
TYPE Review
PUBLISHED 14 October 2024| DOI 10.3389/fdmed.2024.1464009
EDITED BY

Roberta Gasparro,

University of Naples Federico II, Italy

REVIEWED BY

Gennaro Musella,

University of Foggia, Italy

Giuseppe Sangiovanni,

University of Salerno, Italy

*CORRESPONDENCE

Ryan Moseley

MoseleyR@cardiff.ac.uk

RECEIVED 12 July 2024

ACCEPTED 02 October 2024

PUBLISHED 14 October 2024

CITATION

Li P, Alenazi KKK, Dally J, Woods EL,

Waddington RJ and Moseley R (2024) Role of

oxidative stress in impaired type II diabetic

bone repair: scope for antioxidant therapy

intervention?

Front. Dent. Med 5:1464009.

doi: 10.3389/fdmed.2024.1464009

COPYRIGHT

© 2024 Li, Alenazi, Dally, Woods, Waddington
and Moseley. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.
Frontiers in Dental Medicine
Role of oxidative stress in
impaired type II diabetic bone
repair: scope for antioxidant
therapy intervention?
Pui Li1, Kuraym Khalid Kuraym Alenazi1, Jordanna Dally1,
Emma Louise Woods1, Rachel Jane Waddington2 and
Ryan Moseley1*
1Disease Mechanisms Group, School of Dentistry, College of Biomedical and Life Sciences,
Cardiff University, Cardiff, United Kingdom, 2Biomaterials Group, School of Dentistry, College of
Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
Impaired bone healing is a significant complication observed in individuals with
type 2 diabetes mellitus (T2DM), leading to prolonged recovery, increased risk of
complications, impaired quality of life, and increased risk of patient morbidity.
Oxidative stress, resulting from an imbalance between the generation of
reactive oxygen species (ROS) and cellular/tissue antioxidant defence
mechanisms, has been identified as a critical contributor to the pathogenesis
of impaired bone healing in T2DM. Antioxidants have shown promise in
mitigating oxidative stress and promoting bone repair, particularly non-
enzymic antioxidant entities. This comprehensive narrative review aims to
explore the underlying mechanisms and intricate relationship between
oxidative stress, impaired bone healing and T2DM, with a specific focus on the
current preclinical and clinical evidence advocating the potential of antioxidant
therapeutic interventions in improving bone healing outcomes in individuals
with T2DM. From the ever-emerging evidence available, it is apparent that
exogenously supplemented antioxidants, especially non-enzymic antioxidants,
can ameliorate the detrimental effects of oxidative stress, inflammation, and
impaired cellular function on bone healing processes during uncontrolled
hyperglycaemia; and therefore, hold considerable promise as novel efficacious
therapeutic entities. However, despite such conclusions, several important
gaps in our knowledge remain to be addressed, including studies involving
more sophisticated enzymic antioxidant-based delivery systems, further
mechanistic studies into how these antioxidants exert their desirable reparative
effects; and more extensive clinical trial studies into the optimisation of
antioxidant therapy dosing, frequency, duration and their subsequent
biodistribution and bioavailability. By enhancing our understanding of such
crucial issues, we can fully exploit the oxidative stress-neutralising properties
of these antioxidants to develop effective antioxidant interventions to mitigate
impaired bone healing and reduce the associated complications in such T2DM
patient populations.
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1 Introduction

Bone repair is the physiological process that occurs at sites of

lost tissue, with the ultimate aim of re-establishing normal bone

structure and function (1). The various stages of bone healing

are clinically important in the fields of dentistry and

orthopaedics, as these are responsible for achieving the successful

healing of bone defects caused by trauma, bone diseases (such as

osteonecrosis and tumours), or surgical procedures that involve

bone manipulation, including dental extractions, implant

placement or bone augmentation techniques (2–7). Therefore, it

is important to create and maintain a favourable environment to

allow optimal healing at the area of bone injury or defect.

However, despite being a highly organised process, it is

recognised that mechanisms underlying bone repair can be

significantly disrupted or impaired by the local tissue

microenvironment, including via metabolic, cellular and

molecular changes induced through the uncontrolled glycaemic

control and hyperglycaemia associated with type 2 diabetes

mellitus (T2DM). T2DM is a chronic metabolic disorder

characterised by insulin resistance and elevated blood glucose

levels (8). T2DM and its associated patient co-morbidities

represent major medical and public health concerns, due to their

ever-increasing global prevalence. Indeed, T2DM is estimated to

affect approximately 451 million people worldwide, with

projections expecting rises to 693 million by 2045 (9).

Consequently, such clinical situations provide significant

economic burdens to healthcare providers. In this regard,

uncontrolled T2DM is recognised as a mediator of disordered

bone metabolism and homeostasis, being associated with various

complications including delayed or compromised bone formation

following trauma or surgical intervention, resulting in prolonged

recovery time, non-union, heightened risk of other post-injury

complications and reduced functional outcomes (10–12). Thus,

T2DM is now an established risk factor for the development or

exacerbation of dental/orthopaedic fractures, periodontal disease

and implant failure (13–15), whilst normal glycaemic control is

imperative to the success of these reparative processes.

Concurent with impaired bone healing in T2DM patients are

several mechanisms implicated in causing dysfunctional cellular

behaviour and osteogenic activities, with one of the most well-

established mediators of these disrupted processes being oxidative

stress (16–21). However, despite oxidative stress being widely

acknowledged as a key influential factor on the various cell types

involved in normal bone repair responses, our current knowledge

and understanding of the roles and therapeutic potentials of the

antioxidants responsible for counteracting the elevated levels and

deleterious effects of oxidative stress in biological systems,

including bone, remains much less in comparison. Therefore, this

review article aims to explore the existing scientific preclinical

and clinical evidence to provide a much needed and detailed

overview of our current understanding of the mechanistic roles

which oxidative stress plays in mediating altered cell signalling

pathways leading to dysfunctional cellular repair responses in

T2DM bone, coupled with the evidence available to support or
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for the alleviation of such impaired T2DM-associated healing

outcomes in future.
2 Cellular and molecular mechanisms
of normal bone repair

Bone healing is regarded as a complex, but tightly organised

process, consisting of several highly coordinated overlapping

phases, involving inflammation, repair and remodelling; mediated

through cooperation between various cell types and intracellular/

extracellular signalling molecules to re-establish normal bone

architecture and function [(1, 22–25); summarised in Figure 1].

Bone repair commences when a bone is injured, leading to

vascular disruption. Platelet-mediated fibrin clot formation

occurs during haemostasis and acts as a provisional matrix,

releasing chemotactic growth factors and pro-inflammatory

cytokines, such as interleukin-1 (IL-1), IL-6 and tumour necrosis

factor-α (TNF-α) (23). Subsequently, inflammation occurs,

leading to the recruitment of neutrophils, classical pro-

inflammatory M1 subtype macrophages and lymphocytes to the

wound site (24–27). These inflammatory cells are primarily

responsible for the removal of bacteria, minimising the risk of

wound site infection.

Following inflammation, the blood clot transitions into

granulation tissue, where mesenchymal stromal cells (MSCs) are

recruited to the wound site from the bone marrow and

periosteum; along with alternative anti-inflammatory M2 subtype

macrophages, responsible for removing cellular debris and the

promotion of angiogenesis, facilitated via production of a wide

range of anti-inflammatory mediators as healing progresses

(24–26). Such important roles for MSCs in bone healing are

attributed to their self-renewal properties and responses to

growth factors, which initiate migratory and proliferative

responses, in addition to their osteogenic lineage differentiation

commitment to form mature osteoblasts via upregulation of

transcription factors, such as Runx2 and Osterix. Osteoblasts are

responsible for initiation of extracellular matrix (ECM) synthesis,

deposition, remodelling and subsequent mineralisation (22, 23).

Pericyte recruitment is also essential to stimulate endothelial cell

formation; whilst neo-angiogenesis and vascular ingrowth

support tissue repair via supplementation of nutrients and

additional MSCs to wound sites, both of which are necessary for

osteogenesis to occur (28, 29).

Central to these osteogenic and angiogenic responses at wound

sites are the upstream activation of cell signalling pathways,

principally orchestrated through the stimulation of endogenous

connective tissue cells by a plethora of growth factors, including

transforming growth factor-β1 (TGF-β1), bone morphogenetic

proteins (BMPs) and vascular endothelial growth factor (VEGF)

(30–32). Such growth factors possess osteoinductive,

osteoconductive and osteoadaptive properties that instigate

ossification. Maintenance of MSC populations is achieved through

the presence of niches, located within various bone regions (33, 34).
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FIGURE 1

Summary of the various overlapping phases and cell types associated with bone repair to re-establish normal bone architecture and function, and how
these cellular and molecular events are disrupted by the uncontrolled hyperglycaemia associated with T2DM to cause impaired healing. AGEs,
advanced glycation end products; MSCs, mesenchymal stromal cells; ROS, reactive oxygen species.
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During bone repair, MSCs are primarily sourced from two

distinct niches within the bone marrow cavity (35). These

include the highly vascularised perivascular/sub-endosteal niche,

which contains endothelial cells, hematopoietic stem cells (HSCs)

and uncommitted MSCs (36–38); whereas the endosteal niche,

located at the interface between trabecular bone and bone

marrow, comprises uncommitted MSCs, pre-osteoblasts and

osteoblasts lining compact bone (39–41). It was originally

proposed that bone marrow-derived MSCs are the main source

responsible for bone repair. However, it has since been shown

that MSCs within both the perivascular and endosteal niches

possess important roles in facilitating bone repair processes

overall (34, 35). Indeed, committed lineage restricted MSCs

lining the endosteum also play key roles in mediating bone

repair responses, acting as “first responders” during mineralised

tissue repair (41–43).

MSC osteogenic differentiation into mature osteoblasts is

followed by the synthesis and secretion of bone osteoid, an

immature bone ECM consisting of type I collagen, proteoglycans,

such as the small leucine-rich proteoglycans (SLRPs), decorin

and biglycan; and various bone glycoproteins (such as

osteocalcin, osteonectin, osteopontin and bone sialoprotein),

which possess distinct roles in regulating normal matrix-

mediated mineralisation (1, 37–39). Herein, some osteoblasts

become embedded within the mineralised ECM to form
Frontiers in Dental Medicine 03
osteocytes, with roles in regulating bone homeostasis and

osteoblast/osteoclast formation via hormonal and mechanical

cues; whilst others undergo apoptosis to arrest further bone

synthesis (44, 45).

The latter phase is tissue remodelling involves replacement of

immature woven bone with mature lamellar bone over time,

driven by mechanical loading and mediated via the coordinated

action of osteoblasts and bone resorbing osteoclasts (1, 37, 39,

46–50). Osteoblasts regulate osteoclastic differentiation from

HSCs, via secretion of receptor activator of nuclear factor-kappa

B ligand (RANKL) and osteoprotegerin (OPG), which control

RANKL interaction with receptor activator of nuclear factor-

kappa B (RANK) on HSC surfaces and osteoclast formation

overall. Hence, the type and quality of bone formed not only

relies on the tissue and anatomical location of the wound, but

also the mechanical conditions in the wound site (38, 47, 50).
3 Type 2 diabetes mellitus and
impaired bone healing

Due to the varied mineralised tissue perturbations observed in

T2DM patients, extensive preclinical studies have been performed

to enhance our understanding of the cellular, molecular and

metabolic events that support delayed/dysfunctional bone
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formation and the macro/microscopic changes in bone architecture

associated with T2DM, such as deteriorations in composition,

volume, quality and biomechanical properties. Indeed, it is

known that T2DM influences bone quantity properties, such as

the relative mineral density and porosity, which significantly

affect overall bone quality. Consequently, various biomechanical

analyses have shown that diabetic bone derived from humans

and rodent model studies are accompanied by increased fragility

and fatigue, with reductions in crucial parameters, such as

mechanical load, elasticity, energy absorption and stiffness (51–55).

Impaired bone healing observed in individuals with T2DM is a

multifactorial phenomenon, affecting all stages of bone repair and

mediated by numerous initiators, including hyperglycaemia,

chronic inflammation, oxidative stress, advanced glycation end

products (AGEs), polyol pathway, high protein kinase C (PKC)

activity and hexosamine biosynthesis pathways; which abrogate

bone healing and angiogenic processes [(8, 10–15); summarised

in Figure 1]. Chronic inflammation, which is commonly

observed in T2DM, further exacerbates the impairment of bone

healing processes, although it has been proposed that the

chemotactic ability to recruit inflammatory cells to wound

healing sites declines, compared to normo-glycaemic

environments. The diabetic bone environment is further

associated with a delayed, but sustained increase in the secretion

of pro-inflammatory cytokines, such as IL-1β and TNF-α,

capable of inhibiting osteoblast differentiation and activity, but

activating osteoclast formation and bone resorption (46, 49).

Furthermore, dysregulated immune responses and the prolonged

presence of pro-inflammatory M1 macrophages during T2DM,

at the expense of reparative M2 macrophages, may lead to

delayed resolution of inflammation and compromised tissue

repair (56–63).

Additional studies have suggested that impaired diabetic bone

healing is due to the delayed onset of osteogenic responses

during T2DM, culminating in histopathological features such as

osteopenia and decreased bone formation in vivo (56, 63–67).

Hyperglycaemia is well-established to significantly impact normal

bone marrow-derived MSC and osteoblast responses, which

exhibit reduced proliferative capabilities due to shortened

telomeres and early-onset replicative senescence, negatively

influencing MSC viability and apoptosis, colony-forming

efficiency, multi-potency and osteogenic differentiation

capabilities overall (68–74). Impaired osteogenesis under

hyperglycaemic conditions has been reported to occur due to

preferential MSC adipogenic differentiation, driven by

peroxisome proliferator-activated receptor-γ (PPAR-γ) (69, 71, 75).

Despite many studies supporting the detrimental effects of

hyperglycaemia on MSC and osteoblast responses in bone, other

studies suggest limited effects of hyperglycaemia on MSC and

osteoblast functions (76–79). These inter-study variations are a

proposed consequence of factors, such as the varied MSC

isolation procedures implemented, the source, purity and

heterogeneity of isolated MSC populations, and the contrasting

glucose concentrations/exposure periods used during in vitro

studies (41). Indeed, despite most in vitro hyperglycaemia studies

demonstrating significant deleterious effects of hyperglycaemic
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human or rodent MSC responses derived from the perivascular

niche (68–74), recent evidence suggests that hyperglycaemia has

limited impact on the proliferative and stem cell characteristics of

MSC populations derived from the endosteal niche of compact

bone (39–43, 80). However, endosteal niche-derived MSCs are

susceptible to reduced osteogenic and adipogenic differentiation

capabilities under such hyperglycaemic conditions.

In addition to direct effects of uncontrolled glucose levels on

MSC and osteoblast wound healing responses, the diabetic bone

microenvironment can further disrupt cellular reparative

functions via dysregulation of growth factor signalling and

alterations in bone ECM composition, both of which have

further repercussions for bone repair overall. Despite various

growth factors exhibiting essential roles in the regulation of

normal bone repair (30–32), T2DM induces an imbalance in the

expression and signalling of many growth factors, including

TGF-β1, BMPs, VEGF, fibroblast growth factor-2 (FGF-2) and

insulin-like growth factor-1 (IGF-1), which disrupts their

bioavailability and cell signalling mechanisms, contributing to

dysregulated angiogenesis and bone healing overall.

The delayed, but sustained secretion of TGF-β1 have been

reported, associated with high glucose-treated MSCs and other in

vivo models of diabetic bone repair, in addition to sera derived

from T2DM patients (56, 63, 73, 81–84). Such elevated TGF-β1
levels have been shown to be predominantly derived from MSCs

following short-term exposure to hyperglycaemia, whilst

prolonged high glucose exposure significantly retarded TGF-β1
expression and secretion by MSCs (63). Both scenarios could

have severe consequences for normal bone repair, as high TGF-

β1 levels are known to be inhibitory towards osteoblast

differentiation and ECM deposition during the latter stages of

osteogenesis (85–88); whilst reduced TGF-β1 levels with long-

term glucose exposure could result in complete attenuation of

osteogenic differentiation by MSCs and subsequent bone ECM

deposition and mineralisation (31, 32). Similar profiles have also

been shown with BMP-2, BMP-4 and BMP-6, where delayed

expression, followed by subsequent elevated levels and sustained

disruption to the normal secretion and cell signalling profiles

have been reported (83, 89–93). Decreased VEGF, FGF-2 and

IGF-1 levels have further been associated with diabetic bone

healing, which impedes both osteogenic and angiogenic

responses within the healing tissue (55, 92–96).

Such direct effects on growth factor signalling and MSC

osteogenic differentiation further impact on the deposition and

remodelling of the bone ECM, with significant perturbations in

composition and subsequent mineralisation reported. A

prominent feature of impaired diabetic bone healing is decreased

type I collagen synthesis. In combination with the established

structural changes to collagen molecules, due to AGEs forming

non-enzymatic irreversible crosslinks within the collagen triple

helix and between adjacent fibres, normal collagen enzymatic

crosslinking processes are compromised, resulting in impaired

bone stability, strength and quality (97–101). As these AGE-

based crosslinks impede the proteolytic remodelling of type I

collagen by osteoclasts, their reduced turnover leads to an
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accumulation of abnormal type 1 collagen that contribute to

diminishing biomechanical properties in diabetic bone (102).

In addition to type I collagen, the expression, protein levels and

structural properties of various non-collagenous ECM components

are further altered during T2DM. Regarding the prominent

proteoglycans within bone, decorin and biglycan, recent studies

have demonstrated that MSC expression and secretion are

enhanced following short-term hyperglycaemic exposure

(63, 102). However, prolonged exposure to high glucose

conditions significantly arrested decorin and biglycan expression

and protein levels. Numerous glycoproteins commonly localised

within bone are also influenced by hyperglycaemic conditions,

largely exhibiting altered expression of osteocalcin, osteopontin

and bone sialoprotein in vitro, with delayed and/or sustained

levels identified in vivo (56, 68, 81, 85, 103–107). Such ECM

component dysregulation has collectively been proposed to

perturb the sequence and orchestration of events that occur

during normal bone mineralisation and repair, such as collagen

fibrillogenesis, mineral deposition, crystal growth, TGF-β1
bioavailability and osteogenic cell signalling; further contributing

to delayed or impaired bone healing overall (108–110).

There is also substantial evidence confirming that the

uncontrolled glycaemic control associated with T2DM disrupts

normal endothelial cells functions and neo-angiogenesis, essential

for oxygen and nutrient provision and successful bone repair

(28, 29). Specifically, preclinical and clinical studies have

demonstrated that hyperglycaemia induces alterations in

hypoxia-inducible factor 1 (HIF-1) levels. Consequently, pro-

angiogenic signalling pathways are abrogated, resulting in

decreased VEGF expression, as well as that of other markers,

such as PECAM-1; whilst promoting the activation of anti-

angiogenic signals (55, 93, 97, 107, 111, 112). Additionally,

endothelial progenitor cells (EPCs) within the bone marrow

vascular niches are significantly reduced in number by

hyperglycaemia (113, 114). Such cellular losses lead to impaired

EPC and microvascular endothelial cell functions, via reduced

proliferation, migration and tube formation, together with

increased autophagy and apoptosis, in part mediated via

transcription factor, FOXO1; and culminating in defective

revascularisation (61, 112, 114–118).

Due to such hyperglycaemic and pro-inflammatory

environments, osteoblast differentiation and functions are

significantly disrupted during T2DM. Such events may be

abrogated further due to increased RANKL and reduced OPG

expression, in favour of enhanced HSC differentiation, osteoclast

formation and bone resorption (104, 119, 120). That said, the

role of osteoclastogenesis in T2DM is quite contentious, as there

is conflicting evidence to suggest opposing low RANKL and high

OPG expression profiles in osteoblasts under high glucose

conditions, potentially limiting bone resorptive activities

(74, 121). Similarly, despite hyperglycaemia leading to aberrant

osteoclast differentiation and increased bone resorption, in vitro

experiments suggest that changes in bone architecture typical for

T2DM are not a direct consequence of excessive bone resorption

(74). As it has also been proposed that osteoclasts possess

decreased bone resorption activity under hyperglycaemic
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osteoclastogenesis are impaired during T2DM.

Hence, the impairment of normal osteoblast and osteoclast

reparative responses, coupled with dysfunctional inflammation

and attenuated angiogenic responses that compromise blood

supply to the wound site, collectively lead to delayed healing and

reduced bone formation during T2DM. Consequently,

understanding the intricate relationship between oxidative stress,

impaired bone healing and T2DM, is crucial for developing

targeted therapeutic strategies to improve bone repair outcomes

in diabetic individuals. Therefore, the remainder of this narrative

review focusses on providing a comprehensive analysis of the

mechanisms underlying impaired bone healing associated with

T2DM, with a specific emphasis on the role of oxidative stress

and potential interventions involving antioxidants. By targeting

these underlying oxidative mechanisms and restoring the redox

balance between reactive oxygen species (ROS) production and

antioxidant defences, it may be possible to develop novel

therapeutic strategies that address the altered inflammatory,

angiogenic and osteogenic responses, to restore bone healing and

mitigate the clinical complications associated with T2DM.
4 Oxidative stress and antioxidants

Oxidative stress, referring to an imbalance between ROS

production and cellular/tissue antioxidant defence mechanisms,

plays a pivotal role in the pathogenesis of numerous diseases,

including T2DM and impaired bone healing (16–21). ROS, such

as superoxide radicals (O2
·−), hydrogen peroxide (H2O2), and

hydroxyl radicals (·OH), are generated as by-products of normal

cellular metabolism and can be further produced by various

enzymatic sources, including NADPH oxidases, xanthine oxidase,

and the mitochondrial electron transport chain (16–18, 21).

Additionally, in uncontrolled chronic diabetic environments,

AGEs can be produced. AGEs are a diverse group of compounds

spontaneously produced by non-enzymatic glycation or oxidation

of various proteins, including type I collagen (97–102), and

increased in T2DM patients due to hyperglycaemia and the

accompanying elevations in oxidative stress (123). AGEs also

promote inflammation and the production of pro-inflammatory

cytokines, perpetuating impaired healing (124). Consequently,

low ROS levels are purported to play important roles in

regulating cell signalling and functions (125). However, excessive

production of highly reactive ROS and AGE molecules can cause

indiscriminate modifications and damage to cellular and ECM

components, including DNA, proteins, lipids and carbohydrates,

which negatively impacts normal biomolecular and cellular

functions (16, 17). Furthermore, interactions between AGEs and

their cell surface receptor, receptor for AGEs (RAGE), can

enhance further pro-inflammatory cytokine and ROS production

(123, 126), resulting in a continual cycle of chronic inflammation

and bone resorption.

ROS levels are tightly regulated by enzymic and non-enzymic

antioxidant defence mechanisms, which act by neutralising and

scavenging ROS, maintaining redox homeostasis, and preventing
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cellular damage (16, 17, 19, 21, 127). Antioxidants are compounds

that can neutralise or reduce the harmful effects of ROS, which can

be divided into endogenous and exogenous antioxidants that help

mitigate oxidative stress. Endogenous antioxidant mechanisms

include enzymes, such as superoxide dismutases (SODs), catalase,

and glutathione peroxidases (GPx), as well as non-enzymatic

antioxidants such as glutathione.

Three distinct SOD isoforms have been identified in

mammalian cells, with the copper-zinc containing SOD (SOD1)

and manganese containing SOD (SOD2) being the most

significant. SOD1 and SOD2 are both ubiquitously expressed in

aerobic cells, being localised intracellularly within the cytosol and

mitochondria, respectively (128, 129). In contrast, the copper-

zinc containing SOD isoform (SOD3) possesses more restricted

expression and is particularly localised within pericellular and

ECM environments (128, 130). Nonetheless, wherever located,

SOD isoforms have key roles in alleviating oxidative stress by

catalysing the dismutation reaction to convert O2
·− to H2O2

(16, 17). Most aerobic cells also contain the haem containing

enzyme, catalase, particularly localised in the cytosol within the

peroxisomes (131), which detoxifies H2O2 into H2O (16, 17).

In addition to catalase, H2O2 decomposition is aided by

glutathione-metabolising enzymes, including glutathione

peroxidases (GPXs), S-transferases (GSTs), reductases (GSRs)

and synthetases (GSSs) (132, 133). GPXs catalyse the oxidation

of reduced glutathione (GSH) to oxidised glutathione (GSSG) by

H2O2 within the cytosol, with GSH synthesis being regulated and

restored through the actions of GSRs and GSSs.

Enzymic antioxidants are themselves regulated at a gene level

by nuclear factor E2-related actor 2 (Nrf2), a transcription factor

normally located in the cytosol under basal oxidative conditions,

being tightly regulated by Kelch-like ECH-associated protein 1

(Keap1), a redox-sensitive ubiquitin ligase which tethers Nrf2

within the cytosolic compartment (19, 134, 135). Under

conditions of oxidative stress, Keap1 is oxidised at reactive

cysteine residues, resulting in Keap1 inactivation, stabilisation of

Nrf2 and subsequent translocation to the nucleus where

antioxidant response element (ARE) binding and gene

transcription is initiated. Notable gene targets of Nrf2 regulation

include glutathione regulatory genes, such as GPx, glutathione

disulfide reductase 1 (GSR1) and glutathione synthetase (GSS)

(134, 135). In contrast, exogenous antioxidants are primarily

comprised of dietary nutrients, including ascorbic acid, α-

tocopherol, selenium and various phytochemicals, which provide

additional protection against oxidative damage (16, 17).
4.1 Oxidative stress and impaired bone
healing during T2DM

During normal bone healing, a delicate balance exists between

oxidative stress and antioxidant defence mechanisms, which permit

tissue repair to proceed. Normal glucose metabolism occurs

through the tricarboxylic acid cycle, involving the activation of

electron pump channels and electron movement across

mitochondrial membranes to generate energy. However, in
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across the membranes to significantly elevate O2
·− production,

disrupting the ROS/antioxidant balance (18, 21, 126, 127). This

imbalance induces detrimental effects in bone cells, ECM and

tissues, via disruption of cell signalling pathways involved in

inflammation, angiogenesis and bone formation, exacerbating

impaired healing (16–21, 123–127). In addition to elevated ROS

production by neutrophils and M1 macrophages during T2DM-

associated chronic inflammation (56–63), hyperglycaemia

contributes to ROS overproduction through multiple pathways,

including increased glucose auto-oxidation, AGE formation, PKC

activation and various other signalling pathways involved in

inflammation, angiogenesis and osteoblast differentiation [(16–21,

123–127); summarised in Figure 2].

Several studies have demonstrated the association between

oxidative stress and impaired bone healing with T2DM. The

excessive ROS generated under such diabetic states can induce

direct deleterious effects in resident bone cells, including

osteoblasts, osteoclasts, and osteocytes, disrupting their functions

and survival. MSCs and osteoblasts are particularly susceptible to

oxidative stress-induced damage and dysfunction, leading to

reduced proliferation and migration, increased senescence and

apoptosis, in addition to impaired MSC osteogenic differentiation

and ECM synthesis (64, 136–142); thereby promoting osteopenia

and compromised mineralisation overall (64, 65, 143–145).

Excessive ROS exposure is also capable of inducing comparable

impairment in osteocyte activities, culminating in disrupted bone

homeostasis (44, 45, 146–151). Furthermore, analogous studies

involving MSC, osteoblast and osteocyte interaction with AGEs

have reported similar findings (69, 73, 152–162), with responses

orchestrated by altered mitochondrial function, enhanced ROS

production and the induction of endoplasmic reticulum (ER) stress

(69, 152, 153, 161, 162). ROS- and AGE-induced alterations in

extracellular signal-regulated kinase (ERK1/2), c-Jun N-terminal

kinase (JNK), p38 mitogen-activated protein kinase (MAPK),

nuclear factor κB (NF-κB), Wnt and phosphoinositide 3-kinases

(PI3K)/Akt signalling in MSCs, osteoblasts or osteocytes, have each

been implicated in the dysregulation of normal osteogenic repair

responses, bone formation and function [(136, 140, 141, 148, 154,

163, 164); Figure 2].

Although ROS and AGE effects on osteogenic differentiation

would impede ECM component expression by mature osteoblasts

(68, 70, 85, 97, 136, 154, 157, 158), ROS and AGEs are also

capable of disrupting bone tissue architecture and mineralisation

through the direct modification and degradation of ECM

components commonly localised within bone. As detailed above,

a large body of evidence exists to demonstrate that AGE

reactions with type I collagen fibres negatively affects the

biomechanical properties of bone, such as bone stability, strength

and quality (97–101). However, ROS are also well-established

mediators of type I collagen modification and degradation,

especially the ·OH species (16). ROS exposure initially promotes

a reduction in collagen gelation, increased cross-linking,

aggregation, and collagen insolubility, followed by extensive

degradation to low molecular weight peptides, and an increased

susceptibility to proteolysis (165–168). The basis of these
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FIGURE 2

Summary of the main cell signalling pathway mechanisms reportedly disrupted by hyperglycaemia-associated oxidative stress and AGEs in MSCs,
osteoblasts and osteocytes, potentially contributing to impaired bone healing in T2DM patients. ERK1/2, extracellular signal-regulated kinase; JNK,
c-Jun N-terminal kinase; NF-κB, nuclear factor κB; PI3K, phosphoinositide 3-kinase.

Li et al. 10.3389/fdmed.2024.1464009
alterations in collagen structure is the modification and loss of

functional groups of certain amino acids, such as methionine,

histidine and tyrosine residues (16, 168). Considering the

essential requirement to maintain the correct composition,

architecture and orientation of type I collagen fibres to facilitate

the initiation and progression of normal bone mineralisation

within the gap zones between tropocollagen molecules (1, 37, 110),

such type I collagen structural modifications would have

severe implications to the propagation of bone mineralisation in

T2DM patients.

Similar structural changes have also been identified in bone

proteoglycans following ROS exposure. Bone proteoglycans,

predominantly the SLRPs decorin and biglycan, have been shown to

be susceptible to ROS-induced degradation, with degradative effects

particularly manifested as amino acid modification within the core

protein structure, such as leucine, proline, tyrosine and phenylalanine

residues, leading to protein cleavage (16, 169). In contrast, the

proteoglycan chondroitin 4-sulphate glycosaminoglycan (GAG)

chains remained relatively intact, unless exposed to ·OH species

(16, 169, 170). As these proteoglycans possess pivotal roles in the

initiation and progression of bone mineralisation, through the

regulation of collagen fibrillogenesis, mineral deposition, crystal

growth, TGF-β1 bioavailability and osteogenic cell signalling; such

manifestations could additionally impact on normal bone

mineralisation events in T2DM bone (108–110, 171).

Oxidative stress has also been suggested to promote osteoclast

differentiation and activity, leading to excessive bone resorption

and impaired bone. Although osteoclastogenesis may be activated
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via the elevated levels of pro-inflammatory cytokines, such as IL-

1β, IL-6 and TNF-α, associated with chronic diabetic

inflammation (7, 46, 49, 56–63); most preclinical studies propose

that ROS and AGEs can exert direct stimulatory effects on HSCs

and osteoclasts to enhance bone resorption. Increased H2O2, ER

stress, autophagy, inactivation of Nrf2 and elevated RANKL/OPG

ratios, are all implicated in mediating these responses (104, 121,

151, 172–180). Such events are activated via several signalling

pathways, including p38 MAPK, JNK, ERK1/2 and NF-κB, which

further exacerbates bone repair (148, 177, 179). However,

conflicting preclinical studies have suggested that hyperglycaemic

conditions actually disrupts normal bone resorptive mechanisms

in osteoclasts, via reductions in RANKL/OPG ratios, leading to

dysfunctional bone turnover (74, 181, 182).

In addition to direct influences on bone cells and the ECM, there

are numerous reports on the effects ROS and AGEs on immature

and mature endothelial cells, and the bone vasculature, which

could further induce contributory factors to delayed bone healing.

Indeed, ROS and AGEs have been shown to impaired endothelial

progenitor and endothelial cell responses, such as proliferation and

migration, with increased apoptosis, leading to abrogated neo-

vascularisation via p38 and p44/42 MAPK activation and

attenuated angiopoietin-1 (Ang-1) signalling (164, 183–189).

Elevated ROS generation and oxidative stress during T2DM

induce the increased detection of DNA, protein and lipid

oxidative stress biomarkers associated with diabetic bone

pathology and/or diminished healing (143–145, 190–192). These

events are enhanced by compromised antioxidant defences, due
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to reduced enzymic antioxidant expression/activities and decreased

levels of endogenous antioxidant capacity overall (16, 17, 19,

127–135). Indeed, the expression/activities of Nrf2, SODs, catalase

and GPx have been observed to diminish in diabetic animal

models and T2DM patients with impaired bone healing (143–145,

192, 193). Thus, such an antioxidant imbalance in hyperglycaemic

bone would promote the uncontrolled accumulation of O2
·−, H2O2

and ·OH, capable of altering normal bone healing responses by

affecting cell functions and viability, the ECM and the various cell

signalling pathways involved in the healing processes.
5 Antioxidants as potential therapies
for impaired bone healing during
T2DM

As it is established that antioxidant defences can be

compromised in T2DM patients (143–145, 192, 193), numerous

studies have investigated the potential therapeutic benefits of

exogenous antioxidant supplementation, to address cellular ROS/

antioxidant imbalances and improve bone healing outcomes

associated with T2DM. By neutralising ROS, enhancing

antioxidant defence mechanisms and/or inhibiting their

damaging effects on bone and vascular cell responses,

antioxidants can aid the restoration of redox balance and

promote favourable conditions for bone healing overall (16, 17,

19, 127–135).
5.1 Enzymic antioxidants and diabetic bone
repair

Despite the considerable reductions in enzymic antioxidant

expression/activities accompanying impaired bone healing with

T2DM (16, 17, 19, 127–135), few studies have evaluated the

potential delivery of exogeneous enzymic antioxidants to

hyperglycaemic bone defects, via strategies such as gene therapy,

SOD/catalase and GPx mimetics (Salens and Ebselen, respectively)

and nanozymes, or recombinant protein approaches, in order to

alleviate oxidative stress-induced inflammation, cell/tissue damage

and impaired bone healing; unlike other T2DM-related

complications (194–202). Instead, as both enzymic and non-

enzymic antioxidants would be expected to play essential roles in

mitigating oxidative damage and promoting bone healing in

individuals with T2DM, most reported antioxidant interventional

studies have relied upon the application of non-enzymic

antioxidants to achieve oxidative stress-counteracting outcomes.
5.2 Non-enzymic antioxidants and diabetic
bone repair

In contrast to the status with exogenous enzymic antioxidants,

considerable evidence exists supporting the promise of numerous

non-enzymic antioxidant entities in improving bone healing

outcomes associated with T2DM, in line with the findings of the
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considerable randomised controlled trials (RCTs) performed to

establish the therapeutic effects of systemic antioxidant

supplementation in improving insulin sensitivity, promoting

glycaemic control and alleviating complications in T2DM patients,

through improvements in oxidant/antioxidant status (203–205).

Although not universally validated in all RCTs performed, largely

due to factors associated with trial design, such as experimental

group sample sizes, mono-antioxidant entity assessments, and a

limited understanding of the optimal antioxidant dosing regimen

(206–208), these findings still provide some support to the concept

that non-enzymic antioxidant supplementation could possess

therapeutic potential in diabetes management and treatment

overall. Thus, it is reasonable to speculate that such systemic

protective benefits would be further evident with more localised

diabetic complications, including impaired diabetic bone healing.

However, in contrast to the extensive number of RCTs that have

previously been performed, which have shown beneficial effects of

exogenous non-enzymic antioxidant supplementation on systemic

complications associated with T2DM (203–205), the number of

RCTs which have specifically examined the efficacies of

supplementation with various non-enzymic antioxidants on bone

health and healing outcomes in T2DM patients, are far fewer in

comparison. Nonetheless, the findings and conclusions of these

limited number of reported RCTs to date (4 in total), are

summarised in Table 1.

As the non-enzymic antioxidants suggested to exhibit bone

healing efficacies under hyperglycaemic conditions are commonly

derived from dietary sources, it would be rational to assume that

the healthy diet and lifestyle changes advocated by clinicians for

diagnosed T2DM patients would begin to address any pre-

existing deficiencies in a patient’s non-enzymic antioxidant

profiles and total antioxidant capabilities (204, 205, 207). The

principal non-enzymic antioxidants evaluated as therapeutics

against impaired bone healing associated with uncontrolled

hyperglycaemia and T2DM, are summarised below. Table 2 also

highlights these various therapeutic interventions and key

mechanistic findings from in vitro and in vivo animal model and

human clinical trials.

5.2.1 Ascorbic acid (Vitamin C)
Ascorbic acid is an essential micronutrient and potent

hydrophilic antioxidant, which plays a crucial role in collagen

synthesis and bone formation (207, 208). Ascorbate directly

scavenges ROS and subsequently protects against lipid

peroxidation and protein glycation. Studies have also revealed

that diabetics have lowered ascorbic acid levels, compared to

their non-diabetic counterparts (207). To address such

inadequacies, numerous studies have shown that ascorbate

supplementation can counteract the cytotoxic effects of oxidative

stress and AGEs on MSC proliferation, osteogenic differentiation,

and the restoration of their paracrine signalling mechanism

capabilities during hyperglycaemic conditions (212, 213); in

addition to aiding the resolution of immuno-inflammatory

responses in diabetic bone (214–216) and restoring endothelial

cell function and other vascular responses (217). Such beneficial

effects on bone reparative mechanisms are reflected in T2DM
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TABLE 1 Summary of the findings of reported randomized controlled trial (RCT) studies, evaluating the efficacies of various non-enzymic antioxidants as
potential therapeutics for the maintenance of bone health and healing in T2DM patients.

Antioxidant T2DM patient
sample size

Intervention Duration Outcomes References

Quercetin
(Coenzyme Q)

Total: n = 18.
Group 1: n = 6;
Group 2: n = 6;
Group 3: n = 6

Group 1: Control (no intervention
post-tooth extraction);
Group 2: Application of collagen
hydrogel only to extracted tooth
sockets;
Group 3: Application of quercetin
(150 mg/mL)/collagen hydrogel to
extracted tooth sockets

3 months Supplementation with quercetin (150 mg/mL)/collagen
hydrogel associated with significantly higher bone
formation and density, in addition to significantly
increased osteogenic marker (Runx2, osteopontin)
expression in newly formed tissues.

(209)

Resveratrol Total: n = 50.
Group 1: n = 25;
Group 2: n = 25

Group 1: 480 mg/day;
Group 2: Placebo.

1 month Supplementation with 480 mg/day resveratrol associated
with significantly lower fasting insulin levels and insulin
resistance, in addition to significantly decreased pocket
depths.

(210)

Resveratrol Total: n = 192.
Group 1: n = 65;
Group 2: n = 65;
Group 3: n = 62

Group 1: 500 mg/day;
Group 2: 40 mg/day;
Group 3: Placebo.

6 months Supplementation with 500 mg/day resveratrol associated
with positive effects on bone density, especially in
specific high-risk subgroups of patients

(211)
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patients by the positive associations evident between high levels of

circulating ascorbate and the possession of significantly greater

bone mineral densities (218).
5.2.2 α-Tocopherol (Vitamin E)
α-Tocopherol is another powerful lipid-soluble antioxidant,

highly effective in protecting lipids from peroxidation (261, 262).

α-Tocopherol has also been shown to reduce oxidative stress and

inflammation via scavenging ROS and suppressing NF-κB

signalling pathways (207). In contrast, reduced α-tocopherol

levels are associated with the onset and development of T2DM.

α-Tocopherol is well-known for influencing bone metabolism

(219), demonstrating positive antioxidant and anti-inflammatory

effects on MSCs derived from rodent T2DM models, especially at

lower concentrations (220). Furthermore, α-tocopherol treatment

reduces MSC apoptosis, whilst repairing autophagy and restoring

PI3K/Akt (protein kinase B) signalling (221). Similarly,

α-tocopherol reduces high glucose/hypoxia-induced cell apoptosis

in EPCs, by promoting B-cell lymphoma 2 (Bcl-2) and Akt

expression, and by inhibiting NF-κB p65, JNK, neurogenic locus

notch homolog protein 1 (Notch-1), and p38 MAPK expression,

subsequently resulting in enhanced EPC migration and increased

capillary density in vivo (222). The elevated presence of serum

α-tocopherol levels has further been shown to correlate with

reductions in alveolar bone loss in rodent models of diabetic

periodontitis (223).
5.2.3 Quercetin (Coenzyme Q)
Quercetin is a flavonoid compound abundantly found in

various fruit and vegetables, and particularly shown to be

beneficial for T2DM due to its anti-hyperglycaemic and

antioxidant properties (263–265). The direct ROS scavenging

activity of quercetin is due to its β-ring catechol arrangement, in

addition to the -OH group at position 3 of the adjoining AC

rings. It is also capable of attenuating oxidative stress via the

Nrf2/ARE pathway (266). Recent in-silico studies have further
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suggested that quercetin acts via the PI3K/Akt, MAPK, PKC, and

JNK signalling pathways to elicit ROS-protective effects (267, 268).

Consistent with reports that quercetin possesses both anti-

hyperglycaemic and antioxidant capabilities (263–265), several

studies have proposed that quercetin decreases blood glucose

levels and oxidative stress in rodent animal models of

experimental periodontitis diabetic bone healing; improving bone

mineral metabolism, serum antioxidant levels and diminishing

bone loss, and thereby preventing disease progression and

leading to enhanced bone architecture and biomechanical

properties (224–228). At a cellular level, quercetin may facilitate

bone haemostasis by limiting inflammation and by reducing

senescent cells and sirtuin 1 (SIRT1)-induced autophagy.

Quercetin has been shown to stimulate MSC proliferation and

osteogenic differentiation, partly regulated through the H19/miR-

625-5p axis to activate the Wnt/β-catenin signalling pathway

(229). Furthermore, quercetin can protect EPCs from

hyperglycaemia and ROS, lowering oxidative stress biomarker

levels and restoring cell viability, migration responsiveness, nitric

oxide (NO.) production, and cyclic guanosine 3′, 5′-cyclic
monophosphate (cGMP) levels (269).

Due to these properties identified during preclinical studies, a

RCT was performed involving quercetin delivery into tooth

extraction sockets via a collagen hydrogel to promote mandibular

alveolar socket augmentation post-tooth extraction, particularly

prevalent with T2DM patients (209). Quercetin was shown to

significantly increase bone density vs. controls, due to enhanced

MSC osteogenic differentiation.
5.2.4 Resveratrol
Resveratrol is a natural polyphenolic compound found in red

grapes and other plant sources, which possesses both antioxidant

and anti-inflammatory properties (270, 271). Resveratrol exhibits

antioxidant effects by directly scavenging ROS, inhibition of NF-

κB, and enhancing the antioxidant enzymes, such as SODs.

These responses are largely mediated through the presence of 3′,
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TABLE 2 Non-enzymic antioxidants evaluated as potential therapeutics against impaired bone healing associated with uncontrolled hyperglycaemia and
T2DM, and their proposed mechanisms of action based on preclinical and clinical findings.

Antioxidant & chemical
structure

Effects on bone repair under
hyperglycaemic conditions

Mechanisms of action/cell
signalling pathways influenced

References

Ascorbic Acid (Vitamin C) Anti-inflammatory.
Enhanced MSC proliferation and osteogenic
differentiation capabilities.
Enhanced endothelial cell function and vascular
responses.
Increases bone mineral density.

Not reported. (212–218)

α-Tocopherol (Vitamin E) Anti-inflammatory.
Reduces MSC apoptosis, whilst restoring autophagic
responses.
Reduces EPC apoptosis, leading to enhanced migration
and angiogenic responses.
Prevents alveolar bone loss in rodent models of diabetic
periodontitis.

Suppresses NF-κB signalling.
Activates PI3K/Akt signalling.
Suppresses JNK, Notch-1, and p38 MAPK
signalling.

(219–223)

Quercetin (Coenzyme Q) Anti-inflammatory.
Reduces MSC senescence and SIRT1-induced autophagy
responses.
Stimulated MSC proliferation and osteogenic
differentiation.
Restoring EPC viability, migration, and NO. and cGMP
production.
Improving bone mineral metabolism.
Reduces bone loss, and enhances bone architecture,
density and biomechanical properties.

Activates Wnt/β-catenin signalling via H19/
miR-625-5p axis.

(209, 224–229)

Resveratrol Anti-inflammatory.
Reduces MSC apoptosis.
Stimulates MSC osteogenic differentiation.
Suppresses NOX isoform expression.
Protects EPCs and endothelial cells, promoting
neovascularisation responses.
Reduces bone loss, and enhances bone architecture,
density and biomechanical properties.

Suppresses TLR4, NF-κB, and JAK/STAT
signalling.
Activates Akt/GSK3β/FYN axis and Akt and
E2F3 signalling.
Restores SIRT1 expression.
Activates Keap1/Nrf2/ARE signalling.

(210, 211,
230–243)

Curcumin Anti-inflammatory.
Stimulated MSC migration, proliferation and osteogenic
differentiation.
Protects EPCs and endothelial cells, promoting
neovascularisation responses.

Activates TGFβ1/Smad2/3 signalling.
Activates PI3K/Akt/NF-κB signalling.

(244–251)

Silibinin (Silybin) Anti-inflammatory.
Protects MSCs and osteoblasts, restoring osteogenic
responses.
Promotes endothelial cell viability and functionality,
enhancing angiogenic and autophagic responses.

Activates PI3K/Akt signalling. (252–256)

Coumarin Anti-inflammatory.
Promotes normal regulation of osteoclastogenesis and
bone resorption by osteoblasts.
Protects EPCs and endothelial cells, promoting
neovascularisation responses.

Activates RANKL/OPG and RANK signalling.
Suppresses AGE/RAGE signalling.

(257–260)
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4′, and 5′-hydroxyl groups in its phenolic rings (272, 273).

Furthermore, studies have identified that sequential proton loss

electron transfer (SPLET), and hydrogen atom transfer (HAT)

are the two major mechanisms underlying the direct ROS

scavenging activity of resveratrol (274). Intriguingly, resveratrol

has also been shown to exhibit pro-oxidant effects by activating

various redox-associated signalling pathways. For instance,
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resveratrol promotes the production of antioxidant enzymes by

activating the AMPK-FOXO1 pathway, which promotes the

expression of catalase and SOD2 (275). Both Nrf2 and SIRT1

plays important roles in the protective effects of resveratrol,

modulating the expression of antioxidant enzymes as well as

promotes mitochondrial biogenesis, through the targeting of

downstream transcription factors, including the FOXO family.
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Based on these properties, there has been much interest in

resveratrol from a therapeutic viewpoint in relation to the

pathologies associated with T2DM, including impaired bone

healing. Resveratrol has been shown to possess protective roles in

ameliorating bone loss during various stages of the repair process

under hyperglycaemic conditions, exhibiting anti-inflammatory

effects through the suppression of pro-inflammatory cytokine

levels and Toll-like receptor 4 (TLR4) and NF-κB signalling

(230–232). Furthermore, resveratrol reduces MSC apoptosis and

promotes osteogenic differentiation, resulting in accelerated bone

healing with improved glycaemic control, bone density and

trabecular architecture, and enhanced biomechanical properties

(210, 211, 232–239). Amelioration of the detrimental impact of

hyperglycaemia on osteogenic dysfunction has been reported to

be mediated through Nrf2 activation via the Akt/glycogen

synthase kinase 3β (GSK3β)/FYN axis and the restoration of

SIRT1 expression in MSCs and osteoblasts (236, 237).

In addition to direct effects on osteogenesis, studies have

confirmed similar protective resveratrol responses in vascular

cells, with the suppression of NADPH oxidase (NOX) isoform

expression coupled with the up-regulation of Keap1/Nrf2/ARE

signalling and the antioxidant cascade, leading to reduced

oxidative stress (240). Such antioxidant capabilities induce anti-

inflammatory marker expression in endothelial cells via the

down-regulation of NF-κB and JAK/STAT signalling (241),

whilst further protecting and promoting neovascularisation by

EPCs and endothelial cells via regulation of Akt and E2F3

signalling (242, 243).

5.2.5 Other non-enzymic antioxidants with
proposed diabetic bone repair capabilities

Curcumin, derived from the spice turmeric, possesses potent

antioxidant, anti-inflammatory, and anti-diabetic properties

(244, 245). Subsequently, studies have highlighted its beneficial

effects of exogenously administered curcumin on bone healing under

diabetic conditions by reducing oxidative stress, inflammation, and

stimulating high quality bone formation via enhancement of MSC

proliferation, migration and osteogenic differentiation, orchestrated

via TGFβ1/Smad2/3 pathway activation (246, 247). Similarly,

curcumin has been demonstrated to further bestow protective and

pro-angiogenic properties to EPCs and endothelial cells, mediated

through PI3K/Akt/NF-κB signalling (248–251).

Silibinin (also referred to as silybin) is a polyphenolic flavonoid

present in foods, such as artichokes, which has been shown to

possess potent antioxidant capabilities in various clinical

situations, including those associated with T2DM (252, 253).

Indeed, silibinin alleviates MSC and osteoblast dysfunction

associated with oxidative stress and hyperglycaemia, by

modulating PI3K/Akt signalling (254, 255). Moreover, it

promotes endothelial cell viability and functionality under

hyperglycaemic conditions, through its antioxidant properties

enhancing angiogenic and autophagic responses (256, 276).

Coumarin is a heterocyclic compound belonging to the class of

benzopyrone enriched in numerous edible plants, which possess a

wide array of bioactive properties, including anti-inflammatory

and antioxidant capabilities (257, 258). Hence, coumarin have
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been shown to ameliorate impaired bone turnover and

remodelling under diabetic conditions, by promoting the

expression of OPG and RANK in osteoblasts and osteoclasts,

respectively, thereby restoring the normal balance between

RANKL/OPG and RANK regulating osteoblast function,

osteoclastogenesis and osteoclast resorptive activities (259).

Coumarin has been reported to induce such effects by

suppressing the interaction between AGEs and its receptor,

RAGE. Such anti-AGE effects have also been identified in

endothelial cells, reducing oxidative stress and inflammation (260).

Therefore, from the comprehensive range of studies performed,

it is evident that such preclinical studies have largely confirmed the

beneficial effects of various non-enzymic antioxidants, such as

quercetin, resveratrol and curcumin, in promoting bone healing

outcomes under hyperglycaemic conditions. Such studies

complement recent systematic review findings of their efficacies in

promoting repair during various other non-diabetic and diabetic

situations associated with impaired osteogenesis (18, 228, 277).

These antioxidants influence multiple signalling pathways at a

cellular level to exert such diverse effects, ultimately modulating

oxidative stress, inflammation, and the promotion of osteoblastic

activities, leading to improved bone repair overall.
6 Future perspectives and implications
for clinical practice

From the information above, it is irrefutable that impaired

bone healing is a significant complication associated with T2DM,

posing challenges for patients and healthcare providers

worldwide. Recognition of the significant roles that oxidative

stress and antioxidants play in impaired bone healing associated

with T2DM has important clinical implications. The

accumulating preclinical evidence suggesting that antioxidants,

especially non-enzymic antioxidant entities, can mitigate the

detrimental effects of oxidative stress, inflammation, and

impaired cellular function on bone healing processes has received

much attention; and holds much promise.

Despite such advances, several important considerations and

challenges remain to be addressed. For instance, further studies

are needed to unravel the precise cellular and molecular

mechanisms underlying the effects of oxidative stress on bone

cells and the specific mechanisms through which antioxidants

exert their protective effects. Additionally, as inflammation,

angiogenesis and new bone formation are inextricably linked

during bone healing, investigating the crosstalk between oxidative

stress and the other cell signalling pathways involved in the

various stages of bone repair would provide a comprehensive

understanding of these complex interactions. The performance of

additional mechanistic studies would further help elucidate how

antioxidants exert their desirable reparative effects, which would

provide valuable insights into the identification of specific

cellular and molecular targets for more effective therapeutic

intervention development; and justification for the development

of antioxidant-based therapies to improve bone healing outcomes

in T2DM patients.
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Although much of the preclinical evidence supporting

antioxidant supplementation as a therapeutic strategy to enhance

bone repair in T2DM patients has focussed upon non-enzymic

antioxidants, including quercetin, resveratrol and curcumin,

further research into the potential benefits of more sophisticated

enzymic antioxidant-based delivery strategies should be explored.

Gene therapy, SOD/catalase and GPx mimetics, nanozymes, and

recombinant protein approaches show therapeutic potential in

their abilities to counteract excessive oxidative stress (188–196),

although the evidence supporting their effectiveness in alleviating

inflammation and impaired bone healing responses associated

with uncontrolled hyperglycaemia is much less in comparison.

Thus, such novel interventional approaches to enhance depleted

endogenous antioxidant defences accompanying impaired bone

healing with T2DM (16, 17, 19, 127–135), could hold promise as

future therapeutic strategies.

One significant challenge to this concept that requires major

consideration for both enzymic and non-enzymic antioxidants

are their pharmacological properties, including their respective

mechanisms of delivery, half-life, biodistribution and

bioavailability of individual antioxidant entities (199, 278, 279).

Indeed, their poor bioavailability remains a significant constraint

to antioxidant therapy development and efficacy, be they directly

delivered locally to bone defect sites within the oral cavity, or

following oral intake, gastrointestinal absorption and systemic

circulation to the bone tissues, as conventionally achieved with

dietary antioxidants. Thus, various antioxidant administration

approaches, including both conventional and novel drug delivery

systems, have been explored in attempts to enhance their

pharmacological action via drug targeting and increased

bioavailability. These have included numerous biomaterial- and

nanomedicine-based approaches, such as 3D scaffolds, hydrogels,

nanoparticles, micelles and liposomes (199, 278, 280).

From a clinical perspective, RCTs evaluating the use of non-

enzymic antioxidants in impaired bone healing associated with

T2DM are severely limited [(209–211), Table 1]; but show some

promising results. However, in comparison, no RCTs have, to

date, been performed to assess the efficacies of enzymic

antioxidant-based delivery systems as novel therapeutics to

address impaired healing in T2DM patients. Consequently, due

to the overall lack of RCTs evaluating the potential beneficial

effects of the exogenously supplemented enzymic and non-

enzymic antioxidants on bone health and repair overall, there is

a considerable need to address this situation in future. If

successful, these studies should be subsequently progressed

towards evaluations of antioxidant dosing, frequency and

treatment duration, and subsequent biodistribution and

bioavailability. Further comparisons of monotherapy vs.

combinational antioxidant therapies, and their respective

efficacies and potential synergistic effects in improving bone

healing outcomes, whilst reducing the risk of complications in

T2DM patients should also be prioritised. Healthcare providers

involved in the care of individuals with T2DM, and impaired

bone healing should consider the assessment of oxidative stress

markers as part of the diagnostic and treatment process.

Monitoring markers, such as ROS, oxidative damage biomarker
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and antioxidant enzyme levels, may help identify patients at

higher risk for complications and guide the selection of

appropriate interventions.

Lifestyle modifications aimed at reducing oxidative stress, such

as maintaining tight glycaemic control, adopting a healthy diet rich

in antioxidants, regular physical activity, and smoking cessation,

could also be recommended to support bone healing processes.

Furthermore, patient supplementation with exogenous

antioxidants, such as ascorbic acid, tocopherol, resveratrol or

quercetin, could be considered as adjunctive therapies to enhance

bone healing outcomes in individuals with T2DM. However, it is

important to note that the optimal dosage, treatment duration,

and specific patient populations that would benefit the most

from antioxidant supplementation require further investigation.

Personalised treatment plans should further be developed based

on individual patient characteristics, genetic factors, oxidative

stress biomarker levels, response to antioxidants and T2DM

severity; thereby tailoring antioxidant therapies based on patient

characteristics and disease profiles that may lead to improved

treatment outcomes.

While significant progress has been made in understanding the

role of oxidative stress and antioxidants in impaired bone healing

associated with T2DM, further studies are warranted to optimise

antioxidant dosages, treatment durations, formulations and

delivery methods to promote maximum efficacy and to better

understand the specific mechanisms through which antioxidants

modulate bone healing in the context of T2DM. Furthermore,

the undertaking of comparative studies into the use of

antioxidant monotherapies vs. the potential synergistic effects of

combining different antioxidants as therapies or with other

interventions, such as pharmacological agents or regenerative

therapies should be explored, to potentially enhance

bioavailability, efficacy and/or reduce side-effects. Addressing

these future perspectives and challenges will enhance our

understanding of the therapeutic potential of antioxidants in

treating impaired bone healing associated with T2DM; and

facilitate the development of safe, efficacious and accessible,

antioxidant-based therapeutic interventions to improve bone

healing outcomes in individuals with T2DM.
7 Conclusions

In summary, it is acknowledged that oxidative stress and

antioxidants play critical roles in impaired bone healing

associated with T2DM. Although mainly ascertained through the

various preclinical studies performed, these have provided

valuable insights into the potential mechanisms and therapeutic

applications of antioxidants in counteracting the deleterious

effects of T2DM on bone repair processes, particularly where

non-enzymic antioxidants are concerned. Through a greater

understanding of these mechanisms and harnessing of the

potential that antioxidants can offer, we can undoubtedly aid the

development of novel treatment strategies to attenuate

oxidative stress and enhance bone healing outcomes in

individuals with T2DM.
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Exogenous antioxidant supplementation already shows promise

as a therapeutic approach to mitigate oxidative stress and improve

bone healing outcomes in experimental studies. However, although

their ability to counteract oxidative stress, inflammation and

cellular dysfunction provides a rationale for further exploration in

clinical settings, additional translational studies and more

comprehensive, well-designed RCTs are needed, to confirm the

potential of targeted exogenous antioxidant interventions, whilst

optimising dosages, treatment durations, biodistribution,

bioavailability, and delivery methods to maximise their

pharmacokinetic, pharmacological and therapeutic benefits;

ultimately alleviating the burden of impaired bone healing and

improving the quality of life in T2DM patient cohorts.
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