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Characteristics of inflammatory
mediators in dental pulp
inflammation and the potential
for their control
Nobuyuki Kawashima* and Takashi Okiji

Department of Pulp Biology and Endodontics, Division of Oral Health Sciences, Graduate School of
Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
Dental pulp is a mesenchymal connective tissue located inside the rigid
encasement of the dentin. When bacteria or bacterial products invade the
dental pulp, inflammation known as pulpitis is induced in this tissue. Various
mediators produced during the course of pulpitis profoundly modify the
pathophysiology of the inflammation. Typical mediators include cytokines,
chemokines, nitric oxide, reactive oxygen species, matrix metalloproteinases,
proteases, neutrophil extracellular traps, neuropeptides, and eicosanoids.
Controlling these mediators may potentially lead to the healing of pulpitis and
the preservation of pulp tissue. This review discusses these mediators and
further explores the possibility of controlling them.
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1 Introduction

Dental pulp is a nerve- and vascular-rich mesenchymal connective tissue surrounded

by a mineralized tissue called dentin (1). Cells with fibroblastic characteristics (known as

dental pulp cells) are the major cellular constituents of the pulp tissue. Along the most

peripheral portion of the pulp tissue subjacent to the pulp−dentin border, a layer of

cells responsible for dentin formation, known as odontoblasts, are located. The pulp

tissue also contains dental pulp stem cells, which are mesenchymal stem cells that have

the ability to differentiate into a new generation of odontoblast-like cells responsible for

reparative dentin formation when the original odontoblasts are lost as a result of severe

damage to the pulp (2). Various types of immunocompetent cells are also present in

the dental pulp tissue. In particular, dendritic cells constitutively expressing major

histocompatibility complex class II molecules are abundant just below the odontoblast

layer and respond as antigen-presenting cells to bacterial stimuli derived via the dentin

tubules (3, 4). Class II-negative resident macrophages, another major immune cell

population of the pulp, are diffusely distributed throughout the pulp tissue. These cells

express M2 macrophage markers such as CD163 and may be associated with the repair

of injured pulp tissue by promoting angiogenesis (5). The nerves and blood vessels that

are abundant in the pulp tissue also characterize the pathophysiology of this tissue.

Following invasion of bacterial stimuli into the pulp tissue, typically through a carious

lesion or traumatically exposed dentin, localized pulp inflammation is initiated in the area

around the site of the initial challenge in the coronal pulp. Pulp inflammation then spreads

to the root pulp tissue, exhibiting variable histology and clinical manifestations. Clinically,

pulpitis is classified as reversible pulpitis or irreversible pulpitis, the latter being further
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classified into symptomatic and asymptomatic irreversible pulpitis

(6). Reversible pulpitis usually progresses to irreversible pulpitis,

but the acute manifestation of irreversible pulpitis depends on

the balance between the degree of bacterial invasion and the

activity of the defense systems present in the pulp tissues (7).

Although the clinical classification of pulpitis cannot be strictly

applied to the histopathologic classification, the nature of the

inflammatory reaction occurring in pulpal inflammation is

essentially no different from inflammation in other parts of the

body. However, because the pulp is situated in a low-compliance

environment surrounded by mineralized tissues, intrapulpal

pressure increases with the progression of exudation causing

compression of blood vessels to be shunted (8), impeding

circulation in the pulp. In other words, the impaired circulation

and accompanying hypoxia cause deep modifications of pulpal

inflammation (9, 10).

To cope with exogenous noxious stimuli, the pulp tissue has

the ability to self-protect against dentinal tubule-derived bacterial

invasion by forming reparative dentin, and resident and recruited

immune cells eliminate bacterial products that have invaded the

pulp (1). Dense sensory innervation of the pulp indicates that, in

addition to evoking pain as a warning signal, neurogenic

inflammation may be deeply involved in the pathophysiological

responses of this tissue; the neurogenic inflammation involves

vasodilation and vascular permeability increases through the

release of neuropeptides, such as substance P, from the endings

of sensory nerve fibers (11). However, if bacterial infection from

the oral cavity persists, pulpitis spreads from the coronal region

to the apex. The pulp eventually becomes necrotic and the

defense mechanisms of the pulp tissue are no longer triggered,

ultimately leading to tooth loss.

Various inflammatory mediators produced during the course

of pulpitis profoundly modify the pathophysiology of the

inflammation. Many of these mediators are also produced in

healthy pulp tissue, where they are associated with physiological

functions and contribute to the maintenance of homeostasis of

this tissue. This article aims to give an overview of the properties

and roles of the key mediators of pulpitis and to explore the

possibility of therapeutic control of these mediators.
2 Mediators in pulpitis

Mediators discussed in this review are listed in Figure 1.
3 Cytokines and chemokines

3.1 Proinflammatory cytokines

Immunocompetent cells such as macrophages eliminate

bacteria and bacterial products that invade the pulp through

the dentinal tubules, and activated macrophages produce

various kinds of proinflammatory mediators (7). Typical

proinflammatory cytokines such as interleukin (IL)-1, IL-6,

IL-12, IL-18, interferon (IFN)-γ, and tumor necrosis factor
Frontiers in Dental Medicine 02
(TNF)-α are predominantly synthesized by M1 macrophages in

pulpal inflammation. Among these cytokines, elevated levels of

IL-6 have been detected in various types of samples, including

pulp tissue (12), pulp blood (13, 14), and dentinal fluid (15)

obtained from inflamed pulps. This indicates that IL-6 is a

candidate biomarker that can discriminate the condition of the

pulp between healthy and irreversibly inflamed (16).

Clinically, pulpitis is often regarded as a chronic inflammatory

lesion that may acutely transform when the body’s defense

capabilities are compromised (17). Because of the chronic nature

of pulpitis, a large number of T lymphocytes are found to

accumulate in the inflamed pulp (18), and T lymphocyte-derived

cytokines are also involved in the pathogenesis of pulpitis (7, 19).

The principal Th1 effector cytokine is IFN-γ, which activates

macrophages (20). Th17-derived cytokines include IL-17A,

IL-17F, IL-21, and IL-22 (21), and the presence of IL-17 has

been reported in inflamed pulp tissue (22).
3.2 Anti-inflammatory cytokines

Key Th2 cytokines include IL-4, IL-5, IL-10, and IL-13 (23).

In particular, IL-10 possesses potent anti-inflammatory

properties, and it plays a central role in limiting the host

immune response to pathogens (24). IL-10 is also produced by

macrophages of the M2 type, which are primarily involved in

wound healing and tissue repair and are classified into several

subtypes (M2a-d) (25). The dynamics of these cells in pulpitis

have not yet been fully elucidated. Levels of IL-10 in pulp

blood are significantly higher in samples from cariously

exposed pulps and irreversibly inflamed pulps compared with

those from normal pulps (Elsalhy et al., 2013). These higher

levels may indicate that IL-10 acts to dampen any excessive

inflammatory reaction before the establishment of irreversibly

inflamed pulp status.
3.3 Chemokines

Cytokines with the property of inducing migration of

inflammatory/immunocompetent cells are specifically referred to

as chemokines. Chemokines are classified into four subclasses

(CCL, CXCL, CX3CL, and XCL), and bind to G protein-coupled

heptahelical chemokine receptors and induce migration of their

target cells (26). Chemokines also possess key properties of

macrophage activation and polarization to different functional

phenotypes (M1, M2a, M2b, M2c) (27). Increased expression of

IL-8, which is classified as a CXCL chemokine and is a powerful

neutrophil chemoattractant, is detected in irreversibly inflamed

human dental pulps (13, 28–31) indicating that IL-8 may be

used as a biomarker for the diagnosis of irreversible pulpitis (16).

In experimentally induced rat pulpitis, the kinetics of CXCL1

(GROa), CXCL2 (GROb), and CCL2 (MCP1) mRNA expression

correlates with the infiltration of neutrophils, and CCL5

(RANTES) mRNA expression correlates with the infiltration of

macrophages (32).
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FIGURE 1

Synthesis of mediators in pulpal inflammation. Various mediators produced during the pulpal inflammatory process profoundly modulate the pathogenesis
of pulpitis. At the same time, as inflammation progresses, the production of anti-inflammatory mediators is induced as a result of negative feedback, which
is another characteristic of pulpitis. D, dentin; DP, dental pulp; Mϕ, macrophage; DPC, dental pulp cells; T, T cells; PMN, polymorphonuclear leukocyte;
N, nerve; IL, interleukin; IFN, interferon; TNF, tumor necrosis factor; MMP, matrix metalloproteinase; PG, prostaglandin; LT, leukotriene; NETs,
neutrophil extracellular traps; CGRP, calcitonin gene-related peptide; SP, substance P; NKA, neurokinin A; NPY, neuropeptide Y.
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4 Nitric oxide, reactive oxygen species,
and matrix metalloproteinases

Nitric oxide (NO), a small free radical, and reactive oxygen

species (ROS) including superoxide and hydrogen peroxide, are

effectors of the immune response and possess critical signaling

roles in physiology and pathophysiology (33). The expression of

nicotinamide adenine dinucleotide phosphate-diaphorase

(NADPH-d), an indicator of nitric oxide synthase, is significantly

higher in inflamed pulp tissues than in normal healthy pulp

tissues (34). Acute pulpal inflammation in human teeth enhances

the mRNA and protein levels of inducible nitric oxide synthase

(iNOS) (35, 36), which acts as a key enzyme in inflammation and

immune activation processes through the production of NO from

L-arginine (37). ROS are molecules or ions formed by the

incomplete one-electron reduction of oxygen and are key signaling

molecules in the progress of inflammation (38). In particular,

superoxide is involved in the regulation of autophagy (39).

Macrophage-derived proteases include subclasses of matrix

metalloproteinases (MMPs), disintegrins and metalloproteinases

(ADAMs), and TNF-α converting enzymes (TACE, ADAM17).

MMPs are zinc-dependent proteases and are secreted by various

types of cells, including fibroblasts, osteoblasts, endothelial cells,

vascular smooth muscle cells, macrophages, neutrophils,

lymphocytes, and cytotrophoblasts (40). MMPs are key enzymes

in matrix degradation, and a functional balance between MMPs

and tissue inhibitors of metalloproteinases regulates tissue
Frontiers in Dental Medicine 03
degradation (41). An increase of MMP-1, MMP-8, and MMP-13

levels in chronic inflamed pulp has been observed (42). MMP-9,

a neutrophil-derived MMP, is proposed as a local biomarker

useful for distinguishing reversible and irreversible pulpitis

because higher levels of MMP-9/total protein in pulpal fluid were

significantly associated with the failure of direct pulp capping

(43). However, the application of MMP-3 had anti-inflammatory

effects on experimentally induced pulpitis in canines (44)

and rats (45).
5 Proteases, neutrophil
extracellular traps

Various proteases are produced during inflammation. When

acute inflammation occurs, neutrophils infiltrate the front line of

infection and are responsible for removing exogenous stimuli.

Neutrophil-derived proteases include neutrophil-derived serine

proteases (NSPs), neutrophil elastase (NE), and proteinase-3

(PR-3). Neutrophil proteases are mainly responsible for the

intracellular killing of pathogens, but their extracellular release

upon neutrophil activation is involved in tissue damage at the

sites of inflammation (46). Neutrophils are equipped with

bactericidal devices in the form of neutrophil extracellular traps

(NETs). NETs consist of a meshwork of chromatin fibers

composed of granule-derived antimicrobial peptides and enzymes

such as neutrophil elastase, cathepsin G, and myeloperoxidase
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(47). NETs have been detected in inflamed pulp, and may

contribute to disease progression (48).
6 Neuropeptides

Sensory nerves are abundantly distributed in the dental

pulp tissue. Neuropeptides released from peripheral nerve

terminals include calcitonin gene-related peptide (CGRP),

substance P (SP), neurokinin A (NKA), vasoactive intestinal

peptide (VIP), and neuropeptide Y (NPY). Increased

expression of CGRP, SP, NKA, and NPY is detected in

inflamed human pulp compared with that in healthy pulp

(49). Furthermore, the mRNA expression of SP and its

receptor, neurokinin-1 receptor, is detected in pulp fibroblasts

(50). The local release of these vasoactive peptides is thought

to cause neurogenic inflammation (51).
7 Eicosanoids

The eicosanoid family comprises 20-carbon polyunsaturated

fatty acid metabolites (52). The classical eicosanoids, including

prostaglandins (PGs), thromboxanes, leukotrienes (LTs), and

hydroxy-, hydroperoxy-, epoxy- and oxo-eicosanoids, play a

critical role in the regulation of inflammation (52). Elevated

synthesis of PGE2, 6-keto-PGF1α (a stable metabolite of PGI2)

(53), and LTB4 (54) is detected in experimentally induced rat

dental pulp inflammation. An increase in the PGE2 level was

detected in human pulps diagnosed as having reversible pulpitis

(55). Eicosanoids are thought to essentially exacerbate

inflammation, and the cyclooxygenase pathway involved in

eicosanoid production is a major target for nonsteroidal anti-

inflammatory drugs (NSAIDs) (56). Recently, the potential of

these eicosanoids to induce the healing of pulpitis, including hard

tissue induction, has been a focus for research. PGE2 alone is

cytotoxic, but its inclusion in microspheres induces hard tissue

marker expression in pulp cells (57). PGE2 induces cAMP

production, which is mainly mediated by the EP2 receptor (58).

Furthermore, EP2/EP4 agonists promote the generation of

endothelial cell filopodia and upregulation of genes related to

odontoblast differentiation (59). PGI2 induces MMP-9 production,

which is expected to be involved in pulp tissue healing (60).

Incorporation of LTB4 into the microsphere induces odontoblast

differentiation and mineralization (61). Additionally, resolvin E1,

an ω-3 polyunsaturated fatty acid (PUFA) metabolite and not an

arachidonic acid metabolite, suppresses inflammatory mediator

production and induces hard tissue marker expression in human

dental pulp stem cells (DPSCs) (62).
Discussion

In pulpal inflammation, macrophages are mainly responsible

for the production of inflammatory and anti-inflammatory
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cytokines. Macrophages are classified as M1 and M2 (63), and

M2 macrophages are attracting attention for their function

in healing and the termination of inflammation (64).

Conditioned medium from M2 macrophages induces

odontoblast marker expression in DPSCs (65), and hard tissue

marker expression in dental pulp cells mainly through TGF-β

(66). M2 polarization is reported to be induced by conditioned

medium from human DPSCs (67), GSK-3β inhibitor small

molecules (68), and an injectable dental pulp-derived

decellularized matrix hydrogel (69). Calcium silicate materials,

including mineral trioxide aggregate (MTA), which is currently

the most popular direct pulp capping material, are reported to

cause M2 polarization in vitro (70) and in vivo (71). Further

studies on the development of methods and materials to induce

M2 macrophage polarization and migration in pulp tissue are

expected to be conducted.

MicroRNAs (miRNAs), which comprise a highly conserved

group of small, non-coding RNA molecules, regulate

gene expression primarily by silencing, and they play essential

roles in the physiology and development of cells and tissues

(72). We revealed that microRNA (miR)-21 and miR-146b

are highly expressed in experimentally induced rat pulpitis

and lipopolysaccharide-stimulated human dental pulp cells,

and both miRNAs possess anti-inflammatory effects via

downregulation of the NF-kB signaling pathway, a major

cascade of proinflammatory mediator synthesis (73, 74).

Various miRNAs involved in pulpal inflammation, including

miR-21, have been reviewed by Muñoz-Carrillo et al. (75).

Application of these miRNA mimics induces downregulation

of proinflammatory signals/medications, which are the

targets of pulpal inflammation control. Currently, the use of

exosomal miRNAs is widely debated in relation to their

therapeutic potential (76). Exosomes are cell-derived

extracellular vesicles that promote cell−cell communication,

and they may be used as suitable carriers for miRNA delivery.

Detecting mediators may allow us to infer the state of

inflammation (77). The amount of MMP-9 in the leachate from

the pulp surface is reported to be a promising biomarker that

can indicate the inflammatory state of the pulp tissue (43).

However, the relationship between the MMP-9 levels and

pathological changes in the pulp is still unclear. Further

research should be directed to identify appropriate biomarkers

to evaluate the inflammatory state of the pulp and clearly show

that the amount of the biomarker(s) correlates with the

pathology of pulpitis.

Suppression of proinflammatory mediator production

accompanied by elimination of bacterial infection seems to

induce healing of pulpal inflammation. In experimentally

induced rat pulpitis, application of a specific iNOS inhibitor can

reduce macrophage infiltration into the pulp tissue and decrease

the mRNA expression of pro-inflammatory cytokines and

cyclooxygenase-2 (78, 79). However, inflammatory mediators

may play a positive role as well as a negative one; some induce

healing and promote the differentiation of odontoblasts (80). The

transition to healing may be induced by the suppression of
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excessive production rather than complete suppression. Optimal

regulation of mediator synthesis opens the way for healing of

pulpal inflammation and recovery of the integrity of pulpal

tissue (Figure 1).
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