AUTHOR=Faust Louis , Feldman Keith , Lin Suwen , Mattingly Stephen , D'Mello Sidney , Chawla Nitesh V. TITLE=Examining Response to Negative Life Events Through Fitness Tracker Data JOURNAL=Frontiers in Digital Health VOLUME=3 YEAR=2021 URL=https://www.frontiersin.org/journals/digital-health/articles/10.3389/fdgth.2021.659088 DOI=10.3389/fdgth.2021.659088 ISSN=2673-253X ABSTRACT=
Negative life events, such as the death of a loved one, are an unavoidable part of life. These events can be overwhelmingly stressful and may lead to the development of mental health disorders. To mitigate these adverse developments, prior literature has utilized measures of psychological responses to negative life events to better understand their effects on mental health. However, psychological changes represent only one aspect of an individual's potential response. We posit measuring additional dimensions of health, such as physical health, may also be beneficial, as physical health itself may be affected by negative life events and measuring its response could provide context to changes in mental health. Therefore, the primary aim of this work was to quantify how an individual's physical health changes in response to negative life events by testing for deviations in their physiological and behavioral state (PB-state). After capturing post-event, PB-state responses, our second aim sought to contextualize changes within known factors of psychological response to negative life events, namely coping strategies. To do so, we utilized a cohort of professionals across the United States monitored for 1 year and who experienced a negative life event while under observation. Garmin Vivosmart-3 devices provided a multidimensional representation of one's PB-state by collecting measures of resting heart rate, physical activity, and sleep. To test for deviations in PB-state following negative life events, One-Class Support Vector Machines were trained on a window of time prior to the event, which established a PB-state baseline. The model then evaluated participant's PB-state on the day of the life event and each day that followed, assigning each day a level of deviance relative to the participant's baseline. Resulting response curves were then examined in association with the use of various coping strategies using Bayesian gamma-hurdle regression models. The results from our objectives suggest that physical determinants of health also deviate in response to negative life events and that these deviations can be mitigated through different coping strategies. Taken together, these observations stress the need to examine physical determinants of health alongside psychological determinants when investigating the effects of negative life events.