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Leveraging the potential of
synthetic text for AI in mental
healthcare
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UK

In today’s world it seems fair to say that extensive digital data sharing is the
price we pay for the technological advances we have seen achieved as a
result of AI systems analysing large quantities of data in a relatively short
time. Where such AI is used in the realm of mental health, this data sharing
poses additional challenges not just due to the sensitive nature of the data
itself but also the potential vulnerability of the data donors themselves
should there be a cybersecurity data breach. To address the problem, the AI
community proposes to use synthetic text preserving only the salient
properties of the original. Such text has potential to fill gaps in the textual
data availability (e.g., rare conditions or under-represented groups) while
reducing exposure. Our perspective piece is aimed to demystify the process
of generating synthetic text, explain its algorithmic and ethical challenges,
especially for the mental health domain, as well as most promising ways of
overcoming them. We aim to promote better understanding and as a result
acceptability of synthetic text outside the research community.
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1. Introduction

Over the last few years the use of AI has proved to be a boon for both mental health

professionals and research into the field. For example, AI is actively used to analyse data

from social-media platforms such as Twitter and Reddit to monitor for particular

conditions (e.g., depression or suicidal ideation), analysing the language used in its

therapy sessions to assist human specialists facing increased workload, improving

personalised treatment plans and in training professionals (1–3). Indeed, AI shows

strong potential to improve both mental health research and practice through learning

from relevant patterns in specimen textual datasets. However, such datasets are not

always easily available and are very often costly to obtain (aka, data sparsity problem,

e.g., it may take years to obtain longitudinal mental health data to adequately monitor

disease progression). More importantly, the usage of such data in AI raises serious

privacy considerations (4). Those are not only due to the sharing of sensitive mental

health text but also due to the fact that AI models internally memorise their training

data which could pose cybersecurity exposures once they are deployed (5,6).

An approach gaining ground in the AI community to address these issues of data

sparsity and privacy is by producing and using synthetic data, including textual data,
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to reduce the reliance on human derived data. We need to

emphasise here that privacy is a major limiting factor

affecting data availability. Resolving, or at least significantly

assuaging privacy concerns will ease this data sparsity

constraint. Relevant research investigates how to make this

synthetic data statistically-relevant, as well as useful for

algorithmic analysis and training (7,8). Such data show

potential to improve data accessibility, model performance

and eventually boost scientific progress. However, the creation

and use of synthetic text comes with challenges.

Key objective of this perspective piece is to demystify the

technology behind synthetic text generation and use by

explaining its major challenges, both technical and ethical,

and especially in relation to synthetic mental health text, as

well as sketch the most promising methods to overcome them.
2. What is synthetic data?

In this work, we define synthetic text as artificially generated

text based on use-case relevant context and that reflects the

relevant meaning for statistical analysis in the intended

context (including the training of, and analysis by AI).

There are multiple different ways other ways artificial text

can be created. A straightforward way is to manipulate and

modify the original text. For example, we can create a “noisy”

version of the original text by replacing or swapping some

words in it [for example, replacing some words with

synonyms or words with close meaning from a pre-defined

vocabulary or randomly (9,10)].

Another way is to automatically detect personal identifiable

information (PII) in source text (such as names and addresses)

and either completely remove them (anonymisation), replace

them with place-holders [pseudonymisation, e.g., (11)] or

sanitise them (obfuscate by means of semantic inference, i.e.

replace with synonyms or homonyms) it [e.g., (12)].

Both of these approaches in themselves will not be sufficient

to safeguard the privacy of mental health texts owing to the

likelihood of sufficient identifying information (such as

scenario, participant and location descriptions) surviving these

processes.

One approach is to take a step back. Rather than modify

source text to generate synthetic text, an AI model analyses

the source text or/and any other additional information [meta

data, images, video, sensor data, etc. (13,14)] to identify its

meaning and other important contextual information to

exclude the private information, and from this it generates

new text from scratch which preserves these.

For example, the source text may contain the following

sentence, “I walked-up the ticket office at Victoria Station but

could not remember where I wanted to buy a ticket for”. The

AI model would analyse this for meaning, i.e. that someone

wanted to purchase a ticket for travel and that they expressed
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the sentiment of confusion. It would then generate a new

sentence, such as “I went up to the ticket window but could

not remember why I was there”. Such a rewriting preserves the

validity of text for the automatic analysis (e.g., detection of

confusion), but makes the description irrelevant to a situation

of a particular individual neutralising the sensitive information.

In the following sections we will examine: first, how new

text can be generated by means of language models; second,

how this generation can be guided to ensure the preservation

of relevant content and how the privacy of the original

content can be preserved; and finally, discuss the ethical

challenges of synthetic text usage such as benchmarking

standard and bias.
3. Primer on language models

In its essence, AI language models perform language

generation through forming sentences by picking words, one

after another, from a learnt vocabulary. Their selection of

words is driven by the probability distributions of words

obtained by the analysis of large quantities of texts, aka

training data. For example, we can compare how many times

the words “book” and “bag” follow the phrase “He dropped

the…” to get a relative probability distribution for them (e.g.,

45% chance of “bag”, 10% chance of “book”) (15).

In addition, context must also be accounted for. In the

transcript of an online chat “He dropped the…” may be more

likely to be followed by the word “plans”, whereas in a legal

text it may be “objection”.

In order to encode this combination of word probability

distributions and textual contexts we make use of a concept

called “word embedding” [e.g., BERT (16)]. Explained in

simple terms, words are represented by sequences of numbers,

these are in turn cross-referenced multiple times with

weighted probabilities for their appearance in any given

context as learnt from the training data.

This language modelling approach is sufficiently flexible to

steer and adapt the generation process to particular situations

and contexts. Using the examples above, it enables it to pick

“bag”, “book”, “plans” or “objection” to follow “He dropped

the…” as appropriate for the context.

Modern neural language models learn billions and trillions

of parameters to predict word probabilities from large portions

of unmoderated data coming from the Internet [e.g., GPT-3

(17)]. These models are publicly available online as generic

generators via such libraries as Huggingface.
4. Algorithmic challenges

In order to be able to generate text which preserves the

salient properties of the original, the language model needs to
frontiersin.org
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have access to relevant context information at the input stage.

Currently, language models operate efficiently given well-

defined but narrow contexts in such tasks as medical report

generation when given images, tables or any other longer text

(e.g., text to be summarised), etc. (18–20). These models are

capable of distinguishing important information from the

inputs which need to be preserved in the outputs (e.g.,

important figures from tables or medical image fragments

relevant for diagnostic conclusions).

In the case of generating mental health text, the context

includes many factors such as general diagnostic

characteristics, personal physical and physiological

idiosyncrasies, their prior experience and the immediate

context of the conversation (e.g. where the conversation is

taking place, mood and emotions of the interlocutor etc.).

This indicates the crucial role of the human to distill and

narrow the relevant information down to control the text

generation process and hence produce valid mental health text

for different scenarios (13). For example, the generation of

clinical notes in the mental health domain has been

attempted under the guidance of demographic information

and keywords extracted from real text (21). Synthetic text

generated this way has been shown useful as training data for

an AI predicting mental health diagnoses.

Recent techniques to control text generation for large pre-

trained publicly available language models have shown

promising potential enabling the creation of computationally-

tractable controllable models for multiple contexts (22,23).

As already mentioned, AI models, including language

models, tend to memorise the training data. To illustrate this

using an extreme case, should the training data contain one

single example then the model would treat the probability of

seeing this data in the task as equal to one. Following on

from this, should a model give a phrase or sentence a

probability of one, then it can be inferred that was in its

training data. This is a simplistic explanation of model

overfitting which could be used to gain knowledge of the

training data. Hence the next challenge of synthetic text

generation is how to prevent the language model from

exhibiting such memorisation and preserve privacy of the

respective individual.

A range of standard privacy protection techniques has now

been applied to text generation. One of them, Differential

Privacy (DP) (24) adds noise to the updates of model weights

in such a way that the even singular training examples can not

be inferred from outputs (25). An alternative way to train

models without data sharing is proposed by the Federated

Learning (FL) (26) technique. This technique allows us to learn

global model weights without giving access for this global model

to the local data. Models are learnt locally and are regularly

merged into the global model at the next level of aggregation (27).

Note that these privacy preservation techniques do not

represent a solution for the data sparsity issue and can not be
Frontiers in Digital Health 03
seen as the replacement for the synthetic text generation

techniques.
5. Ethical challenges

There are also a number of practical implications from the

wider usage of synthetic text in AI training. The first one is the

challenge of developing a benchmarking standard for synthetic

text (28,29). As yet, in the clinical and mental health domains

the utility of synthetic text has been evaluated for only some

types of AI, such as automated diagnoses prediction (21) or

named entity recognition (7). There are no best established

practices or systematic criteria on how to assess synthetic

data. Recently, AI evaluation techniques have turned to

functional evaluation where model performance is

benchmarked in a series of use case scenarios (30). An

example for mental health synthetic text is measuring the

changes in its clinical validity while modifying the input

information, so that text generated for the input “bipolar”

should contain “self-important” more often than the text

generated for the input “depression”. The performance of AI

trained on synthetic text will be systematically compared to

that of AI trained on real text. Since model transparency is

now a requirement for responsible AI development, these

performance comparisons will be done at the level of model

decision explanations (31). Overall, text generators need to be

subject to systematic human monitoring at the model

development stages.

The second challenge is the trade-off inherent in achieving

the validity and utility necessary for the task against preserving

input privacy (32). Taking a similar approach to that used for

numerical data in statistics (33), methods are needed to assess

these trade-offs on a per use case basis for the mental health

domain. For example if we do not strike an appropriate

balance, the danger in the case of rare mental health

conditions (i.e., those affected by a paucity of training data

due to a small sample size) is that the risk of patient re-

identification may outweigh the benefits of reduced treatment

costs from early automatic condition detection.

Another important ethical implication regarding synthetic

data is bias. This becomes increasingly important in those

mental health scenarios with naturally small sample sizes. We

have seen that language models capture general trends in the

training data and ignore the outliers. So that any bias in the

existing data (an under-represented or mis-represented group)

will be amplified in the synthetic text. Methods of controlled

generation have been shown to be very efficient in addressing

such bias issues since instances of detected bias can be

corrected for by generating, under the control of human

experts, compensatory examples with appropriate properties

(34). Thus, they enhance and enrich the natural data.
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This leads onto the possibility of creating banks or

repositories of synthetic data of sufficient quality suitable for

AI training in the mental health domain. In terms of

cybersecurity there would be a risk of such datasets being

interfered with or “poisoned” by malicious actors. This then

introduces a need to “quality mark” such data to signify it has

been produced to the required standard and is unchanged, a

process which would involve a verification mechanism

potentially using hashes or similar cryptographic mechanisms

to verify data authenticity and integrity.
6. Future perspective

To conclude, in this perspective piece we want to emphasise

the potential of synthetic text for advancing mental health

research and practice through providing sufficient accessible

data for AI training in this realm, and tried to demystify the

process of natural language generation. In addition, we have

shown that natural language generators are efficient tools

which need to be guided and controlled by humans to

produce adequate, ethically acceptable and statistically-relevant

outputs. Current AI techniques provide efficient tools for

controlling the generation process, as well as the fairness and

privacy-preservation of the resulting text. More investigation

is needed on the scope parameters which will guide the

production of statistically-relevant outputs in particular use

cases. There is a crucial lack of comprehensive frameworks to

systematically assess the validity of synthetic text for further

statistical analysis by AI. In the mental health domain where

the seemingly opposing undercurrents of preserving patient

privacy and achieving utility and validity must be carefully

navigated, such assessment frameworks are particularly

difficult to design. Needless to say whilst AI can offer good

decision support it can not replace human expertise, especially

in such a sensitive domain as mental health.

Beyond synthetic text being used for AI training, its

potential can be investigated for synthetic statistical control

populations in research settings (offering the prospect of

providing reliable and inexpensive alternatives to recruiting

human participants). Additionally, it could be used for data
Frontiers in Digital Health 04
imputation in research to help address standard problems

with missing and asymmetric data sampling.

Further integration of synthetic text needs to be supported

by a mature legal framework as well as best practices of

responsible AI development in the research community, with

the latter accepted by and implemented by industry. The

benefits of synthetic data may well prove to be a double-edged

sword for industry, improving the models of those already in

the market whilst due to reducing the reliance on real data

opening other niches where competitors are able to flourish.
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