

technologies. As can be seen in this survey, and supported by

stress prediction literature, successful methods for stress

detection are Random Forests (RFs) and Support Vector

Machines (SVMs), which were selected for this study.

Examples of studies that use these methods include

Hovsepian et al. (13), which trains an SVM using ECG and

respiration data in both laboratory and real-life settings. The

model outputs the probability that a user is stressed with an

accuracy of 90% in the laboratory and 72% in real-life.

Muaremi et al. (14) collected ECG, respiration, galvanic skin

response, sleep data and posture of sleeping individuals,

achieving good accuracy with SVMs (73%) and RF (71%).

Gjoreski et al. (15) use laboratory data to build RFs that

predict stress with an accuracy of 83%; then, the RF model is

used as an output to train an SVM that achieves 76%

accuracy on real-life data. Can et al. (16) used heart rate

variability and electrodermal activity data for real-life stress

prediction, achieving 68% accuracy with SVM and 66% with

RF. Based on these considerations and review results (12), the

state-of-the-art accuracy for stress detection in real-life

settings lies approximately between 60% and 80%.

Regarding HRV analyses, the Task Force of The European

Society of Cardiology and the North American Society of

Pacing and Electrophysiology provides guidelines on the

measurement and analyses of HRV data (17), which were of

great help for this work (more details are described in the

sections below). Further, Acharya et al. provide a review of

HRV metrics and their meaning (18), while Benchekroun

et al. analyze the impact of missing data on several metrics

and studied different interpolation techniques to handle

missing data (19). Baek et al. analyzed several of these

metrics on ultra-short term measurements and defines the

minimum time interval for each of these metrics to be valid

when compared to standard measurements, and found that

each metric is different with some requiring only a few

seconds of data while others require several minutes (20).

The same work also showed that HRV can vary according to

factors such as age (20).
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Materials and methods

Data collection

Participants were given an iPhone 7 with iOS 15.0 and

an Apple Watch Series 6 containing an installed Apple

Watch ECG app (WatchOS 8.3) for two weeks. Following

the Ecological Momentary Assessment (EMA)

methodology (13), which enables self-reporting to

approximate real-life scenarios, users were asked to

perform an ECG reading using the app. EMAs are further

described in section 2.3. They were instructed to collect

data 6 times during the day in approximately three-hour

intervals. Before the ECG collection, participants were

asked to complete a stress questionnaire on the iPhone

using the MHP. Figure 1 shows the study protocol (the

times are just reference; participants were asked to start

measurements at wake-up).
Apple watch ECG application

WatchOS 8.3 is an application capable of recording ECG

measurements via an Apple Watch version 4 or higher.

Briefly, ECG measurements requires users to open the ECG

app and place their finger on the digital crown of the device

and remain still for 30 s (14). The instructions distributed to

the users can be found in the Supplementary Material. ECG

readings were automatically stored in Apple’s HealthKit API.

We extracted the API data through the MHP and saved it in

JSON format on our database.
Stress questionnaires

There are a limited number of validated stress

questionnaires for EMA-style data collection. To mitigate this

issue, we used the stress subscale of the Depression, Anxiety,

and Stress Scale (DASS-21) as there is promising evidence of

using DASS-21 with EMA (Questions 1–7) (15). This was
FIGURE 1

Study protocol.
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combined with a single-item measure (Question 8) used

successfully for stress measurement with a moderate

correlation to robust stress questionnaires (16).

The following 8 questions, on a LIKERT-type scale (15),

were designated as the Stress Questionnaire for participants:

1. I felt that I was using a lot of nervous energy;

2. I found it hard to wind down;

3. I found myself getting agitated;

4. I found it difficult to relax;

5. I tended to over-react to situations;

6. I was intolerant of anything that kept me from getting on

with what I was doing;

7. I felt that I was rather touchy;

8. Right now, I am…

Questions 1–7 have the options: “Not at all”, “To some degree”,

“To a considerable degree”, and “Very much”, while Question 8

has “Stressed Out”, “Definitely stressed”, “A little stressed”,

“Feeling good”, and “Feeling great”. The questions were

displayed to the user in a random order each time the

questionnaire is filled.

Mobile health platform

As discussed, we developed a mobile health platform (MHP)

using Apple’s software for creating iOS apps, (XCode, version

12.5.1). The MHP acted as a user interface: automatically

collecting data from Apple Health (via HealthKit) and allowing

users to complete the stress questionnaire (17). More details are

provided in the Results section.
Study population

Participants were recruited from the University of Waterloo

(students) and online advertisements (workers; Facebook Ads

and Kijiji). Participants were local to the Kitchener-Waterloo

region in Ontario, Canada. Participants were initially only

included if they were healthy. This requirement was

subsequently relaxed to allow “unhealthy” participants

(chronic disease or illness, prescription drug use, or frequent
frontiersin.org
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use of alcohol or drugs). Participants were offered CAD 100.00

for two weeks of data collection. Additional data collection

beyond two weeks was requested from some participants who

had missed measurements (less than 6 measurements per

day). This study was approved by University Waterloo

Research Ethics Board [REB (43612)]. Participant consent for

data collection was obtained before device distribution. Data

from 40 participants were collected. After applying the data

cleaning and pre-processing described below, 7 participants

had less than 50% of data points available. Therefore, these

participants were excluded, and the subsequent analysis was

done on 33 participants. Table 1 shows the characteristics of

the study participants. Of note, 27% of participants were male

and 73% were female; 24% were aged 18–24, 30% were aged

25–34 and the same proportion was found for participants

aged 35–44, 12% were aged 45–64, and only 3% (1
TABLE 1 Study population characteristics.

Participants (N = 33) Frequency Percentage

Age

18–24 8 24

25–34 10 30

35–44 10 30

45–64 4 12

Above 65 1 3

Gender

Male 9 27

Female 24 73

SES

Low (0–$30,000) 15 45

Medium ($30,000–$100,000) 15 45

High (Above $100,000) 2 6

Do not wish to disclose 1 3

Profession

Full-time 14 42

Part-time 3 9

Student 13 39

Self-employed/Other 2 6

Retired 1 3

Ethnicity

Black or African American 2 6

Chinese 4 12

Indian 1 3

Latin American 8 24

South Asian 6 18

White 12 36

Health Status

Healthy 26 79

Chronic Disease or Illness, Prescription
Drug Use, Smoking or Alcohol

7 21
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participant) was aged over 65. The average BMI was 27.2

(±6.70), and participants had an average of 65.1 (±11.80)

valid ECG recordings.
Data pre-processing and analysis

We exported the ECG data from HealthKit into a CSV

format and sorted each ECG voltage measurement by

timestamps. We removed any ECG measurement that was

classified as Poor Recording or Inconclusive by the

ECG app (10). The CSV file was imported into Kubios

Premium 3.5.0 to determine heart rate variability (HRV)

signals (18, 19).

In order to apply signal filtering, we used the Kubios

automatic beat detection feature as well as automatic noise

detection, which excludes all segments marked as noise—the

default Medium setting was used for noise segments. Kubios

also has an automatic artefact correction method which was

used for this analysis, and any samples containing more than

5% of corrected beats was removed. A list of the features

generated by Kubios is presented in Table 2 (18, 20). Kubios

automatically calculates a list of features for HRV analysis (18,

20). However, some features could not be calculated by the

software with the 30 s measurements, and so these features

were not used. The full list of Kubios features used for the

analyses are mentioned in Table 2.

In addition, several features were excluded following

recommendations made by the Task Force of The European

Society of Cardiology and the North American Society of

Pacing and Electrophysiology (21): we removed pNN50 and

NN50 as they are highly correlated with the RMSSD, and the

RMSSD was preferred. The TINN, HRV Tri Index, VLF, and

log measurements were removed as they were indicated for

longer time periods than that measured here. Finally, features

that were highly correlated were identified using the Pearson

correlation method (r = 0.95) and removed.

Participant stress states for each measurement were

determined based on the results of the stress questionnaires.

Measurements were categorized as “stress” or “no stress” based

on the following criteria. The scores of the DASS-21 questions

(Questions 1–7) were summed together and multiplied by 2; if

the score was greater than 14, the sample was classified as

“stress” (22). For the single-item measure (Question 8), the

sample was classified as “stress” if the score was greater than

2. To integrate data from two separate questionnaires, if either

the DASS-21 score or the single-item score was classified as

“stress”, the sample was classified as “stress”.

We divided the dataset into 70% for training and validation

and 30% for testing. We used 10-fold cross-validation for

training the RFs and SVMs, which were developed using sci-

kit learn. These models were chosen as they are widely and

successfully used in stress prediction literature (12). The
frontiersin.org
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TABLE 2 HRV features.

Name Description

Time-Domain Features

PNS Index Parasympathetic nervous system activity
compared to normal resting values

SNS Index Sympathetic nervous system activity compared to
normal resting values

Stress Index Square root of Baevsky’s stress index

Mean RR Mean of R-R intervals

SDNN Standard deviation of R-R intervals

Mean HR Mean of heart rate

STD HR Standard deviation of instantaneous heart rate

Min HR Minimum instantaneous heart rate calculated
using 5 beat moving average

Max HR Maximum instantaneous heart rate calculated
using 5 beat moving average

RMSSD Square root of the mean squared differences
between successive RR intervals

DC Heart rate deceleration capacity

DCMod Modified DC computer as a two-point difference

AC Heart rate acceleration capacity

ACMod Modified AC computer as a two-point difference

Frequency-Domain Features

FFT LF Fast Fourier Transform Low Frequency band
components

FFT HF Fast Fourier Transform High Frequency band
components

AR LF Autoregressive Low Frequency band components

AR HF Autoregressive High Frequency band
components

FFT Absolute Power LF Fast Fourier Transform Absolute Power of Low
Frequency band components

FFT Absolute Power HF Fast Fourier Transform Absolute Power of High
Frequency band components

AR Absolute Power LF Autoregressive Absolute Power of Low
Frequency band components

AR Absolute Power HF Autoregressive Absolute Power of High
Frequency band components

FFT Relative Power LF Fast Fourier Transform Relative Power of Low
Frequency band components

FFT Relative Power HF Fast Fourier Transform Relative Power of High
Frequency band components

AR Relative Power LF Autoregressive Relative Power of Low Frequency
band components

AR Relative Power HF Autoregressive Relative Power of High Frequency
band components

FFT Normalized Power LF Fast Fourier Transform Normalized Power of
Low Frequency band components

FFT Normalized Power HF Fast Fourier Transform Normalized Power of
High Frequency band components

FFT Total Power Fast Fourier Transform Total Power

FFT LF/HF Fast Fourier Transform ratio between low and
high frequency

AR Normalized Power LF Autoregressive Normalized Power of Low
Frequency band components

AR Normalized Power HF Autoregressive Normalized Power of High
Frequency band components

(continued)

TABLE 2 Continued

Name Description

AR Total Power Autoregressive Total Power

AR LF/HF Autoregressive ratio between low and high
frequency

Non-Linear Features

SD1 The standard deviation perpendicular to the line-
of-identity in Poincaré plot

SD2 The standard deviation along the line-of-identity
in Poincaré plot

SD2/SD1 Ratio between SD2 and SD1

Velmovitsky et al. 10.3389/fdgth.2022.1058826
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“GridSearchCV” function was used to tune the model

parameters and find the best ones. The data were normalized

using sci-kit learn’s “StandardScaler” function for optimization.

The models were trained to the entire dataset as well as the

subset of healthy participants. Given the relationship between

HRV measures and demographics (23–26), we trained models

based on age (18–24 years, 25–34 years, 35–44 years, and 45–

65 years), gender (male, female), income (<$30,000 CAD, >

$30,000 CAD), and profession (student, worker). For each

model, we calculated feature importance for the RF model

using the mean decrease in impurity (a 100% purity in a

node means the decision tree’s node contains only one class,

and by assessing the difference between the impurity in the

parent and child nodes we can calculate the best split in the

tree and use it as a proxy for feature importance). For

categories that had only one participant we did not perform

the model analyses.
Results

We sought to pilot the use of machine learning with Apple

Watch ECG data as a step towards developing a wearable device

for stress prediction. We recruited students and staff from the

University of Waterloo (Ontario, Canada) to participate in a

two-week study. Participants were given an iPhone 7 and an

Apple Watch Series 6. It is important to note that this study

is part of a larger wearable study involving other devices such

as wireless blood pressure cuffs; for this study, we focus

specifically on the iPhone and Apple Watch and on ECG

measurements alone. The details of the other study are

described elsewhere (6, 7).

Users were asked to collect ECG measures using the Apple

Watch ECG app six times during the day at approximately

three-hour intervals. Before the acquisition of each ECG,

participants were asked to complete a stress questionnaire on

the MHP developed for the study, which also updated new

ECG measurements to our database. The MHP app interface

is depicted in Figure 2.
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FIGURE 2

MHP interface.

Velmovitsky et al. 10.3389/fdgth.2022.1058826
As there are few validated stress questionnaires, we made

use of the stress portion of the Depression, Anxiety, and

Stress Scale (DASS-21) in conjunction with a single-item

measure that has been used successfully in previous stress

prediction studies (16). In total, we acquired 2421 ECG/survey

measures from 33 participants after data cleaning and pre-

processing. Readings were classified as “stress” or “no stress”

based on the answers to the questionnaire (22). We applied

the machine learning models Random Forests (RFs) and

Support Vector Machines (SVMs) to train the model.

Table 3 shows a summary of the results for each trained

model, described in more detail below.
Frontiers in Digital Health 06
Stress prediction models using total
dataset and subset with healthy subjects

The RF and SVM models were trained against the complete

data set. The complete dataset was fairly balanced, with the

“stress” class representing 46% of all test examples (306 out of

665 in the test dataset). Due to class imbalances, we reported

the F1-score weighted. The best accuracy was achieved by the

RF model with 55% compared to 54% for the SVM model

(Table 3). Weighted averages were similar to the accuracy.

Recall and precision were higher for the “no stress” class

when compared to the “stress” class, with the SVM having a

higher recall for the “stress” class than the RF. Results

indicated that, when using ECG measurements from a

wearable device in a real-life setting, both the RF and SVM

machine learning models approached the lower end of state-

of-the-art accuracy levels for predicting stress levels.

As there are multiple heart rate variability (HRV)

parameters determined by the ECG test, we sought to identify

the most important features for the RF algorithm. The top 10

features were determined using the mean decrease in

impurity. Figure 3 shows that the top feature was the ECG

heart rate deceleration capacity (DC) (Table 2).

Originally, all participants involved in this study were healthy;

however, due to difficulty in finding study subjects, we relaxed the

criteria to allow participants that were not healthy (chronic disease

or illness, prescription drug use, or frequent use of alcohol or

drugs). Again we found the RF model outperformed the SVM

model. The healthy subset achieved a slightly lower weighted

average for the “stress” class of 54% for the RF model with a

recall of 34% (45% for SVM) and precision of 50%. DC was

again identified as the most important feature (Figure 4)

followed by the heart’s acceleration capacity (AC).
Impact of age on stress prediction models

Given that age influences HRV (21, 25), we trained the RF

and SVM models based on age to see if we could improve the

weighted average.

For the 18–24 years group, the “stress” class represented 38%

of the data. The RF model outperformed the SVM model with an

accuracy of 62% and an F1-score weighted of 56%. The recall and

precision in the “stress” class were 19% and 50% respectively.

Low Frequency Absolute Power calculated with FFT was

identified as the most important feature (Figure 5).

In the 25–34 years group, the “stress” class is the majority,

representing 66% of the dataset. Here the SVM model slightly

outperformed the RF model with an accuracy of 64% compared

to 63%. The F1-score weighted was 58% for both models. In the

“stress” category, the recall (87%) and precision (67%) were high

but with a corresponding loss of recall (16%) and precision
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TABLE 3 Metrics for each trained model.

Random forest Support vector machine

Items Precision Recall F1-Score Precision Recall F1-Score Support

No Stress 0.58 0.66 0.61 0.58 0.58 0.58 359

Complete Dataset Stress 0.52 0.43 0.47 0.50 0.51 0.51 306

Accuracy – – 0.55 – – 0.54 665

Weighted Average 0.55 0.55 0.55 0.54 0.54 0.54 665

No Stress 0.59 0.73 0.65 0.57 0.57 0.57 283

Healthy Subjects Stress 0.50 0.34 0.40 0.45 0.45 0.45 221

Accuracy – – 0.56 – – 0.52 504

Weighted Average 0.55 0.56 0.54 0.52 0.52 0.52 504

No Stress 0.64 0.88 0.74 0.63 0.75 0.69 95

Subjects Aged 18–24 Stress 0.50 0.19 0.27 0.43 0.31 0.36 59

Accuracy – – 0.62 – – 0.58 154

Weighted Average 0.58 0.62 0.56 0.56 0.58 0.56 154

No Stress 0.39 0.16 0.23 0.42 0.14 0.22 69

Subjects Aged 25–34 Stress 0.67 0.87 0.76 0.67 0.89 0.77 133

Accuracy – – 0.63 – – 0.64 202

Weighted Average 0.57 0.63 0.58 0.58 0.64 0.58 202

No Stress 0.69 0.91 0.78 0.68 0.67 0.68 116

Subjects Aged 35–44 Stress 0.61 0.26 0.37 0.43 0.45 0.44 65

Accuracy - - 0.67 - - 0.59 181

Weighted Average 0.66 0.67 0.63 0.59 0.59 0.53 181

No Stress 0.70 0.84 0.76 0.68 0.86 0.76 50

Subjects Aged 45–64 Stress 0.53 0.33 0.41 0.50 0.26 0.34 27

Accuracy – – 0.66 – – 0.65 77

Weighted Average 0.64 0.66 0.64 0.62 0.65 0.61 77

No Stress 0.64 0.68 0.66 0.57 0.56 0.57 95

Male Participants Stress 0.62 0.58 0.60 0.52 0.53 0.52 85

Accuracy – – 0.63 – – 0.55 180

Weighted Average 0.63 0.63 0.63 0.55 0.55 0.55 180

No Stress 0.59 0.55 0.57 0.59 0.67 0.63 250

Female Participants Stress 0.52 0.56 0.53 0.55 0.47 0.50 214

Accuracy – – 0.55 – – 0.58 464

Weighted Average 0.56 0.55 0.55 0.57 0.58 0.57 464

No Stress 0.62 0.74 0.68 0.64 0.63 0.64 180

Low SES Participants Stress 0.45 0.32 0.37 0.45 0.45 0.45 118

Accuracy – – 0.57 – – 0.56 298

Weighted Average 0.55 0.57 0.56 0.56 0.56 0.56 298

No Stress 0.53 0.42 0.47 0.55 0.48 0.51 161

Medium and High SES Participants Stress 0.53 0.64 0.58 0.55 0.62 0.58 167

Accuracy – – 0.53 – – 0.55 328

Weighted Average 0.53 0.53 0.52 0.55 0.55 0.55 328

No Stress 0.57 0.51 054 0.60 0.54 0.56 134

Students Stress 0.54 0.60 0.57 0.56 0.62 0.59 128

Accuracy – – 0.55 – – 0.58 262

Weighted Average 0.56 0.55 0.55 0.58 0.58 0.58 262

No Stress 0.55 0.69 0.61 0.56 0.69 0.62 200

(continued)
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TABLE 3 Continued

Random forest Support vector machine

Items Precision Recall F1-Score Precision Recall F1-Score Support

Workers Stress 0.49 0.35 0.41 0.52 0.39 0.45 170

Accuracy – – 0.53 – – 0.55 370

Weighted Average 0.52 0.53 0.52 0.54 0.55 0.54 370
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(39%) in the “no stress” class. The most important feature was the

standard deviation of intervals, SDNN (Figure 6).

In the 35–44 years group, the “stress” class was the minority,

representing 36% of the dataset. The RF had a higher accuracy of

67% (F1-score weighted of 63%) compared to 59% for the SVM

model (F1-score weighted of 53). The SVM had higher recall

than the RF for the “stress” class (45%–26%), but lower

precision (43% to 61%). The AC was the most important

feature (Figure 7).

Finally, for the 45–64 years group, the “stress” class

comprised 54% of the dataset. We found that the RF model

performed better than the SVM with an accuracy of 66% and

an F1-score weighted of 64%. The “stress” class had a low

recall of 33% and a 53% precision. AC was the most

important feature as well (Figure 8).

To determine which features were most commonly

identified as important across all age groups, we determined

the frequency which with features appeared in the top 10.

Figure 9 shows that the deviation of the instantaneous heart
FIGURE 3

RF feature importance, complete dataset.
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rate (SD HR), heart acceleration capacity (AC) and AR Low

Frequency Absolute Power were the most important features

across all age-related models.
Impact of gender on stress prediction
models

Evidence suggests that gender has an impact on HRV (23).

To determine whether our stress prediction would improve if we

accounted for gender, we trained the RF and SVM learning

models for males and females. The “stress” class represented

slightly more than 45% of the datasets.

The RF model performed better for the male participants

with an accuracy and F1-score weighted of 63%. The

precision was 62% and recall was 58% for the “stress” class.

The PNS Index was the most important feature (Figure 10).

In contrast, the SVM model performed better for female

participants with an accuracy of 58% and weighted average of
frontiersin.org
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FIGURE 4

RF feature importance, healthy subjects.

FIGURE 5

RF feature importance, subjects aged 18–24.
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57%. The “stress” class had a precision of 55% and a recall of

47%. SDNN was found to be the most important feature

(Figure 11).
Frontiers in Digital Health 09
Figure 12 shows the frequency with which each feature

appeared as the 10 most important features across both

gender-related models. DC, PNS Index, and FFT High
frontiersin.org
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FIGURE 6

RF feature importance, subjects aged 25–34.

FIGURE 7

RF feature importance, subjects aged 35–44.
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FIGURE 8

RF feature importance, subjects aged 45–64.

FIGURE 9

Frequency of features in age related models.
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FIGURE 10

RF feature importance, male participants.

FIGURE 11

RF feature importance, female participants.
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FIGURE 12

Frequency of Features in gender-related models.

FIGURE 13

RF feature importance, Low SES participants.
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Frequency Absolute Power were identified as the most

frequently important HRV features.
Impact of socioeconomic status on stress
prediction model

As there are large socioeconomic disparities in cardiovascular

disease and HRV, we sought to train our machine learning models

based on socioeconomic status (SES) (24). Participants were

considered to be in the low SES category if their net income was

<30,000 CAD based on an approximation from the Canadian

tax cut-off for low-income populations (27). Those with incomes

above this threshold were considered medium-to-high SES.

For the low SES group, the “stress” class comprises 40% of

the dataset. The SVM model performed better with an accuracy

and F1-score weighted of 56%, recall of 45%, and precision of

45% for the “stress” class. The most important feature was

DC, the heart deceleration capacity (Figure 13).

For the medium and high SES participants, the “stress” class

represented 51% of the dataset. The SVM model performed

slightly better than the RF model with accuracy and F1-score

weighted of 55%. For the “stress” class, the recall was 62%

(slightly higher for RF at 64%) and precision was 55%. DC,

the heart deceleration capacity, was again identified as the

most important feature (Figure 14).

Figure 15 shows the frequency of features that appeared as

the 10 most important features across both income-related
FIGURE 14

RF feature importance, medium and high SES participants.
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models. The most frequently identified features were DC,

SDNN, FFT Absolute Power HF, and AC.
Impact of profession on stress prediction
model

Occupational stress is associated with cardiovascular disease

and HRV (23). As such, we trained our stress prediction models

based on participant occupation. Participants were categorized

as workers (full-time, part-time, self-employed, or other) and

students. We did not train a model for the retired participant

as only one participant was in that category.

The SVM had better accuracy (58%) and F1-score weighted

(58%) when models were trained for students. The “stress” class

represented 49% of the dataset with a recall of 62% and

precision of 56%. The AR High Frequency Absolute Power

was the most important feature (Figure 16).

When we trained the model for workers, the “stress” class

represented 46% of the dataset. The SVM model slightly

outperformed the RF in accuracy (55% compared to 53%)

and F1-score weighted (54%–52%). The SVM had a better

recall (39%) and precision (52%) for the “stress” class.

Figure 17 shows the 10 most important features, with the AC

as the most important feature.

We determined which features appeared most frequently as

the top 10 most important features across both datasets

(Figure 18). The most important features were DC, SDNN,

AC, and SD HR.
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FIGURE 15

Frequency of features in income-related models.

FIGURE 16

RF feature importance, students.
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FIGURE 17

RF feature importance, workers.

FIGURE 18

Frequency of features in profession-related models.
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Priority HRV features for stress prediction
models

Several HRV features collected during the ECG

measurements were identified as important across the models

trained for the entire dataset, age, gender, socioeconomic

status, and profession. We determined the frequency with

which each feature appeared as the “10 most important
Frontiers in Digital Health 16
features” across all 10 models described above (Figure 19).

The top features identified were SDNN, AC, and DC.
Discussion

Here we piloted the use of an Apple Watch ECG sensor to

predict participant stress levels. Overall, both models performed
frontiersin.org
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FIGURE 19

Frequency of features in all models.
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similarly in different circumstances, achieving F1-weighted

scores ranging from 52% to 64%. The state-of-the-art

accuracy for stress detection in real-life settings lies

approximately between 60% and 80% (12). In general, the

“stress” models had a high level of precision but lower recall.

The “no stress” models performed generally well with a recall

typically above 60%. Considering the ultra-short duration of

the ECG measurements performed here compared to the

standard, as well as the nature of real-life measurements, the

results presented were quite promising.

Divisions by gender, profession or income were found to be

good proxies for the prediction models, although more data

seems to be needed for improvement. In the majority of cases,

the models performed better for the “no stress” class

compared to the “stress” class. As the fraction of data falling

into the “no stress” class was often greater, the performance

discrepancy may be related to class imbalance. Future studies

should explore over- and under-sampling techniques to

improve the models. Overall, while the models have high

specificity, predicting “no stress” states relatively well, they

currently lack the predictive power to accurately predict the

“stress” states. Future work should focus on frequency-domain

metrics and implement novel approaches for data analyses.

Additional stress-related variables could also be integrated

into the analyses, as well as exploring training and testing

datasets based on subjects rather than randomly.

The heart acceleration (AC) and deceleration capacity (DC)

were some of the most valuable HRV features included in the

model, being present in most, if not all, of the 10 most

important features in all models described. This is interesting

as AC and DC are relatively new indicators in HRV analyses
Frontiers in Digital Health 17
and lack research with a focus on stress; these results, then,

can indicate new avenues of research focusing on these

metrics for stress prediction (28). The SDNN, one of the most

widely used metrics for time-domain HRV, was also present

in most models. Frequency-domain features were commonly

identified as important as well. This was consistent with the

Task Force recommendations; frequency-domain metrics are

better at capturing variations in HRV than time-domain

metrics for short measurement periods of time.

Still regarding feature importance, it is important to note

the wide error bands for most of the calculated mean decrease

in impurity, which points to the fact that the different trees in

the random forest models are varied to take into account all

complexities in the data. Most features possess similar wide

error bands, and that the features described above are

repeated throughout the models, suggesting that they are the

most important ones and should be evaluated carefully.

One limitation of this study was skewed population

representation: participants were primarily white females. As

such, there may have been insufficient data to accurately train

the models for other representative groups. As well, due to

limited participant numbers, it was challenging to stratify

characteristics. For example, socioeconomic status and profession

were only stratified into two categories which may be insufficient

to capture demographic features. Here we applied the use of RF

and SVM to train the models (12), however, other methods may

perform better including Deep Learning approaches. Future

work could apply Deep Learning methods using the raw signals

from each participant’s ECG measurements as time series data.

To the best of our knowledge, this is the first study to use

Apple Watch ECG data to predict the stress levels of
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individuals. The results are currently in the low-end of state-of-

the-art; as mentioned above, stratifying participants can improve

accuracy, and larger studies that allow further stratification of the

cohort might achieve even better results. In addition, data was

collected in real-life conditions which can potentially introduce

noise in the data. On the same token, stress self-report was

used as the ground truth for a given moment in time, which

might not always reflect physiological parameters. Since the

results were promising with these factors potentially

introducing noise in the data, and given the novelty of the

data type, conducting further studies in a controlled setting,

such as applying stressors in a lab environment, could give us

additional insights into the relationship between Apple Watch

ECG data and stress. In addition, since the Apple Watch can

also collect additional data such as sleep and physical activity,

it should also be interesting to use ECG data with other stress-

related variables, as they can complement the data and

increase the models’ predictive power.
Conclusion

This study presented an analysis of Apple Watch ECG data

from 33 participants. To the best of our knowledge, this is the

first study to use Apple Watch ECG data to predict stress

levels of individuals. RF and SVM models were developed for

the task, with the models performing similarly.

Further, the results are in line with the start-of-the-art for

stress prediction, although at the low-end. This is very

promising considering the ultra-short-term and real-life nature,

as well as the novelty of, the Apple Watch ECG data.

However, while the current models have high specificity,

predicting “no stress” states relatively well, it lacks the

predictive power to accurately predict the “stress” states as of

yet. Future work should focus on the AC, DC, SDNN as well

as frequency-domain metrics and implement novel approaches

for data analyses, such as Deep Learning, as well as integrating

additional stress-related variables into the analyses.

Overall, the results from the pilot study validate the

continued development of wearable ECG technology and

suggest that, with further refinement, models can likely

achieve stress prediction with state-of-the-art quality. In that

way, we can develop near real-time, non-intrusive stress

detection, monitoring, and intervention applications using a

technology that is already widely popular and accepted by the

population, leading to better health outcomes.
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