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features of antimicrobial peptides
selectively targeting peri-implant
disease progression
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Malcolm L. Snead3,4 and Candan Tamerler1,2,4*
1Institute for Bioengineering Research, University of Kansas, Lawrence, KS, United States, 2Department
of Mechanical Engineering, University of Kansas, Lawrence, KS, United States, 3Center for Craniofacial
Molecular Biology, Herman Ostrow School of Dentistry of USC, University of Southern California, Los
Angeles, CA, United States, 4Bioengineering Program, University of Kansas, Lawrence, KS, United States
Peri-implantitis is a complex infectious disease that manifests as progressive loss
of alveolar bone around the dental implants and hyper-inflammation associated
with microbial dysbiosis. Using antibiotics in treating peri-implantitis is
controversial because of antibiotic resistance threats, the non-selective
suppression of pathogens and commensals within the microbial community,
and potentially serious systemic sequelae. Therefore, conventional treatment
for peri-implantitis comprises mechanical debridement by nonsurgical or
surgical approaches with adjunct local microbicidal agents. Consequently,
current treatment options may not prevent relapses, as the pathogens either
remain unaffected or quickly re-emerge after treatment. Successful mitigation
of disease progression in peri-implantitis requires a specific mode of
treatment capable of targeting keystone pathogens and restoring bacterial
community balance toward commensal species. Antimicrobial peptides (AMPs)
hold promise as alternative therapeutics through their bacterial specificity and
targeted inhibitory activity. However, peptide sequence space exhibits complex
relationships such as sparse vector encoding of sequences, including
combinatorial and discrete functions describing peptide antimicrobial activity.
In this paper, we generated a transparent machine learning (ML) model that
identifies sequence-function relationships based on rough set theory using
simple summaries of the hydropathic features of AMPs. Comparing the
hydropathic features of peptides according to their differential activity for
different classes of bacteria empowered the predictability of antimicrobial
targeting. Enriching the sequence diversity by a genetic algorithm, we
generated numerous candidate AMPs designed for selectively targeting
pathogens and predicted their activity using classifying rough sets. Empirical
growth inhibition data are iteratively fed back into our ML training to generate
new peptides, resulting in increasingly more rigorous rules for which peptides
match targeted inhibition levels for specific bacterial strains. The subsequent
top scoring candidates were empirically tested for their inhibition against
keystone and accessory peri-implantitis pathogens as well as an oral
commensal bacterium. A novel peptide, VL-13, was confirmed to be
selectively active against a keystone pathogen. Considering the continually
increasing number of oral implants placed each year and the complexity of
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the disease progression, the prevalence of peri-implant diseases continues to rise.
Our approach offers transparent ML-enabled paths towards developing
antimicrobial peptide-based therapies targeting the changes in the microbial
communities that can beneficially impact disease progression.

KEYWORDS

machine learning, antimicrobial peptides, peri-implantitis, targeting, bacterial resistance,

oral health, rational design
1 Introduction

Despite high success rates for dental implants, their bacterial

plaque-associated inflammatory lesions, known as peri-implant

diseases, still occur (1, 2). These lesions continue to degrade the

stability of peri-implant soft and hard tissues, which can result in

loss of the implant. While peri-implant mucositis is a reversible

inflammatory condition, peri-implantitis is an irreversible

pathological condition leading to loss of supporting alveolar bone

(2). The reported prevalence of peri-implant mucositis and peri-

implantitis shows a substantial increase over time following

implant placement. Meta-analysis for patient-based peri-implant

mucositis and peri-implantitis was reported as 46.83% and

19.83% by Lee et al. (3). In a separate study, meta-analyses

estimated the peri-implant mucositis and peri-implantitis as 43%

and 22%, respectively. Peri-implantitis is also reported to be in

the range of 11%–47% among dental implants 10 years after

their placement (4, 5). These numbers further increase in

periodontally compromised patients (1, 6, 7).

Current treatments for peri-implantitis and periodontitis

include mechanical debridement, disinfection of exposed implant

surfaces, and antibiotic or antiseptic prescriptions to suppress the

associated bacteria (5). The use of adjunctive antibiotics for

treating peri-implantitis or periodontitis is debated mainly

because of concerns about microbial antibiotic resistance, the

non-selective suppression of both pathogenic and commensal

species, and the adverse systemic reactions. Notably, these

conventional treatment modalities may not prevent relapses, as

the pathogens may either remain unaffected or quickly re-emerge

after treatment.

The poor efficacy of antibiotic treatment in peri-implantitis

may be explained by the non-specific suppression of dysbiotic

biofilms. The adaptability and resiliency of pathogenic bacteria

in biofilms is well documented (8). The unique structure and

inter-species relationships within a biofilm enhance the

individual strengths of the bacteria present, creating an

unbalanced community organized to promote communal success

at the expense of the host (9). Notably, keystone pathogens play

an outsized role in shaping the community structure. Therefore,

targeting keystone pathogens may be the most effective

approach to reverse microbial dysbiosis and return to health-

compatible eubiosis.

In peri-implantitis, Porphyromonas gingivalis (P. gingivalis) is

widely acknowledged as a keystone pathogen (10). P. gingivalis is

associated with increased levels of inflammation and subsequent

alveolar bone loss (11). Once P. gingivalis has initiated biofilm
02
growth, other pathogens are free to flourish and further

contribute to the dysbiotic community (11, 12). The

interdependent-relationships among pathogens in a biofilm are a

defining factor in their treatment difficulty. In peri-implantitis,

this is evident by the coexistence of Aggregatibacter

actinomycetemcomitans, another keystone pathogen associated

with aggressive periodontitis, and Streptococcus gordonii, a

commensal and accessory pathogen (13, 14). Microbial

communities exhibiting both P. gingivalis and S. gordonii are

linked to more severe cases of peri-implantitis, resulting in

increased infection and bone loss as compared to others (15–17).

Undoubtedly, in peri-implantitic biofilms, pathogens grow

synergistically to promote each other’s survival. Keystone

pathogens, such as P. gingivalis and A. actinomycetemcomitans,

play a pivotal role in shifting the oral microbiome to induce the

host into a disease-oriented state. The presence of these

pathogens is widely associated with intensified inflammation

levels, prolonged infection, and enhanced alveolar bone loss in

patients (18, 19). Successful mitigation of disease progression in

peri-implantitis requires a specific mode of treatment capable of

targeting keystone pathogens and restoring bacterial community

balance toward commensal species. Broad-spectrum approaches

have difficulty in preventing oral dysbiosis (11, 18, 20).

Antimicrobial peptides (AMPs) have been receiving increasing

attention as promising therapeutic candidates since their use leads

to no or low antibiotic resistance (21, 22). Moreover, AMPs with a

short sequence domain offer straight-forward manufacturing, and

relatively low-cost production (23). Within AMPs, antibacterial

peptides account for the largest proportion of peptides with

inhibitory activities ranging from broad- to specific-species (21).

Complexity in structure-function relationships in AMPs is

increasing with the increased number of peptide sequences that

are isolated from a wide range of organisms, designed using

computational search methods, or developed as peptide-mimics

as potential candidates (24–27). Despite such progress, and the

promise of AMPs as alternative treatments to antibiotics and

antiseptics, still only a handful of AMPs have been applied to

oral-craniofacial applications (28–33). We and other groups

investigated AMPs that may serve to reduce biofilm load and/or

to target emergent keystone pathogens on dental implants, and

mitigation of bacterial-induced peri-implantitis has been

demonstrated by rationally designed chimeric AMPs and

peptides (30, 34–40).

As a result of growing interest in AMPs, large databases on

their sequence and known functions are now readily available

(41–46). With the increasing number of AMPs discovered at the
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lab bench and via computational methods, determining the

boundaries of similar AMPs and identifying their bacteria-

specific function remains challenging. Machine learning models

offer unique tools to find AMPs with targeted functionality (42).

Through bioinformatics similarity tools, ML models are effective

in identifying possible antimicrobial peptides among the large

number of nucleic acid sequences (41). Recurrent neural

networks (RNNs), long-short term models (LSTMs) and other

deep learning methods have demonstrated success in peptide

related-prediction models and these methods are now being used

in constructive model approaches to design AMPs (47–51).

However, when these methods are applied in generative

approaches, they severely lack training adaptability. This is

mainly due to their requirement for a relatively large number of

training sets needed to learn specific paths in high-dimensional

decision space. This makes them at risk for re-enforcing errors

when the models incorrectly classify cases by correlated features.

Customizing decisions for the sample distribution may optimize

prediction performance, but this makes the ability of the model

to adjust to the trends in unbiased sampling data extremely

difficult to achieve. Gradient descent or backpropagation

methods can help recognize the contribution from previously

under-represented subgroups that are negatively impacting the

models’ applicability and overall efficacy. However, since

retraining the whole model comes with a large computational

cost, alternative methods are sought to address the bias. Still, no

strategies are currently known that solve this issue.

In our previous work, we pioneered the use of rough set theory

for the classification of peptide sequences and demonstrated how to

achieve training adaptability by bypassing neural networks in the

context of AMP identification (52). In this approach, different

descriptors in accordance with antibacterial activity are analyzed

by rough set theory (RST) which is used as a heuristic method to

discover the rules distinguishing different outcomes. By

combining the rough set theory approach with the algorithm of

Modified Learning from Examples Module, Version 2 (MLEM2)

and the Interesting Rule Induction Module (IRIM) algorithm, we

achieved high-specificity performance. Our method provides a

transparent selection approach to define explicit boundaries that

distinguish between classes of AMPs by their activity. The model

can adapt by using the explicit decision components and the

related rules that are introduced by new hypotheses and labelled

data. Non-linear categories distinguishing between active and

inactive peptides reduce training time of the model, while

preserving the structure of the explicit model choices. This

improves training flexibility and avoids the cost barrier associated

with re-training or the creation of new models. This method also

guards against irrational decision relationships by maintaining

transparency for each decision step throughout the decision

process. In a separate study, we combined the RST based ML

approach (CLN-MLEM2) with a codon-based genetic algorithm

(CB-GA) and increased the variations of peptide sequences

generated by RST ML search (53). Using the CB-GA combined

ML approach, we identified an AMP sequence effective against

Staphylococcus epidermidis. The training false discovery rate, i.e.,

probability of false positives, was approximately 5% (53).
Frontiers in Dental Medicine 03
In this study, we developed a transparent ML model and

combined it with a genetic algorithm, that empowers AMP

design targeted to a keystone pathogen. The predicted activity of

the generated AMPs was classified using rough sets and the rules

were improved using empirical growth inhibition data for specific

pathogens. The validation tests were run with the peptides

having the highest inhibition predictability score against the

keystone pathogen, A. actinomycetemcomitans. A novel peptide

VL-13 was confirmed to be active against the selected keystone

pathogen without compromising the accessory-commensal

species, S. gordonii.
2 Materials and methods

2.1 Materials

A. actinomycetemcomitans strain D7S-1, S. gordonii strain

Challis, and Streptococcus sanguinis strain ATCC10556 were

cultured using either modified Trypticase Soy Broth (mTSB)

containing 3% trypticase soy broth and 0.6% yeast extract or on

mTSB agar (mTSB with 1.5% agar Becton Dickinson and

Company). In some experiments, the bacteria were cultured in

SHI medium supplemented with hemin (5 µg/ml) (Sigma-

Aldrich, St. Louis, MO, USA), menadione (1 µg/ml) (Sigma-

Aldrich), human serum (10%) (Sigma-Aldrich), and sucrose

(0.25%). Bacteria were cultured at 37 °C in a humidified

atmosphere supplemented with 5% CO2 (54). P. gingivalis strain

ATCC33277 was cultured in the brain-heart infusion (BHI)

broth at 37 °C under anaerobic conditions.
2.2 Bacterial viability tests

Bacterial viability tests were done by first adjusting the optical

density of bacterial cultures to 0.2 (equivalent to approximately

107 CFU per ml) at 600 nm. The bacterial cultures were then

diluted 1:20 to get to 5 × 105 CFU/ml and incubated with

100 µM AMPs. Bacterial viability was then determined at 0

and 6 h by CFU counts and at an additional 24-h time point

for P. gingivalis.
2.3 Machine learning model

2.3.1 Initial datasets
The complete listing of the antimicrobial peptides used to

generate the targeted rough set theory rules is given in

Supplementary Table S1. In addition to literature-derived

peptides, we included additional antimicrobial peptides

previously studied for different applications shown in Table 1.

The initial datasets for peptide generation were taken from the

iAMP-2l database (55). This database was filtered to only include

examples of anti-bacterial peptides, resulting in 1,274 unique

peptides from the database. Of the 21 peptide sequences

provided in Table 1 and Supplementary Table S1, 15 of them
frontiersin.org
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TABLE 1 Rough set theory identities for in vitro inhibition against A. actinomycetemcomitans (Aa), S. gordonii (Sg), and P. gingivalis (Pg).

Name Sequence Aa inhibition Sg inhibition Pg inhibition
AMPa KWKLWKKIEKWGQGIGAVLKWLTTW High High Low

AMP1 LKLLKKLLKLLKKL High High High

AMP2-NH2 KWKRWWWWR-NH2 None None None

TiBP-AH-AMP1 RPRENRGRERGLKGSVLSALKLLKKLLKLLKKL None None None

TiBP-AH-GL13K RPRENRGRERGLKGSVLSAGKIIKLKASLKLL None None None

AMP7 ESYKKML None None None

AMP10 GILGKLWEGVKSTF None None None

TiBP-S5-AMPA RPRENRGRERGLGSGGGKWKLWKKIEKWGQGIGAVLKWLTTW None None None

Boone et al. 10.3389/fdmed.2024.1372534
were already included in the database. Therefore, a total of 1,280

AMP sequences are included in the initial set.
2.3.2 Peptide customization by rough set theory
We generated the rough set theory rules as described in our

earlier publication on the CLN-MLEM2 method developed for

classification of antimicrobial peptides with two enhancements (52).

Previously, the rough set rules were designed to establish the

boundaries simply between active and inactive antibacterial

peptides, using non-correlated AAindex1 properties. The first

enhancement we made is to combine the rough set rules from our

previous paper with the targeting rough set theory rules and

generate a multiple-dimensional view of the predicted activity. To

generate these targeted activity rules, a set of AMPs with confirmed

antibacterial activity against any of the three pathogens of interest,

i.e., P. gingivalis, S. gordonii, A. actinomycetemcomitans, were used

as positive data set (see Table 1, Supplementary Table S1 and

Figures S1–S3). The second enhancement for targeting was

introduced by focusing on the key physicochemical property

features. We integrated eight indices proposed by a recent study as

reduced AAindex (rAAindex) obtained from a subset of original

544 indices in the amino acid index database (56). Kibinge et al.,

applied a random forest (RF) algorithm for property reduction and

maximizing metadata capturing. With the two enhancements

introduced, our method creates collections of discriminating

attributes separating targeted AMP activity trends focused on

hydropathy variations for peptide sequences.

The resulting rules are each characterized by a hydropathy

property of importance determined by the updated CLN-MLEM2

method, and a simple summary characteristic that portrays the

features to be used to predict an AMP`s targeted ability.

Sequence features that are most relevant for the observed peptide

activity are collected as simple arithmetic summaries. The

summary characteristics used included the sum of the property

across the amino acids of the sequence, the mean of the property

across the amino acids of the sequence and the maximum value

of the property across three consecutive amino acids within a

sequence (50). These summary characteristics correspond to non-

linear boundaries between activity classes. Each time a rule set is

generated, these boundaries and properties are chosen to separate

the sequences into the desired classification groups. The heuristic

goal of the method is to create definitions of activity

classification with the minimum number of rules and conditions

per rule possible. Rule sets contain descriptions of active and
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inactive peptides, but likely do not contain the set of all peptides

in the union of the rule sets. Peptides that do not meet any of

the rule sets are not identified directly by our classification

method. Since specific peptide activity is not likely to be present

for randomly selected sequences, we impute peptides as inactive

if they do not belong to any rule set positive for activity.
2.3.3 Sequence expansion by codon-based
genetic algorithm

We used the codon-based genetic algorithm for sequence

expansion reported in one of our earlier publications (53). To begin

this process, we used a total of 1,280 AMP sequences in the initial

set, which contained a large variety of sequences to recombine and

mutate through artificial genetic operations. These sequences were

subsequently ranked by which generated sequences met the rough

set theory rules for targeted antimicrobial activity. The rule sets have

two separate descriptions of antimicrobial activity in this study. The

first description is the rough sets previously used as a measure for

broad-spectrum activity estimation. The second description is the

newly generated rules targeting the chosen periodontal keystone

pathogens. This second level of activity distinguishes between

keystone-only activity and other antimicrobial activity with the goal

of avoiding impacting commensal species. These two descriptions

were weighed as components of the fitness function. There is a large

disparity between the number of previously trained sequences, i.e.,

2,347 sequences, and the empirically tested targeted sequences, i.e.,

21 sequences (Table 1 and Supplementary Table S1). The rule

counts were therefore independently calculated and normalized

before being combined as separate terms in the fitness objective

function. We defined fitness objective function for the codon-based

genetic algorithm by the following equation in which AB is referred

as antibacterial:

F(x) ¼min (10�(MaxTarget Rule Count–SequenceTarget RuleCount)

þ 0:01 �(MaxABRule Count– SequenceABRuleCount)

þ 5�min ([10, 30]� SequenceAminoAcid Length))

(1)

The mutation rate for sequences to go to the next generation is 25%.

Mutation changes a codon in the sequence, which may not result in

an amino acid change or could result in a stop codon. The cross-

over rate was 50%. Crossing over was completed with codon

representation, often resulting in frameshifts for new candidate

sequences compared to the parent codon sequences.
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The generations were monitored for convergence, both with

the best fitness between generations and the consistency of the

targeting rules to generate the top-scoring sequences. Generations

are deemed mature for identifying top candidates when the

majority of sequences meeting the targeting rules are within one

half of the maximum number of targeting rules.
2.3.4 Peptide synthesis
Peptides were synthesized using Wang resin following a

standard Fmoc chemistry method using an Aapptec Focus XC

peptide synthesizer. Dimethylformamide (DMF) and 20%–40%

piperidine in DMF were used for Fmoc deprotection with two

repetitions. The peptide-resins were then washed with DMF.

Activation of 0.2 M amino acids/DMF (2 equivalents) was

performed by addition of 0.2M 2-(1H-benzotriazol-1-yl)-1,1,3,3-

tetramethyluronium hexafluorophosphate (HBTU)/DMF. The

coupling step was completed twice, and the procedure was

repeated until the complete peptide was assembled on the solid

resin support. Following synthesis, the peptide-resin was removed

from the reaction vessel using DMF. Following the removal of

DMF from the peptide-resin by washing with ethanol, a cleavage

cocktail (15 ml/1 gram of resin) was added to the dried resin for

2 h with gentle stirring to remove the peptide from the solid

support and remove the side chain protecting groups. The

standard cleavage cocktail is composed of trifluoroacetic acid

(TFA)/triisopropylsilane (TIS)/water (95:2.5:2.5, % vol/vol/vol).

To remove side chain protecting groups from peptides containing

histidine or cysteine, 2.5% thioanisole and 2.5% 1,2 ethanedithiol

were added to the cocktail and for peptides containing

methionine, tyrosine, or arginine, 5% phenol was added. The

cleavage products were filtered, and crude peptide product was

isolated by precipitation in cold ether. The crude peptide was

pelleted by centrifugation (2,000 rpm for 2 min), the supernatant
FIGURE 1

Peptide targeting design scheme for antimicrobial peptides. The training
expanded sequences are selected for consistency with identified training re
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was removed, and the process was repeated for two to four times

prior to lyophilization of the peptide products.
3 Results

In this study, we developed a transparent ML model that allowed

us to incorporate iterative training sets and enrich our sequence

space by a genetic algorithm to design antimicrobial peptides with

inhibitory activity targeted to periodontal keystone and accessory

pathogens. To identify antimicrobial peptides specific to oral

pathogens, we first established rough set boundaries for training

rules, building upon our initial iteration of known AMPs and their

antimicrobial activity (Supplementary Figures S1–S3, Table 1, and

Supplementary Table S1). Our rough set theory classifier was

trained to identify possible antimicrobial peptides specific to oral

keystone and supporting pathogens, with separate rule sets for

each strain. We expanded sequence diversity using a genetic

algorithm and selected novel candidates consistent with their

predicted inhibitory activities using the identified training

relationships. These candidates are generated by the second

iteration. While the rough set rules generated apply to many other

sequences than the sequences we trained on, the rules will not, in

general, cover all sequences. Non-conforming sequences are

imputed as non-targeted. Therefore, our second iteration is

focused on finding the sequences which are like the sequences we

identified as active against a targeted species in the first iteration

considering the feature properties found to be discriminating

between active and inactive against that single species. Training

sequences do not need to have specific activity to generate

sequences with targeted activity; multiple examples of non-specific

peptides can still provide direction for what features are needed in

generating rules. Figure 1 provides the selective targeting

antimicrobial peptide design scheme which includes training the
is based on peptide sequences with identified growth inhibition. The
lationships.
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next iteration of our model with known AMPs, establishing training

rules, expansion of sequence diversity, candidate selection and

verification of their predicted inhibition properties targeted to

specific organisms. The targeting rules are heuristically made to be

a minimal set that covers all our training sequences.
3.1 Establishing boundaries for growth
inhibition rules

Our machine learning approach builds upon our previously

developed CLN-MLEM2 method that utilizes rough set theory

principles (52). The CLN-MLEM2 method separates sequences by

their amino acid properties to establish functional classification.

This method simultaneously filters which properties are key

properties and provides boundaries for classification. The key

properties identified by the CLN-MLEM2 method are provided in

Supplementary Table S2. These properties were selected from the

rAAindex (56), a reduced subset of the AAindex focused on

hydropathy. We initiated the machine learning training by

providing literature data to set up the initial inhibition descriptions

for rough set participation to address selected pathogens

(Supplementary Table S1). The rough sets are key property

summary descriptions (e.g., property sum, property mean, property

peak window) that identify peptides to have a certain activity level.

The key property summary descriptions are used as features in our

ML method (57). Both the full sequence length properties and

short sequence segments are included as features. The short

segments are summarized for a sequence by selecting the property

peak window features. The full-sequence length features are

included as the property sum and the property mean values. The

CLN-MLEM2 method used 6 of the 8 properties in the rAAindex

to build the rule sets. The selected properties and their short

descriptions are included in Supplementary Table S2. The
TABLE 2 A set of CLN-MLEM2 rules for A. actinomycetemcomitans (Aa) and

Activity identity Rule Training sequence
support

Condition

Growth inhibition of A.a. 1 3 1

2

3

4

5

Growth inhibition of A.a. 2 2 1

2

3

4

No growth inhibition of A.a. 3 11 1

2

3

4

Growth inhibition of S.g. 1 43 1

2

No growth inhibition of S.g. 2 35 1

2

3

4
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inhibition activity data captured from the literature was also

supplemented by incorporating the inhibitory activity from

additional antimicrobial peptide sequences into the model. These

sequences have been shown to be active in different contexts;

therefore we evaluated their activity against selected oral pathogens,

P. gingivalis, A. actinomycetemcomitans, and S. gordonii (see

Supplementary Figures S1–S3). The level of minimum inhibitory

activities is categorized from low to high and provided in Table 1.

The ratio of correctly identified cases to the total number of

applicable cases for a set is identified as α (0≤ α≤ 1) (58–60). The

CLN-MLEM2 method selects rules based on α (0≤ α≤ 1). Using

higher values of α generates fewer rules with higher probability (Pr)

values of training accuracy if generated rules do not meet the

accuracy specification. Using lower values of α generates more rules

with lower Pr values of training accuracy when rules do not meet

the accuracy specification. For all our training peptide sets, we

found every rule with α = 1.0. Therefore, all generated rules meet

the maximum accuracy specification of 1.0. Our current

descriptions allow for enough discrimination to uniquely describe

all peptide sequences when they differ in activity. We found

hydropathy feature boundaries which explicitly classified our

training examples. We next generated the CLN-MLEM2 rules for

predicting the activity against keystone pathogen members A.

actinomycetemcomitans and P. gingivalis, and accessory-commensal

class member S. gordonii. These rules provide design criteria for

either increasing or decreasing the probability of a peptide sequence

having an antimicrobial activity against each strain. Our initial

design strategy involved finding an antimicrobial peptide which

heuristically has as many features as possible to be active through

our genetic algorithm to satisfy the maximum count of non-linear

boundary rules simultaneously through computational search.

Table 2 shows the selected sequence property rules that are

associated with the inhibition of A. actinomycetemcomitans

and S. gordonii. The sequence summary features in this table
S. gordonii (Sg).

Calculation AAindex1
property

Lower-
bound

Upper-
bound

Mean ZIMJ680103 17.09 22.99

Tripeptide Window JACR890101 0.615 0.935

Sum COWR900101 −27.82 0.27

Mean JACR890101 −1.743 −1.218
Mean COWR900101 −0.359 −0.001
Mean WARP780101 6.401 7.141

Mean MEEJ810102 3.227 7.278

Tripeptide Window FAUJ880110 2.0 5.5

Mean FAUJ880110 0.40 0.69

Tripeptide Window FAUJ880110 6.5 12.0

Tripeptide Window COWR900101 3.78 5.41

Tripeptide Window WARP780101 26.825 30.12

Tripeptide Window JACR890101 0.89 1.32

Tripeptide Window FAUJ880110 3.5 12.0

Mean FAUJ880110 0.69 2.0

Tripeptide Window LIFS790102 3.505 7.890

Tripeptide Window WARP780101 24.64 30.12

Tripeptide Window COWR900101 2.9 5.41

Tripeptide Window JACR890101 0.89 1.32
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provide conditions for classifying peptides with potential inhibitory

properties. We provide a detailed analysis of the

A. actinomycetemcomitans inhibition rules in Supplementary

Figures S4–S9. We found that the rules positive for

A. actinomycetemcomitans inhibition are consistent with the first

iteration identities and apply to either slightly polar mean

polarity or to slightly non-polar mean polarity sequence

descriptions, depending on the scale used. Interestingly, instead

of the descriptions being mutually exclusive, VL-13 combined

membership of both rules into a single peptide sequence.
3.2 Ranking antimicrobial peptides by rough
set theory relevance

Once “rough set” boundaries are established from our first

iteration, antimicrobial peptides in the database can be
FIGURE 2

Peptide signals for iAMP-2l antibacterial sequences and training sequences (2,3
peptide charge, peptide length and net inhibition rules. The height of the st
normalized as percentage of the overall observed range for the value. The d
indicates immediately how many peptides have positive log P (hydrophobic)
criteria. The fitness criteria prioritize sequences having positive net inhibitio
peptides for easier synthesis. Signal strength λ is calculated to maximize
Supplementary Materials 1.1.
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compared in relation to the selected physical properties of their

amino acids. We explored the selectivity of our training

methods for the iAMP-2l database, which included 2,347

peptides (55). Using the CLN-MLEM2 rules, we ranked this

database and generated a relatively small number of sequences

of interest for further exploration (Figure 2). After combining

the peptides in the iAMP-2l database and our initial testing set,

only 20 peptide sequences (0.9%) met conditions for CLN-

MLEM2 rules, the net of which were rules for inhibition

instead of non-inhibition.

Overall, only 20 peptides in the iAMP-2l database (∼2,200
peptides) had similar hydropathy features to the confirmed active

AMPs and thus met the CLN-MLEM2 rules derived from our

first iteration in antimicrobial activity prediction. We avoided

selecting peptides with cysteine to enable rational cyclization

studies using disulfide bonds in the future. Therefore, the third-

ranked peptide KF-18 (KWKLFKKIPKFLHLAKKF) was selected
47 peptides). The signals are stacked columns of four different signals: log P,
acked signals is limited to 0.5 using the inverse logit of the signal value,
atabase is divided into quartiles (Q1–Q4) of decreasing fitness. This view
, and which have negative log P (hydrophilic), in the order of the fitness
n rules for targeting. Priority is also given to shorter, more hydrophilic
the sensitivity at the lower percentile ranges of property values. See
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directly from the database to synthesize and to evaluate its in vitro

activity. To our knowledge, inhibitory activity for this peptide is not

reported for oral bacteria.
3.3 Identifying candidate antimicrobial
peptides with enhanced relevance to
existing rough sets

We recently developed a codon-based genetic algorithm (53) to

identify antimicrobial peptides relevant to inhibition-related rough

sets, as well as no growth inhibition rough sets. Our codon based-

genetic algorithm uses reading frameshifts probabilistically to

generate new amino acid sequences that have low sequence

similarity to previously generated sequences. The codon-based

operations supplement the recombination and mutation

operators. We targeted peptides identified as possessing

antimicrobial properties for at least one of three target

bacterial strains. We further ranked the peptides by length and

solubility estimates.

We next enriched the later-generation peptide sequences with

sequences that met our rough set criteria. In Figure 3, this

enrichment can be seen in the net-positive inhibition rule

sequences where the initial generation has increased from 20

sequences (Figure 2) to 269 sequences by Generation 10.

Generation 25 has a tighter distribution of net inhibition rules

compared to Generation 10, which resulted in 329 peptide

sequences. These sequences also contained the maximum
FIGURE 3

Peptide fitness signal quartiles (Q1–Q4) for 10th and 25th generation sequen
first quartile which meet the targeted inhibition rules. From this small set,
meeting the inhibition rules by Generation 10. However, the variation of th
By Generation 25, maturation is achieved with >300 sequences with low v
to maximize the sensitivity at the lower percentile ranges of property value
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number of net inhibition rules observed with the top scoring

sequences transferred between generations. The end of 25th

generation run resulted in 2,261 sequences, from these we

selected three peptides to evaluate their inhibition activity: KK-

15 (KWKLFKTTAKFLHLAK), FV-11 (FLHWVPLRRVV) and

VL-13 (VDWKKVFGKLLKL) (Figure 4). Many of the top

scoring sequences contained cysteine and they were avoided to

enable future cyclization of candidates through rational

placement of disulfide bonds. We chose to have a high number

of rules (>7), which were satisfied by KK-15 and VL-13. We

also did not select FLFAFFRALRHVGK (FK-14),

LKLLKRLLKLLKK (LK-13-1) and LKLLKKLLKLLKK (LK-13-2)

peptides. The LK-13 and LK-13-2 peptides were observed as

close analogues of AMP1, only missing the last lysine residue or

also having an arginine-lysine substitution. Since AMP1 is

already included in the study, we selected other candidates.

Peptide FK-14 was not selected because it has a GRAVY score

of +0.72, indicating a solubility risk. However, we selected the

shorter peptide, FV-11, because it has less of a solubility risk

with a high score of 7. In summary, we focused our attention

on potential solubility and possessing the most applicable rules.

These candidates were among the top 25 sequences with 13

amino acids or less that fell within the 98th percentile of net

inhibition rules. The maturation of generating new candidates

with similar net inhibition rule counts was completed by the

25th generation. Noteworthy is the finding in Figure 3 that the

11th generation shows large variations of net inhibition rules

among the candidates.
ces. The initial generation seen in Figure 2, has only 20 sequences in the
the genetic algorithm generated peptides which have >200 sequences
e net inhibition rules for Generation 10 is high among these peptides.
ariation of net inhibition rule conditions. Signal strength λ is calculated
s. See Supplementary Materials 1.1.
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FIGURE 4

Peptide property values for Top-25 scoring sequences in the 25th
generation of 2,261 sequences. The candidates selected for further
experimental validation are highlighted in purple: KK-15, FV-11,
and VL-13.
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Experimental evaluation of ML-generated sequences, KK-15,

FV-11, and VL-13 was performed against keystone pathogen A.

actinomycetemcomitans, accessory/commensal S. gordonii and
FIGURE 5

The in vitro analyses of ML generated top scoring peptides: VL-13, KK-15,
without 6 h columns had no countable CFU/ml. The other included peptid
oral environment. Keystone targeting score is the difference in change in C
commensal strain. The keystone targeting scores are in Table 3.
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commensal S. sanguinis (Figures 5–7, respectively). We

compared these second iteration peptides with two first

iteration peptides, AMP1 and AMPa. Table 3 shows the scores

for targeting keystone pathogens. VL-13 showed strong

inhibition activity selectively against A. actinomycetemcomitans

compared to the other peptides FV-11, KK-15, and KF-18. The

score for targeting keystone pathogen is the difference between

the number of CFU logs reduced after 6 h. VL-13 has

the largest targeting score, having +7 more log reduction

for the keystone pathogen A. actinomycetemcomitans than for

the commensal S. gordonii. VL-13 also had a high score for

targeting keystone pathogen of +4.5 when compared to the

other commensal strain S. sanguinis. The other predicted

peptides had positive targeting scores, but less than AMP1.

Peptides used in the training sets AMPa resulted in the lowest

targeting score of only a 0.5 log reduction difference between

the two groups; AMP1 also resulted in activity against

S. sanguinis. VL-13 was validated for predicted targeted activity

against A. actinomycetemcomitans.

The superimposed structures generated for VL-13 are given in

Figure 8. From the structures, a peptide structural feature with a

high amount of hydrophobicity is indicated as a low-energy

rotation barrier compared to the more hydrophilic structural

features in the antimicrobial peptide. This hydrophobicity feature
FV-11 against keystone pathogen A. actinomycetemcomitans. Peptides
es are antimicrobial peptides which have known activity outside of the
FU/ml of the keystone pathogen and the minimum inhibition for either
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FIGURE 6

The in vitro analyses of ML generated top scoring peptides: VL-13, KK-15, FV-11 against accessory pathogen S. gordonii. Peptides without 6 h columns
had no countable CFU/ml. The other peptides are antimicrobial peptides which have known activity outside of the oral environment. Keystone
targeting score is the difference in change in CFU/ml of the keystone pathogen and the minimum inhibition for either commensal strain. The
keystone targeting scores are in Table 3.
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is also discussed in the rough set theory sequence feature example

with the JACR890101 3-amino acid window in Figure 9 and in

Supplementary Figure S4.

As a parallel method to assess the progress of the CLN-

MLEM2 model, we predicted the performance of additional

peptides reported as potential therapeutics for oral bacteria and

oral biofilms as the test set (61). In Supplementary Tables S3

and S4, we evaluate the performance of the rules specific to

two keystone pathogens, A. actinomycetemcomitans and

P. gingivalis, respectively. In Supplementary Table S5, we

evaluate the performance of the rules specific to the

commensal/accessory pathogen S. gordonii. The false discovery

rate was found to be low for A. actinomycetemcomitans and the

commensal pathogen, S. gordonii (Supplementary Tables S3

and S5) using prediction performance. Overall, the model

performance shows good prediction for positive activity of the

sequences for selected keystone pathogen and the commensal/

accessory pathogen.
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4 Discussion

4.1 Shifting focus toward pathogen
A. actinomycetemcomitans

Treatment of periodontal and peri-implant diseases

necessitates a targeted, polymicrobial approach that sufficiently

inhibits progression of the disease state without detrimentally

impacting commensal and otherwise opportunistic species. To

address this, we attempted to develop a ML-enabled targeting

AMP prediction approach. To train the CLN-MLEM2 model, an

initial round of AMPs was tested against keystone

pathogens P. gingivalis and A. actinomycetemcomitans, and

opportunistic pathogen S. gordonii. Both P. gingivalis and

A. actinomycetemcomitans display pathogenic characteristics that

contribute significantly to biofilm prevalence and virulence (11).

Although these species are referred as key stone pathogens, their

involvement appears in different stages of the disease
frontiersin.org
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FIGURE 7

The in vitro analyses of ML generated top scoring peptides: VL-13, KK-15, FV-11 against commensal strain, S. sanguinis. Peptides without 6 h columns
had no countable CFU/ml. The other peptides are antimicrobial peptides which have known activity outside of the oral environment. Keystone
targeting score is the difference in change in CFU/ml of the keystone pathogen and the minimum inhibition for either commensal strain. The
keystone targeting scores are in Table 3.
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progression. The ML-based tunability in this paper presents an

opportunity to control the disease progression by targeting

different keystones and other microbiome components.

A. actinomycetemcomitans is unique for its association

with localized, aggressive cases of peri-implantitis and periodontitis

—specifically those in younger individuals under the age of 35

(13, 62). This is extremely problematic not only for the livelihood of
TABLE 3 Net inhibition rule counts by bacterial species.

Name Sequence Aa NC Sg NC
AMPa KWKLWKKIEKWGQGIGAVLKWLTTW 2 4

AMP1 LKLLKKLLKLLKKL 2 6

KK-15 KWKLFKTTAKFLHLAK 2 4

FV-11 FLHWVPLRRVV 0 4

VL-13 VDWKKVFGKLLKL 2 6

Positive scores in the “NC” columns indicate predicted antibacterial activity for the

The “LR” columns indicate the decimal log change after 6 h of incubation with the

the A. actinomycetemcomitans (Aa) log reduction and the minimum of the S. gordo

scores indicate more growth inhibition. Negative log reduction indicates growth

targeting performance. The first two rows are first iteration sequences with know

peptides generated by the codon-based genetic algorithm. The Aa inhibition r

inhibition rules did not describe transferred activity in any of our second iterat

not determined.
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impacted individuals, but also for the whole of human health.

Disease occurrence in younger individuals entails longer timelines of

recurrent infection and treatment cycles. This makes these

individuals, and thus bacterial species present in them, prime

candidates for emergent bacterial resistance and innate microbiome

depletion. It also makes them at heightened risk for implant

installation failure and loss of oral functionality as the tissue and
Pg NC Aa LR Sg LR Ss LR Keystone targeting
−15 5 4.5 ND +0.5

2 6 2 5 +4.0

2 −1.5 −3 −1 +1.5

3 −1.5 −3 −1 +1.5

0 6 −1 1.5 +7.0

strain. Zero or negative scores in these columns indicate no activity predicted.

peptide indicated in Figures 5–7. Keystone targeting is the difference between

nii (Sg) log reduction or the S. sanguinis (Ss) log reduction. Higher log reduction

during incubation instead of inhibition. Higher targeting scores indicate better

n activity used to compare the targeting performance of our second iteration

ules describe transferred activity for VL-13 but not for KK-15, while the Sg

ion peptides. NC, net count of inhibition rules; LR, log reduction; and ND,
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FIGURE 8

Ensemble structure description of VL-13 (VDWKKVFGKLLKL). The hydrophobic feature of VFG (see Figure 10) has very high solvent accessibility. This
indicates high accessibility for potential binding partners. The locations of the side chains are stable through the ensemble. Only the Phenylalanine 7
seems to have multiple distinct clusters of orientations, which may indicate a local rotation between two smaller vibrations of the aromatic ring. The
conserved backbone structure simplifies structure-function hypotheses for peptides. This lower folding entropy simplifies structure-function studies
compared to using AMPa or AMP1. Superposition of 192 PEP-FOLD3 (66) structures aligned with MatchAlign (64) in UCSF Chimera (65).
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bone surrounding their dental implants degrade. In our ML-predicted

novel peptide generation, we therefore focused on assessment of the

antimicrobial activity against A. actinomycetemcomitans, S. gordonii,

and the commensal S. sanguinis.
FIGURE 9

JACR890101 hydrophobicity property trend as both a single amino
acid property (blue) and as the sum of three consecutive amino
acids (orange). In (A), VL-13 meets Rule 1 Condition 2 in Table 2 at
residue F7 where the 3-aa window falls within the rule bounds
(dashed lines). In (B), KF-18 does not have a hydropathy feature of
the 3-aa sum that meets this condition. The dashed lines indicate
the Rule 1 Condition 2 upper and lower boundaries in Table 2.
Figure S4 compares Rule 2 and Rule 3 conditions in Table 2 with
Rule 1.
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4.2 Rule application and predicted vs.
experimental antimicrobial activity in VL-13

The rules in Table 2 show amphipathic descriptions of targeting

growth inhibition of A. actinomycetemcomitans, both for descriptions

of which peptides inhibit and which peptides do not inhibit growth.

In Supplementary Figures S4–S9, we describe the feature

characteristics for sequences that also have rule membership for

rules which apply to VL-13 in Table 2. Our second-iteration

decision system made incorrect predictions for KK-15 and FV-11.

The next iteration of the decision system will avoid these incorrect

predictions and generalize with these new cases to determine new

decision boundaries. The next decision system draws more accurate

boundaries for negative results but does not move boundaries

when all cases within a sub-domain are accurate. This attribute of

our transparent decision system shows the system development

value of having test cases. This way the decision system challenges

the rough set membership boundaries of the previous iteration

rather than having test cases which are very likely to be accurate or

peptides which have no rough set theory membership. Testing

truly random peptides which do not belong to either rules for or

against activity may not build on the knowledge gained from

previously tested peptides. However, any peptide test results would

start a new knowledge base to build on in future studies.

We used a nested-rough set rules approach by evaluating the

rules generated when classifying peptides for having any

antibacterial activity with rough set rules for peptides having

targeted activity. This nested methodology is an example of

transfer learning in our machine learning method. Further

targeting of the activity of the peptides incorporating different

design goals can also adapt this nesting approach in future studies.

In the first iteration of our codon-based genetic algorithm,

generated a novel antimicrobial peptide against S. epidermidis

(53). In our second iteration of this system in this work, we

applied a nested version of our decision system to the in vitro

oral environment for the mitigation of the progression of
frontiersin.org
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FIGURE 10

High folding entropy of AMPa (A) and AMP1 (B) compared to VL-13. The orange ribbon is the first half of each sequence and green is the second half of
the corresponding sequence. The divergent ribbons indicate a folding ensemble with many different orientations of backbone structure having similar
energy values. In Figure 9, the conserved backbone shape among superposition structures indicates a relatively large folding energy barrier to other
backbone shapes. While the high structural entropy complicates the structure-function analysis of these peptides, surface interactions are still
facilitated through electrostatic means. The electrostatic surface indicates highly charged surface which is mostly electropositive (blue) for the first
half of AMPa with most electronegative (red) surface for the second half of AMPa. The distribution of electronegativity for AMP1 is more
heterogeneous compared to AMPa. Superposition of 100 PyRosetta structures (63) aligned with MatchAlign (64) in UCSF Chimera (65).
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peri-implantitis. In this study, an antimicrobial peptide, VL-13, was

demonstrated targeted growth inhibition against an oral keystone

pathogen A. actinomycetemcomitans without inhibiting accessory/

commensal species, S. gordonii (Figure 5).

VL-13 is both a positive result for this decision system iteration

for activity against the keystone pathogen and a negative result for

activity against the accessory/commensal pathogen S. gordonii. We

designed peptides to meet multiple targeting classes, inferring that

if the targeting criteria are relatively difficult to describe, finding

one working targeting description would likely come before two

working targeting descriptions. Our result does not limit building

on the targeting criteria which could be introduced as new design
Frontiers in Dental Medicine 13
characteristics. In future studies, we can use both experimental

results to draw boundaries which include VL-13 for

A. actinomycetemcomitans inhibition and exclude VL-13 for

S. gordonii inhibition. Our method learns boundaries from

inhibition and non-inhibition results for each of the tested peptides.

Superimposed structures of AMPa and AMP1 were evaluated to

gain further insight, as both sequences were used in the training set

based on their demonstrated activity (Figure 10). We show that the

folding dynamics of these structures have relatively high folding

entropy compared to VL-13, shown in Figure 8.

To discuss what the rough set theory rules imply about

inhibition activity for the keystone pathogens, we begin with one
frontiersin.org
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AAindex1 property. The three-amino acid window JACR890101 is

the amino-acid wise component of hydrophobic interactions of

amino acids at the bilayer (Figure 9, Supplementary Figure S4).

While further study can investigate if this feature is necessary for

the peptide’s activity, we also note that this feature may be

related to some motion allowing the peptide to efficiently attack/

bypass the membrane of A. actinomycetemcomitans, which is a

gram-negative pathogen. In Rules 1 and 3 in Table 2, this feature

was selected as a tripeptide window or a mean (see Figure 10).

The rules both select tripeptide windows for this feature, in

which Rule 1 has a left-shifted range (from 0.89–1.32 to 0.615–

0.935). This window is very hydrophobic under the conditions of

the bilayer (see Supplementary Figure S4–S9). The overall mean

of the peptide for this property in Rule 1 was between −1.2 and

−1.8, indicating that these tripeptide windows of greater than 0

are not likely to be common among peptides which are active

against A. actinomycetemcomitans. The combination of these

rules describes a preliminary description of amphipathy that is

useful to inhibit the pathogen’s growth. Having varying

hydrophobicity has long been studied for antimicrobial peptides

(57, 67, 68). Further non-linear boundary ranges are shown in

Supplementary Figures S1–S6. The CLN-MLEM2 rough set

theory method has added a process to identifying which

hydrophobicity features relate to inhibiting the growth for a

specific pathogen. The target that the antimicrobial peptide is

affecting with the hydrophobicity feature is unknown.
4.3 Testing performance, limitations and
future perspectives

This paper used data from a review article on peptides as

therapeutics targeting oral bacteria by Sztukowska et al. (61) as a

test set. We recognize there exist previous reviews of antimicrobial

peptides in the oral environment with peptide sequences that were

not included in our training set (69–72). The reasons to not

include all experimentally tested peptides in the model training

phase is to continue to develop our model through testing

performance beyond training performance. Having peptides in the

literature that are not included in our training set allows for testing

the performance evaluation of our model. Indeed, the ML model

should be validated with experimental results.

The literature peptide activity (61) was used as a test set for our

rule sets describing targeted activity for the two keystone pathogens

and the commensal/accessory pathogen. The first keystone

pathogen rules for A. actinomycetemcomitans had higher

accuracy than the commensal pathogen rules for S. gordonii,

indicating a closer relationship between trained sequences and

tested sequences by the rule set descriptions related to

Supplementary Table S3 than to the rule set descriptions in

Supplementary Table S5. The rule set for the second keystone

pathogen had a high false discovery rate, indicating the rule set

related to Supplementary Table S4 for P. gingivalis has a higher

chance of leading to unexpected negative inhibitory results.

These results also confirm the critical iterations of the enhanced

rule sets for different pathogens including keystones such as
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P. gingivalis. Our future studies focus on developing rule sets

leading to low false discovery rates (<10%), then we will

incorporate this bacterial strain in our ML-candidate evaluation

process. Our ML-models are re-trained between iterations to

avoid carrying over recognized performance errors.

Hydrophobicity trends among peptides are discovered during

training and applied to the selection of new peptides. Our method

is identifying database peptides that have similar hydropathy

features to the peptides that are confirmed for their antimicrobial

activity using in vitro evaluation against our targeted bacterial

strains. These activities build better information for peptides with

similar hydropathy features, rather than using brute-force testing

on all related peptides to see if their inhibition activity changes in

a useful way between our targeted bacterial strains. Incorporation

of new information from in vitro results strengthens our approach

for either positive or negative results. We recognize the fact that

the peptides studied here need to be further evaluated for their

toxicity. Our future work will include experimental evaluation of

the potential peptide toxicity as well as other clinically relevant

properties of these peptides. We also plan to incorporate multiple

factors into the ML design of targeted peptides. Broader types of

data, such as toxicity and stability, can be tightly integrated

together with inhibitory activity because each new factor will have

its own rule sets to simultaneously constrain the sequences the

genetic algorithm will target. These distinct descriptions can be

integrated with the inhibitory activity descriptions by building

separate rule sets and using our genetic algorithm to find

examples that combine multiple rule sets for distinct descriptions.

The transparent approach of rough set theory allows us to re-

classify sequences based on new results in a short time without

using GPU-parallelized computation. Therefore, re-training of the

entire dataset is feasible when integrating data between sources

and extending data sources.

During the training, hydrophobicity trends among peptides

were discovered and applied to the selection of new peptides.

Our validation tests were run on three top candidates, one of

which had the highest inhibition predictability score against the

keystone pathogen, A. actinomycetemcomitans. Our in vitro test

results demonstrated that peptide VL-13 is an antimicrobial

peptide with the largest change of inhibition compared between

the keystone pathogen and the accessory-commensal species,

S. gordonii. Further, VL-13 has an added advantage in possessing

the largest change of inhibition between the keystone pathogen

and the commensal species, S. sanguinis.
5 Conclusion

We developed a transparent machine learning model with an

iterative in vitro experimental validation approach to design

antimicrobial peptides that selectively target keystone pathogens

believed to play critical roles during biofilm dysbiogenesis leading

to progression of peri-implant disease. The transparency of our

machine learning method allows us to compare the discovered

relationships with trends in literature. The non-linear nature of

the boundaries also provides for rapid learning between iterations
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of new sequences to explore. Through our transparent machine

learning methods, we demonstrate the finding that antimicrobial

peptide VL-13 inhibits the keystone pathogen A.

actinomycetemcomitans, while the ML model also provided better

learning descriptions for finding antimicrobial peptides inhibitory

against the accessory pathogen S. gordonii. VL-13 was the most

targeted antimicrobial peptide sequence we tested, with high

levels of inhibition against A. actinomycetemcomitans and

minimal impact on S. sanguinis and S. gordonii. The descriptions

used to select the VL-13 sequence from our candidate sequence

generation method were learned from tested peptides in this

study combined with known sequences in the literature. From

antimicrobial peptide sequences available in iAMP-2l

antimicrobial peptide database, we chose KF-18 to test for

activity. KF-18 has strong homology with AMPa, which we

demonstrated is inhibitory toward A. actinomycetemcomitans.

Since this peptide and a second generated candidate with

homology to AMPa (KK-15) did not test as active, we have

further insight into the features of AMPa which relate to

inhibition activity for A. actinomycetemcomitans and S. gordonii.

Future work aims to generate non-inhibitory sequences for

commensal and accessory species, such as S. gordonii, while

retaining inhibitory activity against keystone pathogens.

Developing an engineering approach to iteratively discover

targeted antimicrobials is a robust method for potential

therapeutic treatment for peri-implant biofilm infections and

thus to reduce the resulting host response of hyper-inflammation

during disease progression. With increasing use of implants to

replace missing teeth and support oral function, the number of

patients suffering from peri-implantitis will continue to increase.

It is critical to find targeted approaches to address this complex

infectious disease. Antimicrobial peptides with selective

bioactivity against keystone pathogens, while preserving

commensals could be the next generation therapy that will

respond to this urgent healthcare need.
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