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Honest machines? A
cross-disciplinary perspective on
trustworthy technology for
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Humans increasingly interact with social robots and artificial intelligence (AI)

powered digital assistants in their daily lives. Thesemachines are usually designed

to evoke attributions of social agency and trustworthiness in the human user.

Growing research on human-machine-interactions (HMI) shows that young

children are highly susceptible to design features suggesting human-like social

agency and experience. Older children and adults, in contrast, are less likely

to over attribute agency and experience to machines. At the same time, they

tend to over-trust machines as informants more than younger children. Based

on these findings, we argue that research directly comparing the e�ects of HMI

design features on di�erent age groups, including infants and young children

is urgently needed. We call for evidence-based evaluation of HMI design and

for consideration of the specific needs and susceptibilities of children when

interacting with social robots and AI-based technology.

KEYWORDS

human-machine-interaction, social learning, epistemic trust, children, robots, AI

1 Introduction

Humans today interact with machines in a variety of contexts and with rapidly
increasing frequency. Here, we conceptualize human-machine-interactions (HMI) as
behavioral and communicative exchanges of humans with artificial agents that possess
human-like features or behavioral properties, including social robots and virtual assistant
AI technologies. Social robots are employed in educational settings, such as kindergartens
and museums, and as assistants and companions in people’s homes. Virtual assistant
AI technologies have quickly become near omnipresent in recent years through their
deployment in smartphones (e.g., Siri), smart speakers (e.g., Amazon Alexa), and with
the recent rapid advancement of generative AI, including large language and multimodal
models such as OpenAI’s GPT models (Open et al., 2023), DeepMind’s Gemini (Gemini
Team et al., 2023) and similar models.

Social robots and virtual assistants more and more show characteristics of human-
like social responsiveness (Yu et al., 2010; Xu et al., 2016; Henschel et al., 2020), which,
however, entails some risks. One potential problem a human-friendly digitalization
has to address is the risk of over-trust in machines (Noles et al., 2015; Baker
et al., 2018; Lewis et al., 2018; Yew, 2020), that is trust which exceeds system
capabilities (Lee and See, 2004) and which may sometimes prevail even in the face
of obvious technical failure (Robinette et al., 2016). For instance, in a notable study
by Robinette and colleagues, all participating adults followed an emergency guide
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robot in a perceived emergency (fire alarm with smoke). This was
despite the fact that half of the participants had just observed
the same robot perform poorly in a navigation task few minutes
before the apparent emergency (Robinette et al., 2016). As regards
generative AI, recent research shows that adults tend to devalue its
competence, but not the provided content and still follow its advice
(Böhm et al., 2023). We need to understand better when and how
social and epistemic over-trust are induced in HMI and how this
can be mitigated (Baker et al., 2018; Lewis et al., 2018; Yew, 2020;
Van Straten et al., 2023).

Increasing attention is now being paid to studying children’s
interactions with robots and AI (Stower et al., 2021; Van
Brummelen et al., 2023). While robots and AI offer exciting
opportunities for children to learn and acquire technological
skills, young children are highly susceptible to social features.
They readily attribute agency and intentionality to artificial agents
displaying cues of animacy (Rakison and Poulin-Dubois, 2001). For
instance, preschool-aged children readily imitate even obviously
functionally irrelevant actions that were demonstrated to them
by the humanoid robot Nao, very similar to children’s imitation
of human models (Schleihauf et al., 2020). Nao is designed
with anthropomorphic features, including big “eyes,” which most
probably appeal to children’s propensity to identify social partners
and learn from them. At the same time, children are known to
carefully track the reliability of (human) informants over the course
of a learning exchange (Koenig et al., 2004; Jaswal and Neely,
2006; Brooker and Poulin-Dubois, 2013). This combination of
readily accepting human-like machines as informative agents on
the one hand and closely tracking the reliability of informants on
the other hand could make preschool-aged children ideal targets
for educating them to enable a responsible and informed handling
of machines.

Social robots are an increasingly widespread assistive
technology, and we can expect their use to further expand in the
near future given recent trends (Jung and Hinds, 2018). Digital
assistants are already widely used, including latest developments
of generative AIs such as ChatGPT, its successors and competing
models which are already very good in mimicking human
conversation (Kasneci et al., 2023). The presence of HMI in our
everyday lives has increased dramatically since the introduction
of digital assistants and even more so with recent developments
in conversational AI (Fu et al., 2022; Bubeck et al., 2023). At the
same time, the Covid-19 pandemic has shown that circumstance
can require human-human interactions to be temporarily highly
restricted, severely affecting children’s access to education
(Betthäuser et al., 2023), thus making a sensible use of HMI in
childcare and education a highly timely endeavor.

In this perspective paper, we argue for research and
development of HMI that balances human need for sociability
with realistic understanding of artificial agents’ functioning and
their limitations. We therefore draw attention to the relevant
– and partially divergent – psychological factors influencing
social and epistemic trust toward a machine in children and in
adults. While children are highly susceptible to social features
and often over-attribute socialness to artificial agents, adults seem
at a relatively higher risk for epistemic over-trust in machines.
Yet, extant research leaves open whether these differences are
due to developmental changes or variations in experiences with

technology in different cohorts. We contend that longitudinal
studies and research directly comparing children’s and adults’
behavior as well as their socio-cognitive and brain processes in
interactions with technologies designed to encompass human-like
features, is clearly needed.

2 Humans are social learners

Humans are fundamentally social learners (Over and
Carpenter, 2012; Hoehl et al., 2019). The human propensity to
transmit information and share knowledge among each other is
considered key to our evolutionary success and cultural evolution
(Henrich, 2017). As social learning has both instrumental and social
affiliative functions (Over and Carpenter, 2012), it is impacted by
both epistemic and social trust. Epistemic trust greatly depends
on prior reliability of the informant: Children are more likely
to use and endorse information that is provided by a previously
reliable and competent informant (Tong et al., 2020). Social trust,
on the other hand, i.e., trust in the benevolence of another agent
(Mayer et al., 1995), depends on personal relationships and group
affiliation. For instance, more faithful imitation of inefficient and
ritual-like actions has been reported for models that belong to the
same in-group as the imitator (Buttelmann et al., 2012; Krieger
et al., 2020). When it comes to learning about social conventions
and norms, children’s behavior is not only influenced by epistemic
trust, but also a motivation to create or maintain social affiliation
(Nielsen and Blank, 2011; Over and Carpenter, 2012) with a
benevolent other (Schleihauf and Hoehl, 2021).

From birth, humans preferentially orient their attention toward
social information, such as faces and speech (Johnson et al., 1991;
Vouloumanos et al., 2010). Toward the end of the first postnatal
year, infants actively seek information from others, a behavior
called social referencing (Campos et al., 2003). Their emerging
ability to engage in shared attention with others allows them to
learn through social communication (Siposova and Carpenter,
2019). By around 1 year of age, infants not only imitate others’
action outcomes, but also precise action manners (Gergely et al.,
2002).

Due to rapid technological developments, children’s learning
from conspecifics is increasingly complemented by their learning
through and from technical devices (Meltzoff et al., 2009; Nielsen
et al., 2021). For instance, children may learn from screen
media or through social interactions mediated through video-chat
(Sundqvist et al., 2021). While earlier studies often reported a
“video-deficit,” concluding that real-life interactions offer children
more effective social learning opportunities than screen-based
media, more recent research suggests that children may sometimes
attribute more normative value to social information presented
through a screen than live (Nielsen et al., 2021; Sommer et al.,
2023). Nielsen and colleagues suggest that this “digital screen effect”
may be due to contemporary children’s extensive experiences and
often parasocial relationships with artificial agents and fictional
characters they regularly encounter through a range of media
and devices. Yet, we are far from understanding the potentially
transformative effect this will have on children’s learning and
human cultural evolution in the long run (Hughes et al., 2023;
Sommer et al., 2023). Whereas, children and adults are equipped
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with cognitive capacities to track both the reliability of informants
(Koenig et al., 2004; Brooker and Poulin-Dubois, 2013) and
the (social) relevance of the transmitted information (Csibra
and Gergely, 2009) in human-human interactions, it is unclear
whether these mechanisms are adaptive when dealing with the
wealth of information and types of technological informants
humans nowadays encounter in their everyday lives, and how
the generative AI’s potential to act as personalized tutor will
influence epistemic trust (Jauhiainen and Guerra, 2023; Murgia
et al., 2023).

3 What makes an agent social?

When judging whether an interaction partner is social and
possesses a mind, people tend to rely on two key dimensions:
agency, i.e. the assumed capacity to plan and act intentionally,
and experience, i.e. the assumed capacity to sense (Waytz et al.,
2010). The attribution of “socialness” based on perceived agency
and experience (sometimes conceptualized as competence and
warmth, respectively) is an active and dynamic process that unfolds
over the course of an exchange (Hortensius and Cross, 2018).
To what degree the interactive partner is attributed agency and/
or experience has substantive implications (Waytz et al., 2010;
Marchesi et al., 2019; Sommer et al., 2019): We tend to empathize
with agents, to whomwe attribute the capacity to experience and we
hold those responsible for their wrongdoing, to whom we attribute
agency. For comparative research on the topic of agency in non-
human animals and different definitions of the concept, we refer
the interested reader to pertinent existing work (Bandura, 1989;
McFarland and Hediger, 2009; Carter and Charles, 2013; Špinka,
2019; Felnhofer et al., 2023).

In the past few years, a growing number of studies have
addressed children’s interactions with artificial agents, including
robots and digital assistants (e.g., Tanaka et al., 2007; Melson et al.,
2009; Cameron et al., 2015, 2017; Noles et al., 2015; Sommer et al.,
2019, 2020, 2021a,b; Wang et al., 2019; Aeschlimann et al., 2020;
Di Dio et al., 2020a; Manzi et al., 2020). While a systematic review
of this growing field is beyond the scope of this perspective paper,
we briefly review some major findings in this section and include a
table for better overview of the findings in relation to the age groups
tested (Table 1). Across studies, a developmental trend has become
apparent: Younger children and infants are highly susceptible to
cues indicating that the machine is a social agent (Arita et al., 2005;
Tanaka et al., 2007; Brink and Wellman, 2020; Okanda et al., 2021;
Manzi et al., 2022). Notably, these cues of socialness impact whether
infants and young children accept an agent as a potential source of
information for social learning (Itakura et al., 2008; Csibra, 2010;
Deligianni et al., 2011; Okumura et al., 2013). For instance, two-
year-olds imitated the inferred “intended” (but unfinished) actions
modeled from a robot only if the robot had established eye contact
with them (Itakura et al., 2008).

With increasing age, children (similar to adults) seem to
become less likely to conceptualize a machine as a social agent
and are less affected by cues indicating agency and experience
(Okita and Schwartz, 2006; Melson et al., 2009; Kahn et al., 2012;
Cameron et al., 2015, 2017; Manzi et al., 2020; Goldman et al.,
2023). This general trend is in line with the high sensitivity to

identify social agents in young children, that is well-documented
already in infancy (Rakison and Poulin-Dubois, 2001), and speaks
to the notion that young children’s concepts of “socialness” are
rather broad and malleable.

At the same time, when learning from other humans, children
carefully track the reliability of potential informants (Koenig et al.,
2004; Jaswal and Neely, 2006; Poulin-Dubois and Chow, 2009;
Brooker and Poulin-Dubois, 2013; Geiskkovitch et al., 2019). In
classic studies on epistemic trust, children encounter informants
that are either reliable (e.g., accurately labeling objects that are
familiar to the child) or unreliable (e.g., mislabelling known objects
or answering simple questions incorrectly). Children are then
invited to solve a task or seek information. Researchers track
whether children seek information selectively from previously
reliable informants and sometimes also assess whether children
actively endorse information they received from these informants.
A recent meta-analysis found that 4–6-year-olds consistently
prioritized epistemic cues over social characteristics when making
decisions whom to trust and whose information to endorse,
whereas younger children do not consistently prioritize epistemic
over social cues (Tong et al., 2020).

Interestingly, when deciding between different informants,
older children and adults tend to prefer and trust technological
informants to a higher degree than younger children do (Noles
et al., 2015; Eisen and Lillard, 2016; Wang et al., 2019; Girouard-
Hallam and Danovitch, 2022; Baumann et al., 2023). Recent
work on interaction between children (4–5-year-olds, 7–8-year-
olds) and a digital voice assistant indicates that with increasing
age, children increasingly seek factual information from a voice
assistant whereas they preferably seek personal information from
a human (Girouard-Hallam and Danovitch, 2022). In one study,
5-year-old children and adults preferred a technological informant
(search engine) over a human informant, whereas younger children
chose to seek information primarily from the human (Noles et al.,
2015). Similarly, in another study, adults preferred the internet
as an information source over a human teacher, whereas children
preferred and endorsed the teacher (Wang et al., 2019). Experience
seems to play a role in this process: With increasing experience
with robots, 4–7-year-old children attributed more intelligence and
less psychological characteristics to robots (Bernstein and Crowley,
2008).

Observations of excessive epistemic trust toward machines,
predominantly in adults (Robinette et al., 2016), evoked calls for
establishing calibrated trust in HMI, that is trust that matches
system capabilities and which could be based, among other factors,
on system transparency (Baker et al., 2018; Lewis et al., 2018; Yew,
2020; Van Straten et al., 2023). For instance, Van Straten et al.
(2023) find that a social robot’s own transparency (regarding its
abilities, lack of human psychological capacities, machine status)
leads to a decreased feeling of trust and closeness in 8–10-year-olds,
whereby trust and closeness are mediated by children’s tendency to
anthropomorphise, and closeness is also mediated by the children’s
perception of the robot’s similarity to themselves.

In a nutshell, children and adults seem to interact with and
perceive artificial agents differently. Figure 1 displays a theory map
(Gray, 2017) synthesizing the psychological factors determining
and moderating social learning in HMI and their relations. A
key factor for young children seems to be a high susceptibility
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TABLE 1 Overview of the reviewed developmental studies on social and epistemic trust toward machines.

Age group Social trust/ attribution of socialness Epistemic trust

Adults Adults resist social pressure from a group of small humanoid robots,
whereas 7- to 9-year-old children show social conformity to robots
(Vollmer et al., 2018)

Adults prefer the internet as an information source over a
human teacher, whereas 7- to 8-year-olds prefer and endorse
a teacher (Wang et al., 2019)

School age (6–15 years) With increasing experience with robots, 7-year-old children attribute
more intelligence and fewer psychological characteristics to robots
(Bernstein and Crowley, 2008)
7– 9-year-olds conceptualize and interact with a robot like with an
animal, while 15-year-olds are less likely to apply companionship and
moral standing to a robot (Melson et al., 2009)
9- and 12-year-olds conceptualize a humanoid robot more as a mental,
social, and moral other than 15-year-olds (Kahn et al., 2012)
Children up to 6 years rate a humanoid robot as more animate and
person-like than children over 6 years of age (Cameron et al., 2015,
2017)
5-year-olds have a greater tendency to anthropomorphize robots than
children aged 7 and 9 years, regardless of the type of robot (Manzi
et al., 2020)

6-year-olds prefer to seek information from a touchscreen
device over a book, whereas 3-year-olds show no preference
for seeking information from a book or touchscreen device
(Eisen and Lillard, 2016)
7–8-year-olds prefer to seek factual information from voice
assistants over humans more than younger children at 4–5
years (Girouard-Hallam and Danovitch, 2022)

Preschool age (3–5 years) 3-year-olds over-generalize animistic intuitions about real animals to
robots, while 5-year-olds attribute some animistic qualities but not
others (Okita and Schwartz, 2006)
3- to 6-year-olds conform more to a human than to a robot by
imitating inefficient normative tool use (Fong et al., 2021), though in
another study normative imitation was similar for a humanoid robot
and a human model in 5-year-olds (Schleihauf et al., 2020)
3-year-olds attribute biological properties to a humanoid robot, more
than 5-year-olds and adults; 5-year-olds attribute more perceptual
properties to the robot after an interaction (Okanda et al., 2021)
3-year-olds perform at chance level when asked about the animacy of
robots, animals, and artifacts; 5-year-olds correctly attribute animacy
to animals, not artifacts, but they perform at chance level for a
humanoid robot (Goldman et al., 2023)

5-year-olds and adults prefer a technological informant
(search engine) over a human informant, whereas 4-year-olds
seek information primarily from a human (Noles et al., 2015)
3-year-olds epistemically trust a robot more when it appears
to have agency (Brink and Wellman, 2020)
3-year-olds epistemically trust a reliable robot just as much
as an unreliable human informant, but 5-year-olds prefer
information from a reliable humanoid or non-humanoid
robot (Baumann et al., 2023)

Toddlers (18–35 months) 18– 24-month-olds treat a humanoid robot more like a peer than like a
toy after repeated interactions (Tanaka et al., 2007)
24–35-month-olds inferred a robot’s action goals, similar to humans’,
after the robot established eye contact (Itakura et al., 2008)

Infants (below 18 months) 10-month-olds expect interactive humanoid robots to be talked to by
persons (Arita et al., 2005)
17-month-olds anticipate actions from a humanoid robot, similar to
their action anticipation from a human (Manzi et al., 2022)

12-month-olds learn from robot gaze when it is
accompanied by verbalizations (Okumura et al., 2013)

to cues indicating socialness and consequently a potential over-
attribution of agency and experiences to artificial agents which
might affect how they engage with and learn from machines in
the long run. In particular, over-attribution of socialness might
lead to an abundance of unwarranted social trust (Di Dio et al.,
2020b) and even normative social conformity toward robots which
has been shown to be more pronounced in children than in
adults (Vollmer et al., 2018). While children seem to prioritize
normative instructions from a human over those from a robot
(Fong et al., 2021), they are more likely than adults to socially
conform in their judgements to a group of humanoid robots
(Vollmer et al., 2018). Adults and older children, in contrast, are
less affected than younger children by artificial social features. Yet,
when engaging with technological informants, older children and
adults sometimes display epistemic over-trust, as illustrated most
strikingly in experiments where adults continue to trust machines
as informants even after witnessing blatant failures (Robinette
et al., 2016). It must be pointed out that age-related differences
reported in the literature thus far may in part reflect cohort effects,
driven by vastly different (early) experiences with machines across
generations (Nielsen et al., 2021). Potential cohort effects could be
due to technological advances (e.g., recently improved generative

AIs) and the availability and pervasiveness of devices in daily lives
(e.g., smart phones and speakers) that have the potential to change
the quality and quantity of early human experiences with artificial
agents. We are far from understanding the potentially long-lasting
effects these experiences have and longitudinal research, ideally
applying cohort sequential designs, is urgently needed.

4 Where do we go from here?

The key scientific challenge for the future is to delineate and
better understand the processes leading to social and epistemic
trust toward machines in children and adults. This will help
answer one of the most central questions for the design of
future technology: Should we design HMI for children and adults
in fundamentally different ways to account for the different
cognitive processes, potential risks and opportunities identified
in both groups? The risk of epistemic over-trust of adults in
machines is relatively well-researched and has resulted, e.g., in calls
for system transparency (Baker et al., 2018; Lewis et al., 2018;
Yew, 2020). At the same time, our understanding of HMI in
children is much more limited. If children’s higher susceptibility
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FIGURE 1

Theory map (Gray, 2017) providing an overview of the relevant factors influencing learning from HMI di�erently depending on age from early

childhood to adulthood and with varying levels of experience with HMI.

to social features promotes their normative conformity to robots,
machines might in the future play an unprecedented role in
cultural transmission and evolution, the implications of which are
hard to foresee. Perhaps counter-intuitively, this might warrant
equipping machines that are developed to interact with young
children with fewer social characteristics. At the same time,
children’s cognitive plasticity puts them in an ideal position to
be educated about system capabilities and limitations. Can we
design HMI in such a way that children benefit sustainably from
early experiences?

Addressing these fundamental questions and advancing HMI
for long-term human benefit will necessitate collaboration across
disciplines. Designing experiments with human participants
requires insights into psychological and linguistic processes
and research methodology. Implementation of HMI in these
experiments requires state-of-the-art technological knowhow. Only
by combining complementary skill sets and knowledge can
we critically assess the effects of different strategies used in
technological development on psychological processes in the
human user.

Exciting opportunities arise with the combination of behavioral
and neuroscientific methodology (Wykowska et al., 2016; Wiese
et al., 2017; Cross et al., 2019; Henschel et al., 2020). Above
and beyond behavioral paradigms from developmental psychology,
measures of brain activity allow unraveling to what degree brain
networks underlying human-human social interaction and social
cognition are also involved in HMI. Of particular interest are the
temporoparietal junction (TPJ) and the medial prefrontal cortex
(mPFC). These regions are involved in mental perspective taking,

i.e., reasoning about other persons’ wishes, perspectives and beliefs,
in both children and adults (Saxe et al., 2004) and are referred to
as part of a “mentalizing network” in the human brain (Kanske
et al., 2015). In adults TPJ andmPFC are activated specifically when
participants believe that they play a game against a human, but not
when believing they play against a humanoid robot and/or an AI
(Krach et al., 2008; Chaminade et al., 2012).

It is of great scientific interest and importance to assess to what
degree these brain regions are implicated in children’s HMI because
the mentalizing network may be less specialized for human-human
interaction in early development. The high plasticity of functional
brain networks in the first years of life opens up opportunities
for intense learning and skill formation (Heckman, 2006), and
ensures that our early experiences have a long-lasting impact on
how we engage with the world and other people (Nelson et al.,
2007; Feldman, 2017). Thus, early HMI may be foundational for
how we engage with machines across the lifespan which could have
profound long-term impact on the way humans communicate and
transmit knowledge (Hughes et al., 2023; Sommer et al., 2023). This
should have important implications for the ways we introduce HMI
into the lives of children in order to enable competent handling
of technology while keeping a firm grasp on machines’ abilities
and limitations.

Not least due to the potential long-lasting effects of early HMI,
this field of research and technology development has profound
ethical implications and researchers, developers, and practitioners
should carefully consider the benefits and risks when introducing
new technologies to children. Early HMI could not only impact
the way children treat artificial agents later on but may also affect
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concurrent and later human-human interactions and relationships,
including relations of care.

5 Conclusions

We have summarized evidence pointing toward age- and
experience-related differences in how children and adults engage
in HMI. Specifically, infants and young children tend to over-
attribute socialness to machines, which may lead to inflated social
trust and even normative conformity toward robots and AI. Older
children and adults, in contrast, tend to show epistemic over-
trust toward machines. While the ethical problems associated with
“tricking” humans into attributing intentions and sociability to
machines have been recognized and critically discussed in the
field of HMI research (Prescott and Robillard, 2020; Sharkey and
Sharkey, 2020), children’s specific needs and susceptibilities are
not always considered. Longitudinal research is urgently needed
to delineate the potential long-term effects of early experiences in
HMI. We call for more inter-disciplinary research on the cognitive
basis of potential socio-technical problems associated with the
design of HMI. Ideally this research will directly compare the effects
of specific design features in diverse age groups across the lifespan.
The ensuing insights can inform technology development on how
to design artificial agents that truly and sustainably serve humans.
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