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Nanosystems for modulation of
immune responses in periodontal
therapy: a mini-review
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1Department of Restorative Dentistry, College of Dental Medicine, University of Sharjah, Sharjah, United
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Periodontitis is one of the most common oral diseases. It is generally treated by
non-surgical and/or surgical therapy with adjunctive approaches for prevention
and control. The current understanding of the pathogenesis of periodontitis has
unraveled the importance of the inflammatory and immune reactions to combat
periodontitis whose etiology is an overlap of microbial, genetic, and
environmental factors in a susceptible host. Based on this premise, many
therapeutic modalities have been investigated or attempted to resolve this
inflammatory disease. Amongst these, nanomedicine has been shown to have
therapeutic applications in periodontitis, especially focused on
immunomodulation because periodontitis is characterized by over-reactive
immune response. This mini-review explores the potential of nanosystems in
treating periodontitis by providing an overview of the research efforts in this
field of therapeutics. The unique physicochemical and targeting properties of
nanosystems seem to be potentially effective platforms for treating periodontitis.
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1 Introduction

The immune system is accountable for the identification and subsequent nullification

or elimination of disease-causing entities (1). An aberrant immune system is involved in

inflammatory diseases, allergies, and cancers. The host immune response features innate

and adaptive immunity (2). The former develops at birth, including the pre-determined

components that can instantly protect the host against damaging insults (3). After the

physical barriers such as the mucosa/skin are penetrated, several constituently existing

soluble mediators and effectors swing into action. An assortment of defense cells

(phagocytes and leukocytes) also responds. If the pathological agents are not entirely

neutralized by the innate immunity, the adaptive immune responses are triggered into

protective action (4). Although the adaptive immune response is relatively slow, it is

highly specific and can respond by “memory” in the future (5). This is due to the role

of T-, and B- lymphocytes that orchestrate cell-mediated(involving, for example,

cytotoxic T-cells) and humoral (involving, for example, production of antibodies)

immunity (6). The “immune surveillance” process of the immune system is vital for

our protection against diseases (7). Although effective in defending the body against

insults ranging from injuries, infections, or cancers, immune cells may also exhibit

aberrant behavior/activity leading to uncontrolled inflammatory responses, allergic

reactions, and autoimmune diseases (8, 9). This paved the way for research in the

modulation of the immune system for therapeutic purposes. Modulation of the

immune system has been termed “immunotherapy”, “immunoengineering”, and
01 frontiersin.org

http://crossmark.crossref.org/dialog/?doi=10.3389/fdmed.2024.1509775&domain=pdf&date_stamp=2020-03-12
mailto:aacharya@sharjah.ac.ae
mailto:dr.ushahegde@jssuni.edu.in
https://doi.org/10.3389/fdmed.2024.1509775
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fdmed.2024.1509775/full
https://www.frontiersin.org/articles/10.3389/fdmed.2024.1509775/full
https://www.frontiersin.org/articles/10.3389/fdmed.2024.1509775/full
https://www.frontiersin.org/journals/dental-medicine
https://doi.org/10.3389/fdmed.2024.1509775
https://www.frontiersin.org/journals/dental-medicine
https://www.frontiersin.org/


Acharya et al. 10.3389/fdmed.2024.1509775
“therapeutic immunomodulation”, especially in cancer research

and therapeutics (10–12). Immunotherapy conceptually

functions by controlling the human immune system (via

suppression or stimulation) (13). Immunotherapeutic approaches

have shown successful and promising results, albeit, with

challenges (some immunomodulatory entities may be

unfavorably hindered by cytotoxicity, lack of solubility, or

decreased bioactive properties) (14, 15).

In the past few decades, nanosystems have been applied to

modulate immune behavior for therapeutic advantages. These

nano-size immunomodulatory systems can effectively act together

with cell surface receptors bringing about cellular/molecular

modulation ensuing in therapeutic benefits (16, 17). The use of

immunotherapy in inflammatory diseases is being explored.

Inflammation is a key aspect that influences a variety of oral

diseases, and hence, immunomodulation with nanosystems is

being recognized as a potential immunotherapeutic approach (18).

This mini-review provides insights into the potential role of

nanosystems in the modulation of immune responses and

potential synergistic effects in periodontal therapy.
2 Overview of periodontitis

Periodontitis is characterized by gingival inflammation,

periodontal pockets, loss of clinical attachment, and alveolar

bone resorption, and if untreated, subsequently leads to loss of

teeth affecting oral function and esthetics (19). Because of its

high prevalence (20, 21), and its established association with

diseases such as diabetes mellitus, cardiovascular and respiratory

diseases, rheumatoid arthritis, etc. (22), it negatively influences

general health and quality of life.

Periodontitis is known to occur after complex interactions that

happen between the oral biofilm (dental plaque) and the host

immune response, with the latter considered to be a risk for

periodontal tissue destruction by 80% (23). It is recognized that

the oral microbes contribute to periodontal disease, and

mechanical removal of oral biofilm that covers the tooth and

tooth-root surface is efficient to reduce periodontitis (24).

However, a model of host-microbe interactions in the

pathogenesis of periodontitis (25), proposed that although a

pathogenic biofilm is a necessary factor for the occurrence of

periodontitis it is insufficient alone to be the causative factor of

the disease. In the past, pathogenesis was associated with certain

organisms found in larger proportions, including Porphyromonas

gingivalis, Treponema denticola, and Tannerella forsythia,

triggering an inflammatory reaction (26). However, newer

information shows the polymicrobial nature of periodontal health

and disease, with the disease being recognized as a dysbiotic state

of the periodontal microbiota resulting in an altered host-

microbe immune response mediating the local inflammatory

processes causing the damage to the periodontium (27).

Primarily, these processes try to get rid of invading organisms.

However, absence of mechanisms of pro-resolution are believed

to be responsible for the acute inflammatory state to become

chronic (26–28). Some toxic products that are linked with the
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microbial shift, including lipopolysaccharides that are present in

the gingival sulcus, can have access to the gingival tissue, creating

a local inflammatory response marked by neutrophils,

lymphocytes and macrophages (29, 30). For the purpose of

clearing the insult, pro-inflammatory cytokines, including

interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α, are

locally produced and is linked to connective tissue destruction

resulting from host matrix metalloproteinase activation; however,

cytokines including IL-1β, IL-6 and TNF-α, in addition to the

arachidonic acid metabolite prostaglandin E2, are strongly related

to periodontal diseases’ onset and progression (31).

These inflammatory mediators have been seen to be elevated in

areas showing periodontal tissue damage, as they cause bone

resorption and induce production of matrix metalloproteinases

(like collagenase) (32). Symbiosis is developed in the oral

microbial community with the periodontium to establish

periodontal health. However, disturbance of this microbial

community, either by overgrowth of specific or nonspecific

microorganisms or by alterations in the local host response,

causes dysbiosis where the oral microbial community may now

create a diseased condition, driving periodontal tissue destruction

(33). Evidence indicates that it is mainly the host immune

response by hyperactive immune cells that causes periodontal

tissue destruction, and the variability of the host responses can

be attributed to the variability in the clinical manifestations

of periodontitis (23, 34).
3 Nanosystems

From a historical perspective, in the 1850s Michael Faraday,

while studying dispersion effects, developed gold nanoparticles,

and after a century Richard Feynman proposed the idea of

nanotechnology; in 1974 Norio Taniguchi coined the term

“nanotechnology,” with extensive contributions subsequently by

K. Eric Drexler to molecular nanotechnology (35). Later, the

terms “nanosystems” and “nanomachines” came into use

(36, 37). Nanosystems are described as particles with sizes

ranging from 1 to 100 nm, or particles that have one dimension

that is less than 10 nm (38, 39).

The basis for nano-scale material is that when large materials

are reduced to a smaller size (i.e., molecular size) they begin

showing new attributes. At this nanoscale, surface properties

experience a profound change due to greater chemical reactivity

and surface free-energy. There is a higher surface-to-volume ratio

that alters the efficiency and toxicity of these nanosystems.

Hence, nanosystems have distinctive properties (chemical,

biological, and physical) to attain selectivity, specificity, and

control of their functionality (40, 41).

From an immunomodulatory perspective, nanosystems are

nanostructured materials designed to interact with the immune

system in a controlled way. These systems can be engineered to

modulate immune responses, either by suppressing excessive

inflammation or by enhancing the body’s ability to fight

infections. Nanosystems have an excellent ability to specifically

modulate the immune responses for a therapeutic benefit. The
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nano-sized property of nanosystems permits them to efficiently

interact with immune cells, and consequently undergo

endocytosis by hyperactive immune cells in the sites of

inflammation. Hence, nanosystems influence the hyperactive

immune cells and decrease inflammation. Nanosystems may

bring about immunomodulation by acting on the production of

cytokines or neutralizing them, infiltrating and modulating/

inhibiting hyperactive immune cells, tempering oxidative

stress, polarization of macrophages, and stimulating T-cell

mediated tolerance (12).
3.1 Types of nanosystems

In the context of immunomodulation, nanosystems have been

developed for immunostimulation, i.e., activation of antigen

presenting cells, T-cells, and, for immunosuppression that involves

suppression of macrophages and regulatory T-cells (T-reg cells).

These nanosystems can be fabricated using biodegradable and

immunologically inert materials, such as polymer, lipid, and

carbohydrate nanoparticles, which act as ‘nanocarriers’ for the

controlled delivery of immunomodulatory molecules. Alternatively,

they can be made using nanomaterials with known immunoactive

properties, including metallic nanoparticles {such as carbon

nanotubes, gold (Au), zinc (Zn), iron (Fe), silver (Ag), and copper

Cu)}. Natural biologically derived materials that elicit

immunomodulatory effects, like extracellular vesicle nanoparticles,

liposomes, exosomes, enzymes, cell membranes, hyaluronic acid,

rosmarinic acid, and bilirubin, have also been explored. These

approaches have led to the development of hybrid nanosystems,

including biomimetic cell membrane-coated nanoparticles, trigger-

responsive nanosystems, hybrid nanogenerators, and cell

membrane-coated nanoparticles (9, 12, 42–44).

The nanoscaled dimensions of nanosystems permit them to

effectively interact with the surface receptors on the immune

cells of interest and final uptake by these immune cells to render

the preferred effect (16).
3.2 Mechanism of nanosystems

Nanosystems exert their immunomodulatory action through

several mechanisms. An exaggerated cytokine (pro-inflammatory

cytokines such as IL-1β, IL-6, IL-17, IL-18, TNF-α, and anti-

inflammatory cytokines like IL-4, IL-10, interferon [IFN]-γ,

transforming growth factor [TGF]-β production by hyperactive

immune cells is observed in inflammatory diseases, including

periodontitis (45, 46). Such an excessive production of pro-

inflammatory cytokines results in persisting inflammation

causing tissue destruction. A T-helper 1/T-helper 2 cell (Th1/

Th2) balance is also necessary to avoid inflammatory tissue

destruction (47). Nanosystems are devised to selectively modulate

the production of pro- and anti-inflammatory factors by the

hyperactive immune cells, i.e., inhibit the pro-inflammatory

cytokines production and stimulate anti-inflammatory cytokines

production, by regulating gene expression and/or the signaling
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pathways[bilirubin nanoparticles reduce the production of pro-

inflammatory cytokines by suppressing the signaling cascades

responsible for cytokine production like nuclear factor-kappa B

(NFκB) signaling cascade] to resolve the inflammation (48–50).

Cell membrane-coated nanosystems can also block the activity of

excessively produced pro-inflammatory cytokines (51). The next

type of mechanism is immune cell infiltration modulation.

Persistent or chronic inflammation progresses because of the

infiltration of hyperactive immune cells into the inflammatory

sites (52). Nanosystems are capable of inhibiting this infiltration

by blocking/downregulating the chemotactic activity of the

hyperactive immune cells (biodegradable nanoparticles have

docked onto neutrophils and decreased their infiltrative capacity)

(53, 54). Nanosystems can bring about favorable immune

responses by macrophage polarization modulation. Macrophages

have an important role in the immune reaction during which

they are polarized to suppressive type or pro-inflammatory type

(55, 56). It has been proposed that nanosystems can help in

curbing the macrophage polarization to pro-inflammatory type

(M1) and promote polarization to the suppressive type (M2)

(57–59). Other mechanisms by which nanosystems aid in

beneficial immunomodulation include enhancing the tolerogenic

capacity of regulatory T-cells (T-reg) (60, 61), decreasing the

numbers of hyperactive immune cells by selective killing (62–64),

and scavenging excess reactive oxygen species (ROS) that have

been produced during the inflammatory process (65–67).

Several immunomodulatory strategies are being aimed at

controlling the inflammatory/immune responses. Nanosystems

are biocompatible with exceptional physicochemical properties

and are effective as part of drug delivery platforms, and their use

in immunomodulatory therapy approaches seems promising (68).

The mechanisms of action of these nanosystems have

been outlined earlier. Construction of nanosystems for

immunomodulation entails considering the composition, size,

and surface characteristics (for suitable modification) to engineer

them for biodegradation (for example, by using biocompatible

materials like polylactic/polyglycolic acid polymers) in the human

body (69–72). Bearing these in mind, the distinct characteristics

of nanosystems can be potentially utilized in designing them to

interact with immune/hyperactive immune cells and tissues of

interest for precision and personalized therapy to restore health.

Nanosystems containing nanoparticles, polymers, exosomes,

lipids, liposomes, can be targeted to reach local sites that obviate

systemic side effects (73–76).
4 Nanosystems in the treatment of
periodontitis

Periodontitis is usually treated primarily by non-surgical/

surgical procedures by physically removing the oral biofilm,

dental calculus, and diseased periodontal tissues, and using

adjunctive agents. However, these treatment modalities may not

always be successful owing to patient(host) and clinical factors.

This led to the development of host modulation and local drug

delivery in periodontal therapy (77).
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Nanosystems show great potential for improving periodontal

drug delivery, utilizing various forms such as polymeric

nanoparticles, liposomes, exosomes, and nanofibers (78). Their

adaptable properties allow for effective targeting and retention in

the oral cavity while protecting drugs from pH changes and

enzymatic degradation. These structures can be designed for

controlled drug release in response to specific conditions in the

periodontal environment, addressing three main therapeutic

strategies: antibacterial therapy, immunomodulatory therapy, and

tissue regeneration. Additionally, the high surface area of

nanoparticles allows for significant drug loading, enhancing

treatment efficacy through combinations of therapies (79–81).

The role of nanosystems as immunomodulating agents in

periodontal therapy can be viewed from the perspective of

targeted local delivery for regulating the immune responses, and

interactive activity influencing antimicrobial and tissue

regenerative. Current strategies utilizing nanoparticle-based

approaches for immune regulation, antibacterial treatment,

and periodontal tissue regeneration have been reported in

the literature (82, 83).

The following subsections examine nanosystems as

immunomodulators and as synergistic agents in periodontal therapy.
4.1 Nanosystem-mediated
immunomodulation

Nanosystems can be used as carriers for conventional drugs

(like antibiotics or anti-inflammatory agents), and biologic agents

(like cytokines, antibodies). These nanosystems can offer targeted

and controlled release, improving the efficacy of these agents and

reducing side effects. Nanosystems can encapsulate antibiotics,

anti-inflammatory drugs, or even molecules to deliver them to

the site of interest more efficiently. These systems ensure that

the agents are released in a controlled manner, increasing their

local concentration and effectiveness while minimizing systemic

side effects.

Modulating cytokine secretion is essential for restoring

immune balance in periodontitis treatment. A baicalin- and

baicalein-loaded mesoporous silica nanoparticles (Nano-BA and

Nano-BE) was developed to regulate inflammatory cytokine

secretion (84). In an inflammation cell model using primary

human gingival epithelial cells stimulated with IL-1β, these

nanoparticles were effective in downregulating cytokines that

contributed to inflammation, such as epithelial cell-derived

neutrophil-activating peptide, monocyte chemoattractant protein-

1, and IL-8. Another study (85) utilized polydopamine

nanoparticles, synthesized through self-polymerization. These

nanoparticles significantly reduced levels of pro-inflammatory

mediators TNF-α and IL-1β in mice. Following treatment with

polydopamine nanoparticles, serum cytokine levels normalized,

along with liver enzyme levels. Additionally, polydopamine

nanoparticles effectively decreased ROS levels in

lipopolysaccharide (LPS)-induced inflammation, suggesting that

lowering ROS may have helped to regulate inflammatory

cytokine levels during periodontitis treatment.
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One animal model study of periodontitis showed that

resveratrol nanoparticles could decrease levels of pro-

inflammatory cytokines, increase levels of anti-inflammatory

cytokines, which resulted in a significant therapeutic effect on

periodontal inflammation (86).

Biologically derived material nanosystems have been reported

to be efficient in macrophage modulation and restoring T-helper

cell 17(Th17)/Treg balance, with an imbalance leading to

inflammation and tissue damage.

Exosomes are nanosized vesicles secreted by cells that can

modulate macrophage phenotypes. Dental pulp stem cell-derived

exosomes (DPSCs-Exo) combined with chitosan hydrogels were

used to treat periodontitis in mice (87). The treatment

significantly increased anti-inflammatory markers and reduced

pro-inflammatory markers in macrophages, suggesting that

DPSCs-Exo can facilitate macrophage polarization toward an anti-

inflammatory state. Exosomes from periodontal membrane stem

cells (PDLSC-exo) could correct the Th17/Treg imbalance in

periodontitis patients (88). The exosomes influenced the

expression of transcription factors related to these cell types and

transferred microRNA(miR)-155-5p, which helped regulate histone

deacetylase protein levels in CD4+ T cells. Exosomes from

mesenchymal stem cells (3D-exo) showed a reduction in Th17

cells and an increase in Tregs in a periodontitis mouse model (89).

Liposomes loaded with resveratrol (Lipo-RSV) were developed

to shift macrophages from the M1(pro-inflammatory) to M2

(anti-inflammatory) phenotype (90). This treatment increased

M2 markers (for example, CD206) and decreased M1 markers

(for example, CD86), indicating a successful polarization shift.

The mechanism involved the inhibition of signal transducer

and activator of transcription (STAT)1 phosphorylation and

promotion of STAT3 phosphorylation, leading to reduced

pro-inflammatory cytokines and increased IL-10 levels.

Cerium oxide (CeO2) acts as a nanoenzyme that scavenges

ROS, which can exacerbate inflammation if produced excessively.

Wang et al. (80), constructed a nanocomplex combining CeO2

with quercetin to enhance ROS scavenging. This inhibited M1

polarization and promoted M2 polarization, downregulated

pro-inflammatory cytokines, and upregulated anti-inflammatory

cytokines in an animal model with periodontal inflammation. It

was found to be effective in scavenging ROS and converting

pro-inflammatory macrophages to the anti-inflammatory type

removing inflammation.

Treatment with this nanocomplex led to a significant increase

in M2 macrophages and decreased pro-inflammatory markers,

indicating its potential for regulating the immune environment.
4.2 Synergistic role of nanosystems

To explore the potential beneficial effect of

immunomodulatory nanosystems additional specific therapeutic

agents have been combined, such as antimicrobials, and

mediators to regenerate the lost periodontal tissues. Several

interesting studies have provided information for considering

such synergistic approaches.
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Dong and co-workers (91), developed a hydrogel modified with

gold nanoparticles and epigallocatechin gallate for combined

antibacterial and periodontal regeneration therapy. This hybrid

demonstrated effective photothermal effects, raising temperatures

to 50.7°C under 808 nm near-infrared laser irradiation. It

achieved antibacterial rates of 92% against Escherichia coli and

94% against Staphylococcus aureus, causing significant damage to

the bacterial cell membranes. Additionally, treatment with this

formulation enhanced alkaline phosphatase (ALP) activity five-

fold and increased calcified nodule formation three-fold in bone

marrow stem cells (BMSCs). The mRNA expression levels of

ALP, runt-related transcription factor 2 (RUNX2), and

osteocalcin (OCN) also increased, likely due to the sustained

release of epigallocatechin gallate triggered by near-infrared light.

Compared to the control, this treatment resulted in closer

alveolar bone crest to cementoenamel junction distances and

better-organized collagen fibers. A dual pH- and enzyme-

responsive nanosystem (DSPE-PEG-PAMAM/ALA/Mino) for

trimodal synergistic treatment was investigated (78). This system

combined two key components: poly(aminoamine) (PAMAM),

which was loaded with the antimicrobial minocycline

hydrochloride and responded to pH changes, and 1,2-distearoyl-

sn-glycero-3-phosphoethanolamine-polyethylene glycol (DSPE-

PEG), which carried the antioxidant alpha lipoic acid (ALA) and

responded to bacterial enzymes. Under periodontitis conditions,

this system reasonably released both minocycline and ALA.

Pharmacodynamic studies showed that treatment with DSPE-

PEG-PAMAM/ALA/Mino resulted in minimal bacterial presence,

indicating strong antibacterial activity. Additionally, it inhibited

inflammation by reducing ROS and inducible nitric oxide

synthase levels. The treatment also significantly decreased the

alveolar bone crest to cementoenamel junction distances by an

average of 0.357 mm, demonstrating its effectiveness in

periodontal repair. Mechanistic studies revealed that the system

upregulated mRNA expression of ALP and OCN, promoting

osteogenic differentiation in BMSCs. This nanosystem effectively
TABLE 1 Nanosystems and their immunomodulatory effects on periodontal t

Nanosystem
Nanoenzyme CeO2 with Quercetin Decreased M1-, increased M2-ma

Mesoporous silica nanoparticles with Baicalin and
Baicalein

Decreased IL-1β-triggered pro-infl
inflammation

Polydopamine nanoparticles Reduced levels of pro-inflammato
inflammation

DPSC Exosomes Converted M1-to M2-macrophage
inflammation

Liposome with Resveratrol Converted M1-to M2-macrophage

Gold nanoparticles and epigallocatechin gallate ALP, RUNX2, and OCN increase

DSPE-PEG-PAMAM/ALA/Mino Reduced ROS and nitric oxide syn
promoting osteogenesis

Exosomes (loaded in collagen sponges) Periodontal regeneration

CS/PLA Osteogenesis periodontal regenera

PLA/CA nanofibers Osteogenesis periodontal regenera

Liposome with AMG-487 Osteoclastogenic disruption

CeO2, cerium oxide; M1 and M2, macrophage phenotypes; IL, Interleukin; MCP, monocyte chem

pulp stem cell; Th, helper T-cell; ALP, alkaline phosphatase; RUNX2, runt-related transcription

polyethylene glycol; PAMAM, poly aminoamine; ALA, alpha lipoic acid; MINO, minocycline; C
8-azaquinazolinone-a chemokine [C-X-C motif] receptor 3[ CXCR3] antagonist.
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combines antibacterial, immunomodulatory, and periodontal

repair functions for treating periodontitis.

Nanosystems are potentially helpful in enhancing the retention

time of local drug concentrations in the periodontal tissue sites.

Smart hydrogel platforms for periodontitis therapy have been

reported (92). These hydrogels feature responsive groups allowing

in situ phase transitions between solution and solid states within

the periodontal pocket. An injectable photosensitive hydrogel

incorporating dexamethasone-loaded zeolitic imidazolate

framework-8 (ZIF-8) nanoparticles into a photo-crosslinked

matrix, to enhance treatment efficacy was developed.

Additionally, these smart hydrogels could control the release of

nanoparticles in response to stimuli such as light, pH, enzymes,

and ROS. One study also showed that a chitosan/sodium

β-glycerophosphate hydrogel exhibited pH-responsive release

properties, collapsing significantly at pH 4.0, which is typical of

acidic periodontal environments (93). One research group

created bio-sponge materials from carboxymethyl chitosan, poly-

gamma-glutamic acid, and platelet-rich plasma, which promoted

blood clotting by releasing epidermal growth factor and vascular

endothelial growth factor (94). In periodontitis treatment, such

absorbable bio-sponge platforms support bone regeneration. For

instance, collagen sponges loaded with mesenchymal stem cell

exosomes enhanced the migration and proliferation of

periodontal ligament cells, facilitating periodontal regeneration.

A nanosystem of chitosan nanoparticles embedded in

polylactic acid nanofibers (CS/PLA) has been shown to enhance

the osteogenic differentiation of BMSCs and improve

extracellular matrix mineralization (95). The inclusion of

chitosan nanoparticles increased the mechanical strength of the

fibers while preserving space for regeneration. The CS/PLA

scaffold provided structural cues that guided cellular alignment,

beneficial for tissue regeneration, particularly in the periodontal

ligament. Alizarin red staining indicated that these nanofibers

could promote the formation of mineralized nodules by BMSCs

and upregulated osteoblast-related mRNA factors like RUNX2
herapy.

Result Reference
crophages, scavenging of ROS, reduction in inflammation Wang et al., (80)

ammatory cytokines such as MCP-1 and IL-8, reduction in Liu et al., (84)

ry mediators TNF-α and IL-1β, decreased ROS, reduction in Bao et al., (85)

s, reduction in Th17 cells and an increase in Tregs, reduction in Shen et al., (87)

s, reduction in inflammation Shi et al., (90)

d, periodontal regeneration Dong et al., (91)

thase, reduction in inflammation; ALP and OCN increased, Wang et al., (78)

Tang. et al., (94)

tion Shen et al., (95)

tion Ye et al., (96)

Lari et al., (97)

oattractant protein-1; TNF, tumor necrosis factor; ROS, reactive oxygen species; DPSC, dental

factor 2; OCN, osteocalcin; DSPE-PEG, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-

S, chitosan nanoparticles; PLA, polylactic acid nanofibers; CA, calcium alginate; AMG-487,
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and osteoprotegerin (OPG). Similar effects were observed with

PLA/calcium alginate (PLA/CA) nanofibers (96), suggesting that

using polysaccharide composites with PLA nanofibers could be

an effective strategy for treating periodontitis. AMG-487 [an

8-azaquinazolinone which is a chemokine [C-X-C motif]

receptor 3[ CXCR3] antagonist]nanoparticles, were incorporated

into liposome nanoparticles made from palmitic acid and

cholesterol to disrupt osteoclastogenesis (97). Tartrate-resistant

acid phosphatase (TRAP) staining indicated that the treatment

with AMG-487 nanoparticles -loaded liposomes successfully

inhibited osteoclast formation. Additionally, micro-CT analysis

revealed a 27.8% reduction in bone loss after one week of

treatment. This suggests that CXCR3 blockers could be a

promising target for addressing bone loss in periodontitis by

inhibiting osteoclastogenesis.

The relevant nanosystems and their effect on periodontal

therapy are summarized in Table 1.
5 Challenges, limitations, and clinical
implications

While the potential of immunomodulatory nanosystems in

periodontitis is significant, some challenges need to be addressed

for clinical application, as most of the evidence is based on

animal studies.

Firstly, safety. The long-term safety of nanoparticles needs to be

evaluated thoroughly. The potential for toxicity, especially if

nanoparticles accumulate in tissues, is an ongoing concern.

Second, biocompatibility. Nanoparticles must be designed to

interact safely with biological tissues. Surface modifications to

improve their biocompatibility and reduce immune system

recognition are critical. Third, targeting and specificity. While

nanoparticles can be engineered for targeted delivery, achieving

precise localization to the periodontal tissues and minimizing

off-target effects remains a challenge. Lastly, clinical efficacy.

Major research in this area focused on human clinical trials is

warranted as the body of evidence is relatively just the beginning.
6 Conclusion

The growing understanding of immunological regulation in

periodontitis, combined with advancements in nanotechnology is

driving the development of nanosystems. Unlike traditional

clinical immunomodulatory treatments, which are often

palliative, nanosystems target the underlying causes of

periodontitis to offer disease resolution. While nanosystems are

demonstrating significant promise in preclinical studies, their

clinical application still requires thorough evaluation. Continued
Frontiers in Dental Medicine 06
refinement and innovation in nanosystems strategies are

essential, with the expectation that they will soon offer new

treatment options for periodontitis.
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