AUTHOR=Ellis Gregory M. , Souza Pamela E. TITLE=Using Machine Learning and the National Health and Nutrition Examination Survey to Classify Individuals With Hearing Loss JOURNAL=Frontiers in Digital Health VOLUME=3 YEAR=2021 URL=https://www.frontiersin.org/journals/digital-health/articles/10.3389/fdgth.2021.723533 DOI=10.3389/fdgth.2021.723533 ISSN=2673-253X ABSTRACT=

Even before the COVID-19 pandemic, there was mounting interest in remote testing solutions for audiology. The ultimate goal of such work was to improve access to hearing healthcare for individuals that might be unable or reluctant to seek audiological help in a clinic. In 2015, Diane Van Tasell patented a method for measuring an audiogram when the precise signal level was unknown (patent US 8,968,209 B2). In this method, the slope between pure-tone thresholds measured at 2 and 4 kHz is calculated and combined with questionnaire information in order to reconstruct the most likely audiograms from a database of options. An approach like the Van Tasell method is desirable because it is quick and feasible to do in a patient's home where exact stimulus levels are unknown. The goal of the present study was to use machine learning to assess the effectiveness of such audiogram-estimation methods. The National Health and Nutrition Examination Survey (NHANES), a database of audiologic and demographic information, was used to train and test several machine learning algorithms. Overall, 9,256 cases were analyzed. Audiometric data were classified using the Wisconsin Age-Related Hearing Impairment Classification Scale (WARHICS), a method that places hearing loss into one of eight categories. Of the algorithms tested, a random forest machine learning algorithm provided the best fit with only a few variables: the slope between 2 and 4 kHz; gender; age; military experience; and self-reported hearing ability. Using this method, 54.79% of the individuals were correctly classified, 34.40% were predicted to have a milder loss than measured, and 10.82% were predicted to have a more severe loss than measured. Although accuracy was low, it is unlikely audibility would be severely affected if classifications were used to apply gains. Based on audibility calculations, underamplification still provided sufficient gain to achieve ~95% correct (Speech Intelligibility Index ≥ 0.45) for sentence materials for 88% of individuals. Fewer than 1% of individuals were overamplified by 10 dB for any audiometric frequency. Given these results, this method presents a promising direction toward remote assessment; however, further refinement is needed before use in clinical fittings.