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Social robots are increasingly being designed for use in educational contexts,

including in the role of a tutee. However, little is known about how robot

behavior a�ects children’s learning-through-teaching. We examined whether

the frequency and type of robot mistakes a�ected children’s teaching behaviors

(basic and advanced), and subsequent learning, when teaching a social robot.

Eight to 11-year-olds (N = 114) taught a novel classification scheme to a

humanoid robot. Children taught a robot that either made no mistakes, typical

mistakes (errors on untaught material; accuracy on previously taught material),

or atypical mistakes (errors on previously taught material; accuracy on untaught

material). Following teaching, children’s knowledge of the classification scheme

was assessed, and they evaluated their own teaching and both their own and the

robot’s learning. Children generatedmore teaching strategieswhenworkingwith

one of the robots thatmademistakes.While children indicated that the robot that

made typical mistakes learned better than the one that made atypical mistakes,

children themselves demonstrated the most learning gains if they taught the

robot that made atypical mistakes. Children who demonstrated more teaching

behaviors showed better learning, but teaching behaviors did not account for

the learning advantage of working with the atypical mistake robot.
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Introduction

Acquiring new knowledge is fundamental to children’s development. While traditional

teaching approaches are effective for the majority of students, many students continue to

struggle to meet learning outcomes. For instance, results from an international assessment

of achievement indicated that 8% of Canadian students failed to meet the minimum

proficiency for mathematics, which is consistent with international statistics (O’Grady

et al., 2021). Concerned that the needs of many students are not being met, educators

and researchers have explored how technology can be leveraged to create novel, engaging,

and impactful learning opportunities. One potential technology is social robots, which

have been used with the aim of enhancing children’s learning outcomes across educational

contexts and academic subject areas (Ahmad et al., 2020; Belpaeme et al., 2018). In addition

to guiding and directing children (i.e., as a tutor/teacher), another approach that increases

children’s motivation is when social robots are programmed to take the role of a “novice”

or “teachable robot,” while the child acts as an instructor (Biswas et al., 2016). Thus far,

teachers and children have reported cautious optimism in this technological learning

approach (Ahmad et al., 2016a,b). However, much remains to be examined about the
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qualities in the robot and the robot-child interaction that are most

effective for producing learning gains.

In the present work, we sought to determine whether, when

teaching a robot a novel classification system, a robot’s mistake

behaviors affect children’s teaching strategies, perceptions of

teaching and learning, and acquisition of knowledge. This specific

robot feature (i.e., mistakes) was selected due to the salience of this

cue for children’s teaching (i.e., as mistakes reveal gaps between

a teacher’s knowledge and the tutee’s understanding; Ronfard and

Corriveau, 2016) and for children’s learning (Corriveau et al., 2009;

Koenig et al., 2004; Koenig and Harris, 2005a,b). Together, this

work increases the understanding of children’s sensitivity to, and

reactions toward, robot behavior in the context of teaching, which

in turn has implications for the design of educational technology

(e.g., how to engage students and foster learning).

Teaching others, teaching robots

Within the late preschool years/early school-age years, children

understand the nature of teaching, share relevant information

with others, and demonstrate skillfulness in their teaching

strategies (Qui and Moll, 2022; Qiu et al., 2024b; Strauss et al.,

2002). Moreover, teaching others has substantial value: children

demonstrate increased learning gains when they are asked to teach

others vs. learn for themselves. For example, children acting as

peer tutors show greater progression in their own skills relative

to children who are taught material (i.e., tutees), likely due to

the increased effort children put forth in selecting and organizing

learning material in a meaningful way when in the role of a teacher

(Duran, 2017). Explaining concepts to someone else facilitates the

process of reformulating information and consolidating one’s own

understanding. Further, children feel more motivated and exert

greater effort to learn when having to teach someone else vs. just

learning for themselves (i.e., the Protégé effect; Belpaeme et al.,

2018). Given the learning benefits, asking students to engage in

peer-to-peer teaching is a popular approach within elementary

schools (Slavin, 2015).

To capitalize on the advantages of learning-by-teaching,

researchers and developers of pedagogical agents have examined

if/how children learn from teaching robots. Research on teachable

robots has shown promising results, with children reporting

enjoyment in, and demonstrating learning from, interactions where

they are tasked with teaching a robot a concept or skill. For

example, 6-to 8-year-old children’s motor skills improved after

being asked to teach a robot handwriting (Hood et al., 2015),

elementary school children effectively learned scientific concepts

after researching information to teach an agent called “Betty’s

Brain” (Biswas et al., 2016), and 3- to 6-year-old Japanese children

who taught a robot learned more English than when learning

without the robot (Tanaka and Matsuzoe, 2012). Given these

promising findings, researchers have begun examining the different

characteristics of social robots that may enhance learning; namely,

the physical, behavioral, and conversational features of robots

that maximize learning outcomes and motivation (Ceha et al.,

2021; Tung, 2016; Woods, 2006). For example, robots perceived

as curious induce more behavioral curiosity in undergraduate

students in learning contexts (Ceha et al., 2019), with similar effects

found for children (Chen et al., 2020). However, while the features

of a robot affect users’ reported enjoyment of the interaction, short-

term learning gains are not always demonstrated (e.g., Ceha et al.,

2021; Kennedy et al., 2015; Vogt et al., 2019), and there are even

fewer findings on long-term learning gains. As such, it is important

to understand the specific teachable agent qualities that relate to

the acquisition of knowledge or skills, and, importantly, possible

mechanisms supporting knowledge acquisition.

The value of mistakes

Without the recognition that there is a knowledge gap between

the teacher and the learner, there is little reason for teaching

to occur. Recognizing and understanding this gap in knowledge

allows a child, in the role of a teacher, to appropriately gauge what,

and how much, information would be useful to achieve learning

goals. In the preschool years, children start to recognize that a

knowledge gap between individuals is a key factor in determining

who would assume a teacher role (Ziv and Frye, 2004); by 6

years, children understand that an aim of teaching is to expand a

learner’s knowledge (Sobel and Letourneau, 2016); and, within the

early school years, children tailor the complexity of their teaching

strategies to the developmental level of their tutee (Qiu et al.,

2024a).

One important cue that can be used to understand another’s

knowledge state is the nature and frequency of their mistakes

(Corriveau et al., 2009; Koenig et al., 2004; Koenig and Harris,

2005a). Mistakes are a particularly salient cue for children when

on the receiving end of information: preschool and school-age

children are more likely to learn from accurate (vs. inaccurate)

individuals (Birch et al., 2008) and appreciate the type and

magnitude of individuals’ errors in their selective learning (Einav

and Robinson, 2010; Pasquini et al., 2007). Despite this preference

for accurate information sources, mistakes can benefit children’s

learning, with greater learning gains shown when observing others

making errors (Neu and Greer, 2019; Want and Harris, 2001). As

such, children demonstrate an ability to detect and learn from the

mistakes of others in an observer context.

Relevant for our inquiry, when teaching others, mistakes are

an important indicator of knowledge gaps for both the instructor

and student, allowing for more tailored teaching. Indeed, Ronfard

and Corriveau (2016) found that preschoolers (especially older

preschoolers, i.e., 5-year-olds) used the number of mistakes that

puppets made during a simple game (i.e., moving the wrong color

pieces inside a square) to infer the puppets’ understanding and

used this information to guide teaching strategies. That is, the

older preschoolers showed responsiveness to the puppets’ mistakes,

providing instructions that were in line with the type of mistakes

made. Corriveau et al. (2018) argue that the ability to reason about

knowledge from mistakes is a crucial factor in children’s ability

to engage in teaching, drawing on both children’s theory of mind

and executive functioning to infer mental states in real-time and

implement effective strategies. Thus, in the context of learning-by-

teaching, a tutee’s mistakes may elicit greater learning by directing

attention to relevant knowledge gaps. Moreover, given that young
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children actively construct ideas about knowledge and ignorance

through interactions with human peers (Harris et al., 2017; Ronfard

et al., 2018; Ronfard and Harris, 2018), and children extend human

qualities to robots (e.g., Beran and Ramirez-Serrano, 2010; Manzi

et al., 2020; Okanda et al., 2021), within the context of robot/child

interactions, a robot’s mistakes may prompt children to seek to

conceptualize the “knowledge,” or “mind” (or programming) of

a robot.

Children’s sensitivity to robot mistakes

Within child-robot interactions, children show sensitivity to a

robot’s accuracy. Preschool-age children express less trust in, and

are less likely to learn from, robots that have previously made

mistakes (Danovitch and Alzahabi, 2013; Geiskkovitch et al., 2019;

Li and Yow, 2023). This sensitivity seems to emerge relatively early:

by 5 years old, children are more likely to learn information from

a robot that accurately labeled objects than a human informant

who made labeling errors (Baumann et al., 2023, 2024). In contrast,

in the context of teaching a robot, mistakes may be advantageous

for children’s learning. Certainly, adults view robots who make

mistakes as more likable, though not less intelligent than, a robot

who makes no mistakes (Mirnig et al., 2017). Children show

increased engagement and positive affect when teaching a robot

that makes errors (vs. having a knowledgeable robot tutor; Chen

et al., 2020). Importantly, a key feature for successful learning

when teaching robots includes a difference in knowledge between

the child and the robot (Jamet et al., 2018). Therefore, robot

mistakes could enhance awareness of the knowledge gap and thus

facilitate learning. Moreover, as with human interactions, robot

tutee mistakes may allow children opportunities to benefit from the

learning-through-teaching paradigm through active consolidation,

reflection, and deeper learning. However, it is unclear whether

teachable robot mistakes affect children’s learning, and if so, what

accounts for this effect. Addressing this gap provides insight

into how children infer robot knowledge acquisition through the

types of mistakes made, adjust their teaching accordingly, and

(potentially) learn during the process of teaching.

Current study

In the present work, we assessed whether the presence and

type of mistake behavior demonstrated by a robot tutee impacted

8- to 11-year-old children’s teaching behaviors and their own

learning of the content. This age group was chosen as intrinsic

motivation for academics shows a decline between grades 3 and

8, with such motivation relating to academic performance (Lepper

et al., 2005), therefore making this a relevant age group to

examine learning through alternative means, such as educational

technologies. The teaching task that children administered involved

a novel classification system, provided to the children on paper,

which they then had to teach the robot. A classification task

was chosen as children in this age range are typically familiar

with classification in general through curricular elements (Ontario

Ministry of Education, n.d.). However, we created the specific

classification task material (i.e., home locations of aliens; inspired

by educational resources used to teach taxonomy, e.g., Biology

Junction, 2017; Lasher, 2020; Lyaserror, n.d.; NYLearns, n.d.; The

Biology Corner, n.d.) to ensure that all participating children had

no prior knowledge of the specific content.

We explored children’s teaching, learning, and perceptions of

teaching/learning after engaging with a robot that displayed one of

three mistake behaviors (i.e., between-subject design): no mistakes,

typical mistakes wherein the robot made errors on untaught

material, and atypical mistakes wherein the robot made errors on

material that was previously taught (or could be inferred through

previously taught material). Typical mistakes therefore referred to

those expected with learning (i.e., getting something wrong when

it has not been taught, and being accurate on previously taught

material), whereas atypical mistakes did not follow an expected

learning pattern (i.e., being accurate on untaught material, but

mistaken on taught material). As the number of mistakes was

equivalent between the two mistake robots, any differences would

be due to children’s sensitivity to the type of mistake.

To determine whether children’s teaching strategies varied

based on the kind of mistakes the robot made, and, importantly,

whether the teaching behavior accounted for possible group

differences in their learning, we video-taped children’s behavior

during the interaction and coded their teaching behavior. Past work

shows a developmental progression of teaching strategies from

basic to more explanatory (Strauss et al., 2002); thus, we assessed

both children’s basic (e.g., confirming accuracy or inaccuracy of

an answer) and advanced (e.g., educating on classification rules;

see Method) teaching strategies. It was anticipated that children

would engage in more teaching when the robot demonstrated less

knowledge viamistake behavior (Ronfard and Corriveau, 2016) and

that those who showed a greater number of teaching behaviors,

and in particular more advanced teaching strategies (e.g., using

elaboration on content vs. merely feedback on accuracy), would

show greater learning gains (Fiorella and Mayer, 2013).

For children’s learning, we hypothesized that teaching a robot

that demonstrated mistakes (vs. interacting with a robot who made

no mistakes) would be advantageous to children’s learning in that

it would create more reason for them to attend to the material (e.g.,

through correcting misunderstanding, Chen et al., 2020). In terms

of whether there was an advantage of the type of mistake (typical

vs. atypical) for learning, past work suggests reasonable hypotheses

for either direction. On the one hand, the typical mistakes may

allow for children to understand the learning style of the robot

and thus facilitate a more rewarding and less frustrating experience

(as the behavior is more humanlike; Breazeal et al., 2016). On

the other hand, past work has shown that robot behaviors that

deviate from expectations creates engagement, which is in line

with learning theories that suggest novel or unexpected outcomes

gain more attention (Lemaignan et al., 2015). Thus, children who

teach a robot that makes atypical (vs. typical) mistakes may show

increased engagement, and thus, increased learning. Given these

discrepant rationales, we did not have a clear hypothesis for

children’s learning outcomes.

Finally, we were interested in assessing children’s perceptions of

the robot’s learning, as well as their own learning and teaching. By
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including these self-ratings, we were able to evaluate multiple areas

of interest: First, this allowed us to assess whether children detected

differences in the robot’s behavior, in particular whether children

were indeed sensitive to the different types of robot mistakes.

Children show sensitivity to the magnitude of mistakes (Einav

and Robinson, 2010; Pasquini et al., 2007) and take into account

whether a mistake was understandable or not (Kondrad and Jaswal,

2012), thus, we anticipated that children would differentiate type of

mistakes made by a robot tutee. Second, we were able to compare

children’s perceptions of themselves and their behavior. We did

not have specific hypotheses, but undertook these analyses as they

provide information about the level of insight children show into

their own teaching and learning. With respect to perceptions of

teaching, children’s understanding of teaching develops during the

preschool-years (Ziv and Frye, 2004), and their ability to distinguish

effective from ineffective teaching occurs by 5-years-old (Ziv et al.,

2008). As they get older, they are able to identify qualities of

effective teaching in more specific terms (Beishuizen et al., 2001;

Bullock, 2015; Kutnick and Jules, 1993; Thomas and Montomery,

1998). However, less is known about the degree to which they

show insight into their own teaching behaviors and their teaching

efficacy, and whether this differs by tutee behavior. In terms of

learning, understanding one’s own knowledge base is an important

aspect of learning (Fisher, 1998; Kuhn, 2021): through the act of

teaching a robot, children’s insight into their own learning may be

more or less obvious to them, with this potentially varying by if/how

the robot makes mistakes.

Materials and methods

Participants

Children aged 8 to 11 years-old were recruited from a

laboratory database of families interested in participating in

research, as well as research flyers distributed throughout the

community. The initial sample consisted of 124 children from a

midsize Canadian city. Ten children’s data were excluded from

analyses due to: experimenter error (e.g., robot script entered

incorrectly, n = 8), or the participant not understanding the

teaching task, which was administered in English (i.e., due to

language barrier, n = 2). The final sample consisted of 114

children (45 girls, Mage = 8.77 years, SDage = 0.88 years).

Parents’ responses to an open-ended question about their children’s

ethnicity were grouped in categories (according to guidelines for

bias-free language; APA Style, n.d.): White/European (n = 61),

South Asian/South Asian Canadian (n= 28), East Asian/East Asian

Canadian (n= 18), Middle Eastern (Iran/Lebanon/Kurdish, n= 7),

Latinx/Hispanic (n= 4), Black (n= 1), Indigenous Peoples (n= 1),

and 5 parents did not provide information (numbers add to more

than 114 due to some participants providing multiple ethnoracial

backgrounds). Most parents (92%) had a college degree or higher.

There were no exclusion criteria for participation (outside of age)

to reflect variability within a community sample.

Children in the three robot groups, Correct (n = 37), Typical

Mistakes (n= 39), and Atypical Mistakes (n= 38), did not differ by

age [F(2, 111) = 0.79, p = 0.456], verbal skills [F(2, 107) = 0.56, p

= 0.573], parent-reported executive functioning [F(2, 104)= 1.65,

p = 0.20], theory of mind [F(2, 108) = 1.59, p = 0.21),1 or gender

[χ2
(2) = 0.93, p= 0.630].

Procedure

Following parental consent and child assent, children

participated in a 1 hr individual session with a researcher and

robot. Children completed measures of socio-cognitive abilities

and then engaged in a teaching task with a humanoid robot

(NAO; SoftBank Robotics), named “Beta” (Figure 1). Utilizing a

Wizard of Oz approach, Beta’s communication was controlled by

a researcher on the other side of a one-way mirror using NAOqi

OS (Aldebaran Robotics, n.d.). Beta’s responses were scripted to

maintain standardization. To orient the child to interacting with

a robot, Beta initially asked the child questions about their name,

their favorite color, what they ate for breakfast, and their grade in

school, with scripted responses from Beta.

To introduce the teaching task, children were told that

researchers at the university wanted to know how robots learn,

and that Beta needs to learn about aliens who live on two

different planets, each with different countries, provinces, and

cities. They were then told that the aliens that live in each place

look different from each other and that the participant’s job was

to use the classification map (provided to participants so that they

had the information, see Figure 2) to teach Beta. Next, children

were provided with a card with a picture of an alien (Figure 3),

with a question on the back to ask the robot (e.g., “Beta, what

planet/country/province/city is this alien from?”). Beta’s responses

(regardless of condition) followed the same general format: Beta

indicated that they noticed the key features of the alien (e.g., “I

see this alien is red and has arms”) and then provided a location

(e.g., “I think this means the alien is from the country Chatt”). The

accuracy of this latter phrase varied by the robot mistake condition:

in the Correct condition, Beta always provided an accurate answer;

in the Typical Mistake condition, Beta made an error if this was the

first question asked at that level (i.e., planet/country/province/city),

but provided the correct answer if this was the second question at

that level. That is to say, Beta was inaccurate on new material, but

accurate on material that would be known based on the previous

question; for example, if Beta previously incorrectly answered that a

blue alien was from Blorb, they could infer that it is actually the case

that a red alien is from Blorb. In the Atypical Mistake condition,

Beta provided a correct answer if it was the first question at that

level (i.e., new material), but provided an incorrect answer when

the second question was at the same level; for example, if Beta

previously correctly indicated that a blue alien was from Colla, they

did not use this information to infer that the red alien was from

Blorb. Importantly, the number of mistakes made by the Typical

Mistake robot and the Atypical Mistake robot were the same; the

1 Verbal skill was assessed by the NIH Toolbox vocabulary measure (Slotkin

et al., 2012), ToM was assessed through videos depicting second-order false

belief stories from Coull et al. (2006), and executive functioning was assessed

through the Childhood Executive Functioning Inventory (CHEXI; Thorell and

Nyberg, 2008).
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FIGURE 1

Set up for robot teaching task.

FIGURE 2

Aliens classification answer key (provided to participants when teaching the robot).
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FIGURE 3

Examples of alien cards given to participants to teach robot. Alien illustrations by Bernadette Ho-Sum Cheng.

difference was in the positioning of the mistakes relative to the

presented content.

There were 20 alien cards (i.e., 20 opportunities for children

to teach Beta about that specific alien classification), with these

presented in a manner that ensured there was no sequential

patterning in Beta’s mistakes (e.g., alternating correct/incorrect).

Following each level of the classification system (e.g., planet,

country, province, or city) the researcher indicated that that level

was complete, put the alien cards from that level on the table,

and asked if the child would like to let Beta know anything more

about that level before moving to the next one. There were four

of these transition points, which meant that in total there were 24

opportunities for children to teach Beta. Following Beta’s response

(trials) or after being asked if they would like to provide any

more information (transitions), the researcher allowed time for the

child to teach Beta. The child was allowed to teach however they

wished until they indicated they were done or stopped teaching

for 3 seconds. If 3 seconds passed without the child doing/saying

anything (or said they had no further instruction), the researcher

proceeded with the next trial.

Coding of teaching behavior
Children’s teaching behavior following Beta’s responses at each

classification level, as well as between levels, was video recorded

and behaviorally coded. To examine whether the between-subject

robot conditions elicited different amounts of teaching behaviors

that were more/less elaborative (and whether teaching related

learning), children’s teaching behaviors were tabulated as basic or

advanced teaching strategies. Basic teaching behaviors were those

behaviors that allowed for a child to determine and communicate

whether the robot was accurate or not, but without any further

elaboration—i.e., referencing the answer key map (i.e., checking if

the robot answered correctly), giving verbal feedback (e.g., saying

“Yes/No” to the robot to indicate accuracy), and giving non-

verbal feedback (e.g., nodding yes/no to the robot to indicate

accuracy). Advanced teaching behaviors were those that included

elaboration beyond just providing the robot with information

about their accuracy: i.e., providing the correct answer to the

robot (e.g., “This alien is actually from planet Colla, not planet

Blorb”) or providing the classification rule from the answer key

to Beta (e.g., “This alien is blue, so that means it is from planet

Colla). Children were given credit for each specific teaching act

once (e.g., if they said “No, no, no, that’s not right” they were

given credit for providing feedback, thus one basic teaching

strategy; if they said, “No, this one is from Colla because aliens

from Colla are blue.” they would receive credit for providing

feedback), providing an answer and providing an explanation,

equating to one basic and two advanced strategies. Thus, at each

teaching opportunity (i.e., during a trial or transition between

levels), a child received a score of the number of basic teaching

strategies and the number of advanced teaching strategies. These

scores were averaged across the teaching opportunities (i.e., during

trials and transitions), providing us with each child’s average

number of basic and advanced teaching strategies within a

teaching opportunity.

A primary coder, who was unaware of study hypotheses,

coded all children’s teaching behaviors. To ensure reliability, a

second coder, who was also unaware of hypotheses, coded 25

participants (22% of the data). Interrater reliability for basic

teaching (ICC = 0.905) behaviors and advanced teaching (ICC

= 0.957) behaviors were found to be strong. The majority of

children always demonstrated some sort of teaching behavior when

provided the opportunity: across robot conditions, 87% of children

demonstrated some form of teaching after the robot provided

a correct answer, 92% always taught after the robot made a
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FIGURE 4

Average number of basic and advanced teaching behaviors within a teaching opportunity.

mistake, and 68% always did some form of teaching during the

transition points.

Children’s learning: post-teaching test performance

Following the teaching task, a large blank diagram of

the different alien locations was put on the table and the

classification key that participants used during teaching was

removed. The researcher provided the child with eight alien

cards and instructed them to put them in the correct location.

There were two cards at each level of the classification

system (planet/country/province/city). Children’s performance on

this task was used as the measure of their learning of the

classification system (/8).

Children’s perceptions of teaching & learning

Children were asked to respond to questions about their

perceptions, including how good they were at teaching, how much

Beta learned, and how much they learned about alien geography

from teaching Beta, using a Likert scale that ranged from 1 (none at

all) to 5 (a great deal).

Results

Preliminary analyses

All data were analyzed for missing values. For children’s

perception ratings, there were missing data for Beta’s learning (n

= 2), their own teaching (n = 3), and their own learning (n =

2). Given the low numbers of missing data (<2% of perception

data), list wise deletion was used. Five children did not have data

for teaching behaviors as they did not assent to video recording.

No outliers were detected in the questionnaire data and

skew and kurtosis were within acceptable limits (|skew| ≤3;

|kurtosis| ≤ 10; Kline, 1998). Univariate outliers on the basic

(1 outlier) and advanced (1 outlier) teaching composites were

winsorized to be ±3SD. No multivariate outliers were detected for

participant’s coded data and skew and kurtosis were also within

acceptable limits.

Impact of robot mistakes on children’s
teaching and learning

Children’s teaching behavior
A mixed ANOVA was performed to compare the impact

of robot mistakes on the average number of children’s teaching

behaviors within each teaching opportunity with robot type

(Correct, TypicalMistake, AtypicalMistake) as the between-subject

factor and type of teaching (basic, advanced) as the within-subject

factor (Figure 4). There were significant main effects of robot type

[F(2, 106) = 17.62, η
2
p = 0.25, p < 0.001], which were followed

up with comparisons using Games-Howell (as per a significant

Levene’s test of homogeneity of variance). Comparisons revealed

that, when collapsing across teaching type, children who taught a

Correct robot (M= 0.66, SE= 0.031; total teaching per opportunity

= 1.31) demonstrated fewer behaviors compared to the Typical

(M = 0.89, SE = 0.029; total teaching per opportunity = 1.78),

Mdiff = −0.24, SEdiff = 0.04, p < 0.001, 95% CI: [−0.34 to −0.14]

and Atypical robot (M = 0.86, SE = 0.030; total teaching per

opportunity = 1.72), Mdiff = −0.21, SEdiff = 0.04, p < 0.001, 95%

CI [−0.31, −0.10]. Children in the two mistake robot conditions

(i.e., Atypical vs. Typical) did not differ in their number of teaching
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behaviors (collapsed across type), p = 0.729. The ANOVA also

revealed a main effect of type of teaching [F(1, 106)= 998.74, η2p =

0.90, p < 0.001], with children demonstrating more basic teaching

behaviors (M = 1.35, SE= 0.03) than advanced teaching behaviors

(M = 0.26, SE = 0.02), but no interaction between robot condition

and teaching type (p= 0.466).

Children’s learning
A one-way ANOVA was performed to compare the impact of

robot mistakes on children’s learning, with robot type (Correct,

Typical Mistake, Atypical Mistake) as the independent variable

and Post-Teaching Test Performance (number of cards classified

correctly from/8) as the dependent variable. There was a significant

difference in test performance by condition, F(2, 111) = 6.83, η
2

= 0.11, p = 0.002. Follow-up independent t-tests revealed that

children in the Atypical Mistakes (M = 5.87, SD = 1.96) condition

demonstrated greater learning compared to children in the Typical

Mistakes [M = 4.69, SD = 1.61 t(75) = 2.88, d = 0.66, p =

0.005] or Correct conditions [M = 4.43, SD = 1.82, t(73) =

3.29, d = 0.76, p = 0.002]. No significant difference was observed

between the Typical Mistakes and Correct condition, t(74) = 0.66,

p = 0.511. These results remained statistically significant when a

Bonferroni correction was applied for multiple comparisons, p =

0.017 (0.05/3 comparisons).

Associations between children’s teaching
behaviors and learning

We were interested in understanding how children’s teaching

behavior related to their learning. As shown in Table 1, across

all conditions children whose average demonstration of teaching

behaviors (both basic and advanced) demonstrated better learning

of the classification system. Interestingly, within the Correct and

Typical conditions (but not Atypical) advanced teaching related

to learning. While the pattern of data did not suggest that the

learning advantage found for children in the Atypical condition

is driven by children’s teaching behavior, to examine this premise

directly, PROCESS mediation analysis (Hayes, 2022) with 5,000

bootstrapped sample estimates was conducted. The predictor was

a dummy code for the Atypical Condition (relative to other

conditions). Children’s average number of basic and advanced

teaching behaviors were entered as the mediators. The dependent

variable was children’s learning (test performance). The model did

not support an indirect effect, but did demonstrate main effects of

both the Atypical condition and advanced (but not basic) teaching

on children’s test performance (Figure 5).

Interim summary
Robot tutee mistakes (typical and atypical) elicit more teaching

behaviors (basic and advanced), and children who showed more

advanced teaching behaviors demonstrated the most learning

gains. However, children who taught an atypical mistakes robot

showed the most learning gains, with this effect not explained by

children’s teaching. T
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FIGURE 5

Associations of atypical mistake condition and teaching behaviors on children’s learning. Results for Advanced teaching in black and for Basic

teaching in gray.

Children’s perceptions of teaching and
learning

A MANOVA compared the impact of robot mistakes (i.e.,

robot condition) on children’s perceptions of Beta’s and their own

learning/teaching. The MANOVA revealed a marginally significant

effect of robot condition on children’s perceptions of Beta’s

learning, F(2, 108) = 2.95, η
2 = 0.05, p = 0.056. Follow-up

comparisons using Games-Howell, revealed a significant difference

between the Atypical Mistakes condition (M= 3.43, SE= 0.15) and

Typical Mistakes condition (M = 3.92, SE = 0.15), Mdiff = −0.49,

SEdiff = 0.18, p = 0.019, 95% CI [−0.91, −0.07]. Comparisons

between mistake conditions and the Correct condition (M = 3.80,

SE= 0.15) were not significant, ps> 0.27. Thus, showing sensitivity

to the mistake patterns, children who taught the Typical mistakes

robot perceived their robot learned more than those who taught

the Atypical robot. There was not a significant difference between

robot conditions in children’s perceptions of their own learning (p

= 0.497), with their average ratings across the conditions being 3.69

(SD = 0.81) on a 5-point scale. As well, there was not an effect of

robot condition on children’s perceptions of their own teaching

(p = 0.607), with an average rating of 3.74 (SD = 0.89) on a 5-

point scale. Thus, children’s perceptions of their own learning and

teaching were not influenced by the type of robot they taught. They

generally felt they learned “A Lot” about alien geography through

teaching Beta and were “A Lot” good at teaching Beta during the

teaching task.

Children’s insight into their teaching and
learning

To understand how much insight children had into their

own teaching and learning, correlations were conducted between

children’s perceptions and teaching behaviors across conditions

and separately by robot condition (Table 1). In terms of teaching

behaviors, children’s self-assessment of their teaching did not

relate to their teaching behaviors. In contrast, children showed

some insight into their learning, with those children who rated

their learning higher also performing better on the classification

test across conditions. However, when examined separately, it

was primarily the children in the Correct condition whose self-

assessment of learning related to their actual learning. Using

Fisher’s z-test, the strength of this correlation was significantly

different from that for children in the Atypical Mistakes condition

(p = 0.02) and marginally different from those in the Typical

Mistakes condition (p= 0.08).

Discussion

This project aimed to examine children’s learning through

teaching a social robot, with particular interest in whether a

robot’s mistake behavior affected children’s teaching behaviors,

children’s learning, and children’s appraisals of their own teaching

and learning.

Addressing our first research question, namely, whether the

robot mistake behavior elicited different teaching behaviors from

the children, we examined whether the average observations of

basic and advanced teaching behaviors differed by robot condition.

We found that children who taught a robot that made no

mistakes produced fewer teaching behaviors generally than those

children who taught a robot that made mistakes (typical or

atypical). Thus, consistent with work demonstrating that by late

preschool years, children infer knowledge from mistakes and teach

accordingly (Ronfard and Corriveau, 2016), we found that tutee

mistakes elicit more teaching behaviors when children work with

humanoid robots. As predicted, across the conditions, children who

generated more teaching behaviors showed better learning of the

classification system. Looking closer at correlation patterns within

conditions, children who engaged in more explanatory or elaborate

teaching strategies (i.e., advanced teaching) learned the content

for themselves better. This finding is consistent with peer tutoring

(Roscoe and Chi, 2008), wherein tutors who provide explanations

(vs. just preparing to explain) show a deeper understanding of

the material (Fiorella and Mayer, 2013). However, importantly,

this was only found when children worked with either a robot

that made no errors or with a robot that made typical mistakes.

That is, children who taught a robot that did not follow a typical
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learning pattern (Atypical condition) did not show an association

between the degree to which they generated advanced teaching

strategies and their learning outcomes, potentially because teaching

becomes disconnected from learning when the tutee learning

pattern is atypical.

These associations are interesting to consider in light of the

group effects found in children’s learning (as per our second

research question): children learned more when teaching a robot

that made atypical mistakes (relative to when a robot either

made no mistake or made typical mistakes). Moreover, mediation

analyses suggested that while advanced teaching was important for

children’s learning, it did not account for the learning advantages

of working with an Atypical robot. That is, there was no indirect

effect. Thus, while teaching (in particular, advanced teaching)

was important for children’s learning, factors other than teaching

behavior are needed to explain the learning benefit of working with

a robot that makes atypical mistakes.

We speculate that the unexpected and novel nature of the

atypical robot’s learning behavior may have elicited curiosity (Ceha

et al., 2019) and prompted children to more closely attend to the

content and/or engage more fully in figuring out and remembering

the classification system, thereby enhancing learning. Such an

explanation is in keeping with the notion that violations of

expectations promote children’s learning of new information (Stahl

and Feigenson, 2015, 2017, 2019). In the present work, it may be

that because the atypical robot was behaving in a way that violated

children’s expectations for what learning ‘should’ look like (both

in terms of their mistakes and their accuracy), children engaged

in enhanced attention toward the teaching material. Children’s

perceptions of robot learning support our notion that children were

indeed sensitive to the specific type of mistake behavior of the

robot: when Beta followed a typical learning pattern (mistakes first,

then accurate responses) relative to an atypical learning pattern

(accuracy first, then mistake) they indicated that Beta learned

more. Thus, extending past work showing children’s sensitivity

to the relative accuracy of informants (Pasquini et al., 2007), we

show that children can (impressively) use the specific placement of

mistakes (relative to presented material) to make determinations

about others’ (in this case, a robot’s) acquisition of knowledge.

Further, when teaching a robot that demonstrates unexpected

mistake behavior children show enhanced learning.

Given the importance of children’s ability to assess their own

knowledge in relation to learning (Fisher, 1998; Kuhn, 2021), our

third research question was whether the type of robot mistake

behavior affects children’s perception of their own learning and

teaching. We did not find that children’s rating of their own

teaching or learning varied by condition. Thus, even though, as

a group, children demonstrated more teaching behaviors when

teaching robots that made mistakes and learned more with an

atypical robot, their perceptions did not mirror these effects (in

general, children rating themselves as fairly strong in terms of

their teaching/learning across all three conditions). We sought to

further explore their perceptions at an individual level; namely,

assessing whether their self-ratings of learning and teaching

matched their behavior (i.e., test performance, teaching behaviors).

Across conditions, children’s rating of their own learning was

related to their test performance. However, within conditions, this

was only the case when children taught a robot that never made

mistakes. Thus, while robot mistakes may assist with learning

(particularly if atypical), it may make it difficult for children to have

a sense of their own learning, potentially because they are more

focused on the robot’s acquisition of knowledge rather than their

own and/or because children’s learning happens in a more subtle or

unconscious way. In no robot condition did children’s perception

of their teaching relate to the frequency of their teaching behavior,

suggesting that within our teaching context children did not have

a good sense as to how well they were teaching. This finding is

perhaps not that surprising as children likely used various cues to

determine teaching success, including both what they did as well as

how Beta responded, with these each providing different messages.

For instance, in the Correct condition, they could do very little

teaching but still perceive their teaching to be decent given that the

robot tutee was performing well.

Limitations and future work

While this work presents novel findings, there are limitations

to consider. First, the interaction between the child and Beta was

somewhat limited as per our use of a predetermined script. Future

work may use voice detection software and/or large language

models to generate a greater variety of responses provided by the

social robot, which may also allow for a more qualitative inquiry

(e.g., Lee et al., 2021). Second, because this was a between-subject

(vs. within-subject) design, we were not able to assess how children

shift their teaching behaviors according to robot tutee behavior

(including before/after mistakes), as well as limiting sensitivity

in detecting differences in perceptions. Third, our age range was

relatively small, and future work with a wider range would be

useful to understand the developmental course as to when children

show sensitivity to robotmistakes and adjust behaviors accordingly,

with a recent meta-analysis on selective teaching suggesting there

may be shifts around the age of 4 (Qiu et al., 2024a). Finally, we

did not conduct a parallel study with human tutees to determine

whether the pattern of findings regarding children’s learning-by-

teaching is comparable with human vs. robot tutees, as well how

responses to robot tutee mistakes compare to responses to human

tutee mistakes. This was not an initial objective for the study,

but such a comparison would be useful to address questions

about how educational technologies may offer benefit beyond

traditional approaches. Indeed, recent work suggests that each

context (i.e., robot tutee vs. child tutee) offers different learning

advantages/limitations (Pareto et al., 2022). As well, conceptually

speaking, a comparison with a human tutee would allow for

determining whether children hold similar sensitivity/expectations

for the “learning” style of robots as they do for humans. It is possible

that with human tutees, atypical mistakes create even more of a

violation of expectations such that learning is further enhanced.

Alternatively, children may experience frustration when teaching a

human tutee vs. a robot tutee because the atypical learning pattern.

Finally, it would also be useful for future work to examine whether

children’s individual characteristics play a role in how they respond

to different robot behaviors in the context of teaching (e.g., theory

of mind; Davis-Unger and Carlson, 2008; Strauss et al., 2002).
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Conclusion

In the context of teaching robots a novel classification system,

the presence of robot tutee mistakes (regardless of type) elicited

more teaching behaviors by children. Moreover, those children

who demonstrated more advanced teaching behaviors in particular

showed better learning of the classification system. Children

who taught a robot that made mistakes that did not follow

a typical learning pattern showed the greatest learning gains

of a novel classification system, but this was not explained

through their teaching behavior. Together, our work extends the

developmental literature demonstrating children’s sensitivity to

types of inaccuracy, including from robots (Baumann et al., 2023),

within a teaching context (Ronfard and Corriveau, 2016). This

work is novel, generating preliminary findings which provide a

foundation from which further discovery can be based, including

how children conceptualize the “mind” of robot tutees through

a robot’s behavior, and adjust their own teaching behavior

accordingly, as well as what type of tutee behavior works best for

which children within learning-by-teaching paradigms. Addressing

these questions are crucial for designing pedagogical agents,

particularly for those children who may struggle with traditional

teaching methods.
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