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As the volume of published medical research continues to grow rapidly, staying up-to-

date with the best-available research evidence regarding specific topics is becoming

an increasingly challenging problem for medical experts and researchers. The current

COVID19 pandemic is a good example of a topic on which research evidence is rapidly

evolving. Automatic query-focused text summarization approachesmay help researchers

to swiftly review research evidence by presenting salient and query-relevant information

from newly-published articles in a condensedmanner. Typical medical text summarization

approaches require domain knowledge, and the performances of such systems rely

on resource-heavy medical domain-specific knowledge sources and pre-processing

methods (e.g., text classification) for deriving semantic information. Consequently, these

systems are often difficult to speedily customize, extend, or deploy in low-resource

settings, and they are often operationally slow. In this paper, we propose a fast

and simple extractive summarization approach that can be easily deployed and run,

and may thus aid medical experts and researchers obtain fast access to the latest

research evidence. At runtime, our system utilizes similarity measurements derived from

pre-trained medical domain-specific word embeddings in addition to simple features,

rather than computationally-expensive pre-processing and resource-heavy knowledge

bases. Automatic evaluation using ROUGE—a summary evaluation tool—on a public

dataset for evidence-based medicine shows that our system’s performance, despite

the simple implementation, is statistically comparable with the state-of-the-art. Extrinsic

manual evaluation based on recently-released COVID19 articles demonstrates that the

summarizer performance is close to human agreement, which is generally low, for

extractive summarization.

Keywords: medical text processing, text summarization, text mining, natural language processing, health

informatics, extractive summarization

INTRODUCTION

The overarching objective of evidence-based medicine practice is to actively incorporate the best
available and most reliable scientific evidence into clinical practice guidelines and decision-making
(1). The movement associated with the establishment of evidence-based medicine practice has led
to the development of evidence hierarchies for medical research, establishment of clinical practice

https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/journals/digital-health#editorial-board
https://www.frontiersin.org/journals/digital-health#editorial-board
https://www.frontiersin.org/journals/digital-health#editorial-board
https://www.frontiersin.org/journals/digital-health#editorial-board
https://doi.org/10.3389/fdgth.2020.585559
http://crossmark.crossref.org/dialog/?doi=10.3389/fdgth.2020.585559&domain=pdf&date_stamp=2020-12-04
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/digital-health#articles
https://creativecommons.org/licenses/by/4.0/
mailto:abeed@dbmi.emory.edu
https://doi.org/10.3389/fdgth.2020.585559
https://www.frontiersin.org/articles/10.3389/fdgth.2020.585559/full


Sarker et al. Fast Extractive Medical Text Summarization

guidelines, and recognition of the importance of patient-oriented
evidence (2, 3). Since the inception of the modern concept
of evidence-based medicine, medical practitioners have been
advised to combine their clinical expertise and understanding
of patients’ priorities with the latest scientific evidence (4–6).
Early and recent studies have extensively discussed the problem
of information overload that many practitioners face, particularly
in clinical settings, due to the massive amounts of research
evidence that is available and the continuous growth of such
evidence (7). Searching through medical evidence regarding a
specific topic is time-consuming, and practitioners often consider
the task to be unproductive and futile (8–10). PubMed1, which
indexes over 30 million articles, typically returns multiple pages
of research publications even when the queries are very targeted
and specific. Almost two decades ago, Hersh et al. (11) discussed
the long time (30min, on average) that it takes for experienced
practitioners to search for evidence, and, particularly at point-
of-care, practitioners cannot afford to spend that much time.
Over time, with the increasing rate of publication of medical
literature, these problems associated with evidence curation have
only increased (12). Improved literature searching and fast access
to relevant and summarized information can be particularly
beneficial for medical students and young practitioners because
of their lack of clinical experience, or at times when there is a
burst of growth in research evidence on a topic (e.g., the ongoing
COVID19 pandemic).

Natural language processing (NLP) and information retrieval
methods have the potential to aidmedical experts and researchers
to collect and review the latest and emerging research evidence in
an efficient manner. NLP methods can, for example, help experts
formulate effective search queries and summarize individual
publications. Query-focused text summarization approaches
have specifically been explored to aid medical practitioners
adhere to evidence-based medicine principles (13–15). These
systems take queries (in natural language or key-terms) as
input and generate/extract the query-relevant summaries. In
terms of automatic summary quality, the performances of
successful approaches designed for the medical domain have
relied heavily on domain-specific knowledge sources (16). For
example, the pioneering work by Demner-Fushman and Lin
(17) incorporated sentence-level knowledge in a supervised
classification system trained to detect outcome sentences,
which were regarded as summary sentences. Sarker et al.
(14) and ShafieiBavani et al. (15) utilized manually annotated
summarization datasets to generate extractive and abstractive
summaries—both systems relying heavily on the identification
of domain-specific generalizations, concepts, and associations.
Similarly, Hristovski et al. (18) proposed the use of domain-
specific semantic relations for performing question answering
for biomedical literature. Building on past research progress,
recent studies have proposed end-to-end question-answering
systems, which typically contain modules to perform the
summarization (12, 19). Such systems, however, are generally
only suitable for very specific types of queries, and despite
their limited scopes, they invariably require the incorporation

1https://www.ncbi.nlm.nih.gov/pubmed/ (accessed 25 Nov, 2019).

of medical domain-specific knowledge sources. The progress of
summarization and question-answering research in the medical
domain has been relatively sluggish, requiring considerable
amounts of research efforts to overcome each of the many
hurdles. Further discussion of the chronological progress in this
research space is outside the scope of this brief research report,
and detailed descriptions of medical domain-independent and
domain-specific text summarization systems over the years are
available through survey papers (20–22).

Adaptation of summarization systems to a particular domain
can be computationally expensive and require large numbers of
external tools (23). Within the medical domain, systems typically
attempt to incorporate domain knowledge based on the Unified
Medical Language System via software such as MetaMap (24),
which can tag lexical representations of medical concepts. This
is in turn used in downstream tasks, or as features in learning
systems. Heavy dependence on these domain-specific systems
introduces disadvantages, some of which are as follows:

(i) the systems are not very portable or generalizable, and are
only suitable for the very specific tasks they were initially
designed and evaluated for;

(ii) they are difficult to re-implement and/or deploy without the
domain-specific knowledge sources or ontologies; and

(iii) they are computationally slow, often un-parallelizable.

The goal of our work is to design a resource-light and fast medical
text summarization system that is decoupled from domain-
specific knowledge sources. This work is an extension of our
years of past research on this topic, focusing specifically on
operational and deployment simplicity. The proposed system
is extractive and query-focused in design. It relies on publicly
available labeled data, which is used for weight optimization,
unlabeled data—specifically, dense word embeddings learned
from the unlabeled data—and a set of simple features that require
little computational resources and time. In the development
and evaluation processes, we selectively added and removed
modules based on their performance and resource requirements.
Comparative evaluation of our system against a state-of-the-
art system on a standard dataset showed that it is capable
of generating summaries of comparable qualities, despite its
simplistic design.

METHODS

The primary dataset for this research is a corpus specifically for
NLP research to support evidence-based medicine, created by
Molla-Aliod et al. (25) with the involvement of the first author
of this paper. The specialized corpus contains a total of 456
queries along with expert-authored single- and multi-document
evidence-based summarized responses to them. Each query is
generally associated with multiple single-document summaries,
which present evidence from distinct studies. The abstracts of
the studies from which the answers were derived are made
available from PubMed. In total, the corpus contains 2,707
single-document summaries. To ensure fair comparisons, we
used the exact train-test split from past research (14)−1,388 for
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training and 1,319 for evaluation. The systemwe compare against
is very reliant on domain-specific NLP resources, and it had
produced state-of-the-art performance on the described corpus.
The second dataset is much smaller, and we had prepared it to
manually evaluate the performance of the summarization system.
This dataset consists of a small set of articles describing research
potentially relevant to COVID19. For each of these included
articles, we manually created extractive summaries in response to
a standard query, and we compared the agreement between our
system and the manual summaries.

For developing and optimizing the system, we used the
training set to devise feature scoring methods and learn weights
for all the feature scores. Here, the training set does not
consist of the exact single-document summaries, which are
abstractive summaries authored by human experts. Instead,
the training set consists of three-sentence extractive summaries
for each document so that the gold standard is consistent
with the expected output of our summarizer. These three-
sentence extractive summaries of the training set are generated
by computing the ROUGE-L F1-score of all three-sentence
combinations against the human summary, and selecting the top-
scoring sentence combination for each text. We chose three as
our target number of sentences based on past research (14, 17).

During the summary generation process, each sentence from
the full set of candidate summary sentences receives a score
for each feature included in the summarization system. All
candidate sentences are then scored as the sum of the weighted
feature scores, and the three sentences with the highest scores
are extracted as the summary. The scoring process takes into
consideration the target sentence position, the sentence length
and the contents of the selected sentences. In the final summary,
the selected sentences are presented sequentially (from first to
last). The scoring process can be summarized as:

ζ
m,tn=

∑k
i=1(wi,m,n×fi,m,n|Sm ,tn)

where ζm,tn is the score for sentence number m of a text, given
the summary target sentence number tn, and wi,m,n and fi,m,n

are the weight and score for feature i, respectively. For each
summary sentence position (tn), the top-scoring sentence is
chosen. To explore and discover a set of simple but salient
features, we started with the full set of features used by the
QSpec system and removed modules or features with the highest
dependencies and longest running times. For example, one
important derived feature in the QSpec system is a sentence-
level score based on the sentence type, the UMLS semantic types
present in the sentence, and the associations between semantic
types. Identifying the sentence type requires the execution of an
automatic classifier at run-time (26), identifying UMLS semantic
types and associations requires the execution of MetaMap (24),
and once these processes are completed, an exhaustive concept-
level search is performed to find and score the sentence based
on the presence of each association. Due to the computational
complexity of this module, and its dependence on external
tools, we removed this feature first and attempted to optimize
performance using the other features—those attempted in the
past and those we added. In addition to the features used for the

QSpec system, we evaluated a number of features such as variants
of edit-distance-based lexical similarities and scores based on the
presence of possible statistical testing information (e.g., p-values).
These features did not contribute to meaningfully improve the
overall system score, and they were also eventually excluded.
Following experimentation with multiple feature combinations,
we selected five that could be computed fast and proved to be
useful when used in combination. We describe these features in
the following paragraphs.

Word Embedding-Based Maximal Marginal
Relevance
Maximal Marginal Relevance (MMR) (27) is a strategy that
can be used to increase relevance and reduce redundancy, and
variants of it have been popular for text summarization (28–31).
In our approach, we compute two similarity measures—between
sentences and the associated query, and between the sentences
themselves. During score generation, sentences are rewarded for
being similar to the query, while at the same time they are
penalized for being similar to sentences that have already been
selected to be included in the summary. The similarity values are
combined linearly with suitable weights (λ):

MMR = λ × SIM(Sm,Q)− (1− λ)× max
ScǫSsel

(SIM(Sm, Sc))

where SIM(Sm,Q) is the similarity score between a sentence and
the query and maxScǫSsel (SIM(Sm, Sc)) is the maximum similarity
between the same sentence and the set of already-selected
summary sentences. Choosing the best three-sentence summary
is a combinatorial optimization problem, and MMR enables us
to approach sentence selection in a sequential manner. Despite
the widespread use of MMR for extractive summarization, two
variants of this score that we use in this system, which rely on
distributed representations of the words in the sentences and
the queries, had not been proposed in the past, to the best
of our knowledge. We obtained pre-trained embeddings that
were generated from all PubMed and PubMed Central (PMC)
Open Access texts (32) using the word2vec tool2 (vector size
= 200, window size = 5) and the skip-gram model (33). For
the first variant, we compute the similarity between two text
segments (i.e., sentence vs. query and sentence vs. sentence)
as the average cosine similarity of all the terms. We compute
this average by adding the cosine similarities of all the term
combinations and dividing by the product of the lengths of the
two texts. For the second variant, we use the word vectors in a
text segment to compute its centroid in vector space. A single
centroid is computed for the set of all words within the set of
already-chosen sentences (Ssel). These centroids are then used to
compute MMR.

Traditional MMR Score
For the traditional MMR score, the third variant used in
the system, we first pre-processed the terms by lowercasing,
stemming and removing stop words. We then computed the tf
× isf for each word in a sentence and the query—where tf is

2https://code.google.com/p/word2vec/ (accessed 17 Nov, 2019).
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the frequency of a term in a text segment and isf is the inverse
sentence frequency of the term in all the texts (i.e., the inverse of
how many sentences, including the query, contain the term). We
then generated vectors for each sentence using the tf ×isf values
of the terms.

Sentence Length Score
Sentence length is a metric that may filter out uninformative,
short sentences by assigning them a lower score, while
rewarding sentences that are relatively longer in a document.
In summarization tasks where the character lengths of the
summaries are limited, longer sentences may also be penalized
(34, 35). We attempted to assign penalties to very short
sentences (e.g., 1−3-word sentences), which often represent
section headers. At the same time, our goal was to assign higher
scores to longer sentences—with decreasing gradients for very

long sentences, such that this score does not play a significant
role in choosing between those informative sentences.

Our experiments on the training set suggested that a sinusoidal
function conveniently served this purpose. The average sentence
length in the training data is ∼150 characters, so we considered
0 and 300 characters to be the lower and upper length limits,
respectively, and mapped the lengths to the range

(

−π
2 , π

2

)

.
Following that, we applied a sin function to the mapped value
to generate a length score between (−1, 1). Figure 1 illustrates
how a sin function enables us to reward/penalize sentences based
on their lengths relative to the average sentence length. Both
reward and penalty start to level off as length approaches 0
or 300.

Sentence Position Score
Our last score is based on sentence position and the target
sentence number. Sentence position has been shown to be a

FIGURE 1 | Clockwise from top-left: sine function for sentence length score, maxed at 300 characters; first, middle, and last sentence relative position distributions

from the best-scoring extractive training set summaries.
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crucial metric for extractive summarization in domains including
news (36) andmedical (17).We used an approach identical to our
past work as it had proven to be computationally fast and effective
(14). The approach, which we called target sentence specific
summarization, generates different scores for the same source
sentence based on the summary sentence number. This means
that the same sentence gets a different score when the system
is searching for the first sentence for a three-sentence summary
compared to when the system is searching for the last sentence.
This ensures that the eventual summary extract is not biased to
a specific region of the source text, which is often the case with
traditional systems that apply the same scoring mechanism for
all text spans. Generally speaking, when the system is scoring
sentences for the first summary sentence, it gives preference
to sentences occurring early in the source documents, which
often contain important background information, compared to
sentences occurring later, which tend to contain information
about the final outcome of the study.

To compute this score, we first obtained the best three-
sentence summary (gold standard summary) for each training
text, and used these sentences to generate normalized
frequency distributions of the relative sentence positions.
These distributions are shown in Figure 1. During summary
generation, given the relative sentence position r of a source
sentence, the score assigned is the normalized frequency for r in
the given target sentence distribution.

Weight Optimization and Intrinsic
Evaluation
We computed near-optimal weights for scoring using the
training set via a grid search in the range (0.0, 1.0). For
each weight combination, all the three-sentence training set
summaries were generated and the weights producing the highest
F1-score were used for evaluation on the test set. The ROUGE
summary evaluation tool (37) was used to compare the extractive
summaries with the expert-authored summaries in the corpus.
The ROUGE-L variant of the evaluation tool attempts to score
summaries based on their longest common subsequences (LCS)
(38). Given two texts—the automatic summary of length m
words and the corresponding gold-standard summary of length
n words—the F1-score is computed as:

F1 − score =
(1+ β2)× R× P

(R+ (β2 × P))

where R = LCS(summary, goldstadard)/m; P = LCS(summary,
goldstandard)/n and LCS(summary, goldstandard) is the length
of the longest common subsequence between the summary and
the gold standard. β2 is set to 1. ROUGE scores had been shown
to be correlated with human evaluators and the ROUGE-L F1-
score is the harmonic mean of the ROUGE-L recall and precision
scores. In past research, the evaluations of many summarization
systems were based on summaries constrained by character-level
maximum lengths (e.g., 100 characters), and such evaluations
typically used ROUGE recall scores for comparison. In our

case, the summaries are constrained by the number of sentences
(three), and so, optimizing and evaluating based on recall would
overfit the system in favor of longer sentences. Therefore, we
chose to use the F1-score, rather than recall, and we computed
them using the original human-authored summaries as the
gold standard.

Extrinsic Evaluation on COVID19 Literature
We conducted a brief extrinsic evaluation of the system using
a small number of recently-published articles about COVID19
or related research (39). We created six categories of queries
focusing on different types of COVID19-related information
(e.g., treatment and transmission). To establish these categories,
we selected 2 from 12 categories that had been proposed in
the literature (40) and added 4 additional ones. Two of our
query categories (treatment and prognosis) overlapped with the
categories proposed in the past, and we added 4 more categories
based on their relevance to COVID19 and our research interests.
Note that our intent was not to determine a comprehensive set
of categories relevant to COVID19. The queries, their types and
their numbers are shown in Table 1. For a set of 11 articles
we manually created 3-sentence summaries. The four authors
independently created the three-sentence summary for each
article. We modeled the sentence selection task as a binary
sentence labeling task and compared the pair-wise agreements
between the annotators using Cohen’s kappa (41).

We ran the summarizer with the best performing weights on a
large amount of COVID19 literature that has beenmade available
since the outbreak of the pandemic. For 11 of these articles,
which were manually annotated, we compared the agreements
between the three-sentence human summaries, and between the
system and human summaries. We also compared the agreement
between the human summaries and summaries generated by the
QSpec system. Two authors were kept unaware of the internal
scoring strategy of the system to ensure that sentence selection is
not biased by that knowledge. Note that the articles themselves

TABLE 1 | Queries used for extrinsic evaluations, their types and numbers.

Query Type Number annotated

What measures can be taken to

lower the transmission of

COVID-19?

Transmission 3

What are some of the mental

health impacts of COVID19?

Mental health 3

What is the common prognosis

for COVID19 infection?

Prognosis 2

What treatment is effective for

COVID19

Treatment 1

What are the common risks of

COVID19 on targeted

populations?

Risks 1

How does the impact of

COVID19 vary based on social

inequalities?

Inequalities/economic 1
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were pre-selected, and were not based on the queries, since
information retrieval is not an objective of our research.

EVALUATION AND RESULTS

Automatic Evaluations
Table 2 presents the performance of our system along with
several other systems. Identical training-test splits were used for
evaluation. Our proposed approach obtains a score of 0.166,
0.002 lower than the best-performing system. The table shows
that despite the simplicity of our approach, its performance is
comparable to the state-of-the-art, and significantly better than
other baselines. To compare our approach with the extractive
summarization method proposed by Demner-Fushman and
Lin (17), we used an automatic classifier to detect Outcome
sentences (42); the last three outcome sentences were extracted
as the summary. Using the ROUGE score distribution of all
summary combinations, we computed the percentile rank of our
summarizer’s performance via the method described by Ceylan et
al. (43). In the proposed approach, a probability density function
is generated using an exhaustive search of all ROUGE score
combinations for extractive summaries, and this distribution is
used to find the percentile rank of a system’s ROUGE score. Our
light-weight system’s score has a percentile rank of 94.3 compared
to QSpec’s rank of 96.8. The large difference in percentile rank
despite the small change in the ROUGE score is caused by
the typical long-tailed nature of the ROUGE score distribution.
The computed optimal weights for the features were: sentence
position weight = 0.8; sentence length: 0.2; MMR (traditional):
0.2; MMR (dense vectors; both variants): 0.5.

Extrinsic Summary Evaluation
Pair-wise agreement, based on Cohen’s kappa, was generally
low for both sets of agreements (i.e., human-human and
human-system). Table 3 presents the average system-human,
all human-human, and subsets of human-human agreements.
Sample human and automatic summaries are provided
in Supplementary Material. A link to the final human
summaries, after resolving disagreements, are also provided
in the Supplementary Material.

DISCUSSION AND CONCLUSION

Using a set of similarity-based and structural features, our
system performs comparably to the state-of-the-art system,

TABLE 2 | Comparison of ROUGE-L F1-scores for our summarizer with other

systems and 95% confidence intervals.

System ROUGE-L F1 Score 95% CI

Our system 0.166 0.162–0.170

QSpec (14) 0.168 0.164–0.172

Last 3 Sentences 0.155 0.151–0.158

Demner-Fushman and Lin (17) 0.159 0.152–0.164

Random 0.154 0.150–0.157

First 3 Sentences 0.140 0.136–0.143

TABLE 3 | Average agreements between the system and human annotators, all

human annotators and subsets.

Author/system Kappa (average)

Human-system agreement average 0.33

Human-QSpec agreement average 0.35

Human-human agreement average 0.40

Average: annotators 1, 2 and 3 0.41

Average: annotators 1, 2 and 4 0.40

Average: annotators 1, 3 and 4 0.34

Average: annotators 2, 3 and 4 0.38

with a ROUGE-L F1-score of 0.166. Our extrinsic evaluations
showed that for this extractive summarization task, human-to-
human inter-annotator agreement was low, resulting in a low
ceiling for the automatic summarizer. We observed consistently
low agreements across subsets of annotators, illustrating that
choosing the optimal n-sentence query-focused summary is a
difficult task for humans. Abstractive summaries could perhaps
be more suitable for humans as more information can be
summarized within a short text span. However, from the
perspective of automatic summarization, moving from extractive
to abstractive summarization has been challenging for this
particular research community, and our scope was limited to
extractive summarization. Although our evaluation was brief
and differences between automatic and human summaries were
not conclusive, we did observe more disagreements for earlier
summary sentence selections compared to the selection of later
sentences. Generally speaking, we found the gold standard
summaries to have higher variance in relative sentence positions
compared to automatically generated summaries. Figure 2

further illustrates the differences between the gold standard
extracts and the automatic summarization systems by visualizing
the distributions of the relative positions of the sentences
included in the summary. While human summaries almost
invariably contain sentences from the end of the texts, they
also tend to contain sentences from different relative positions.
However, QSpec and our proposed system tend to select most
sentences from the end and some from the beginning, but few
from the rest of the document.

Our specific focus for this summarization system was to
make the sentence selection process simple and decoupled from
multiple additional systems or processes while also maintaining
high performance. Our focus on simplicity is particularly from
the perspective of deploy-ability (i.e., how quickly can the
source for the system be downloaded and executed on a new
machine?). Past systems focusing on the task of evidence-based
medicine text summarization have relied onmultiple knowledge-
encapsulating software sources such as MetaMap, and parallel
processes such as query and sentence classification, Compared
to the resource-heavy QSpec system, which requires query and
sentence classification and the generation of UMLS semantic
types/associations, our current approach requires minimal pre-
processing. Only a set of pre-trained word embeddings are
required. The light-weight nature of the summarizer also means
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FIGURE 2 | Distributions of relative sentence positions of the gold standard summary sentences (top), and automatically-generated summaries (QSpec: middle;

proposed system: bottom).

that it runs faster than QSpec. On a standard computer (Intel R©

i5 2.0 GHz processor), it takes our summarizer a few minutes to
summarize all the documents in the test set. Due to the simplicity
of our approach, we believe that it can be easily re-implemented,
customized or extended for real-life settings, and the results can
be reproduced without requiring the use of third-party tools. It is
possible for non-NLP experts or even non-programmers to use
the summarization system without having to set up additional

tools; the only resource needed is any publicly available pre-
trained word/phrase embedding model.

From an application perspective, we believe that this
summarization approach is more easily transferable to other data
sets, even those in other languages that do not have domain
knowledge encoded in thesauruses. Exploring the applicability
of this approach on non-English datasets is part of our future
research plans. We are particularly interested in assessing the
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performance of this system, compared to those reliant on
domain-specific knowledge sources, on other languages without
including a language-specific gold standard or manually-curated
knowledge sources. Our hypothesis is that this light-weight
summarizer will outperform resource-heavy systems such as
QSpec on such data sets.

We obtained the word embeddings from past research
and used them without modification. There is a possibility
that the learning of these embeddings can be customized
to the summarization task for improving performance (e.g.,
using a COVID19-specific embedding model for the second
summarization task). This is a notable limitation of the system—
the semantics of emerging health topics, such as COVID19,
may not be captured by the underlying embedding model,
thus, leading to sub-optimal performance. Another operational
limitation may be the size of the embedding model. While
our focus is on a light-weight system that can be run on
not-so-powerful computers, embedding models can be large
in size (multiple gigabytes), which may act as an obstacle for
old machines. To address these limitations, in future research,
we plan to implement a continuously-learning embedding
model that updates periodically using text from recently-
published papers, and strategies for building targeted embedding
models that require less unlabeled data and memory at
run time.
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