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versatile dentin bonding agents to
increase the durability of the
bonding interface
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Despite the huge improvements made in adhesive technology over the past 50 years,
there are still some unresolved issues regarding the durability of the adhesive
interface. A complete sealing of the interface between the resin and the dentin
substrate remains difficult to achieve, and it is doubtful whether an optimal
interdiffusion of the adhesive system within the demineralized collagen framework
can be produced in a complete and homogeneous way. In fact, it is suggested that
hydrolytic degradation, combined with the action of dentin matrix enzymes,
destabilizes the tooth-adhesive bond and disrupts the unprotected collagen fibrils.
While a sufficient resin–dentin adhesion is usually achieved immediately, bonding
efficiency declines over time. Thus, here, a review will be carried out through a
bibliographic survey of scientific articles published in the last few years to present
strategies that have been proposed to improve and/or develop new adhesive
systems that can help prevent degradation at the adhesive interface. It will specially
focus on new clinical techniques or new materials with characteristics that
contribute to increasing the durability of adhesive restorations and avoiding the
recurrent replacement restorative cycle and the consequent increase in damage to
the tooth.
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Introduction

To achieve an effective and complete marginal sealing and clinical longevity, an ideal tooth–

restoration interface must have long-lasting durability. In enamel, adhesion is formed by

resinous monomers that polymerize in demineralized areas, creating a more stable and

stronger adhesive interface. The durability of the resin–dentin bond depends on the quality of

a microinterface, the so-called hybrid layer, which is achieved by the infiltration and

polymerization of resinous monomers of the adhesive system through a network of collagen

fibrils exposed by the action of acids on the dentin surface and into dentinal tubules and,

consequently, by the resistance to degradation of each one of the bond components. While

the enamel is a dry substrate, with hydroxyapatite (92% v.) being the main component of its

mineral phase, the dentin is the opposite, which is a complex and wet substrate with an

average 45% (v) of hydroxyapatite crystals, 33% (v.) of organic matrix, mostly collagen type I,

and 22% of water by volume (1, 2).
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Although the exact mechanism responsible for hybrid layer

degradation has not been completely understood, this process is

thought to involve the hydrolytic degradation of monomers in

water-rich zones within the hybrid layer, followed by enzymatic

action on exposed collagen fibrils with relevant implications for the

maintenance of the integrity of the adhesive interface (3). Many

attempts to develop new functional adhesives that limit enzymatic

degradation and polymer damage and have antimicrobial action have

been presented (1, 4). Some strategies to modify the dentin surface,

such as reducing the remaining demineralized collagen and applying

ethanol to reduce water, seem to help increase the immediate bond

strength. However, no progress has been made toward a synthesis of

new materials as well as improving or modifying techniques in order

to achieve good long-term results.

This review discusses recent clinical techniques and materials

with characteristics that contribute to increasing the durability of

adhesive restorations. The objective of this study is to present

strategies that have been proposed in recent years for the

improvement and/or development of new adhesive systems that

can help prevent degradation at the adhesive interface.
Matrix metalloproteinase inhibitors and
collagen cross-linking agents

Matrix metalloproteinases (MMPs) are a group of more than 25

secreted and membrane-bound enzymes responsible for damage to

the pericellular substrate. The main organic component of the

tooth structure is collagen, and MMPs that degrade collagen and

the extracellular matrix have been held responsible for the

degradation of the hybrid layer (5).

The organic constituents of the hybrid layer, especially collagen,

undergo degradation because of the enzymatic activity of MMPs,

among other proteases present in the dentin matrix (6, 7). When the

pH of the environment decreases to 4.5 or less, such as during the

carious process and during the acid etching of the dentin surface that

is carried out during the adhesive procedure, the MMPs that are in a

latent state are activated and their action triggered by way of degrading

the collagen that may have remained exposed underneath the formed

hybrid layer. On the other hand, the acidic adhesive systems can also

induce the activation of MMPs in the dentinal substrate. Thus, even if

there is an inhibition of a part of the MMPs exposed by the

demineralization of the dentin tissue, other MMPs would be activated

in the presence of acidic adhesives (6, 8).

Once activated, collagenases cleave triple helical collagen molecules

into two fragments of one-quarter and three-quarter length. The first

fragment of one-quarter contains the C-terminal part of the collagen

molecule and the second one of three-quarter contains the N-

terminal portion (9). Collagen loses its triple helical conformation

and can then be degraded by gelatinases MMP-2 and MMP-9 (10).

MMP-2 and MMP-9 damage the non-helical fragments and reduce

them to even smaller peptide fragments. The binding sites of collagen

to MMPs are very similar to the catalytic sites of these enzymes.

Thus, the collagen-binding domain of MMP-2 and MMP-9 binds to

a short segment of the collagen α1 chain (11). After binding to the

substrate, the water molecule that is bound to the zinc of the catalytic

domain attacks the substrate and, through the transfer of protons,
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promotes a cleavage of the peptides (12). Endogenous MMPs in the

dentin matrix are presumed to bind to collagen peptides via their

hemopexin-like domains (MMP-1, MMP-8) and/or their fibronectin-

like domains (MMP-2, MMP-9) (13).

Studies have been carried out with several substances in an attempt

to inhibit MMPs, aiming to improve the durability of the adhesive

interface (14). However, issues such as the substantivity of MMP

inhibitors and their release from polymer matrices remain (15).

Synthetic or natural bioactive agents that inhibit the endogenous

enzymes of the organic collagen matrix have been used in an

attempt to produce a strong and durable bonding interface (14), and

chlorhexidine (CHX) is the most widely used (16). These

compounds can be applied in different ways; for example, they can

be incorporated into the acid-etching gel, added into the adhesive

system, or applied directly on the dentin surface after acid etching,

while remaining in contact with the dentin surface (14, 17–27).

MMP inhibitors act through different mechanisms such as by

chelating cations (17, 28, 29), collagen cross-linking (30–32), and

competitive inhibition for active sites of the collagen molecule (12,

33, 34). In Table 1, which is modified from de Moraes et al. (35),

different techniques and materials using various types of MMP

inhibitors and their mechanisms of action are presented. Many

studies have applied CHX as a potential inhibitor of MMPs (36–45).

CHX can interact with the organic components of the dentin matrix.

This interaction occurs through electrostatic forces, between CHX-

protonated amine groups, mineral phosphates, and non-collagenous

phosphoproteins, which, in turn, are closely related to collagen fibrils

(46). The preservation of collagen integrity in the hybrid layer occurs

through the interaction of CHX with the sulfhydryl group on the

domain or cysteine located at the active site of the MMPs. This may

distort MMP molecules and prevent them from binding to

substrates, thus competing for the binding of calcium and zinc ions

to MMPs because of their chelating action. Without these ions,

MMPs will lose their catalytic activities (47). In vitro studies have

shown that CHX can preserve the bond durability of adhesives up to

12 months (37, 38, 44). Nonetheless, the clinical trials carried out by

Araújo et al. (41), Sartori et al. (42), and Valério et al. (40)

concluded, after a 2-, 3-, and 4-year follow-up, respectively, that the

addition of CHX into the primer of the self-etch adhesive or the

application of CHX on the etched dentin did not provide any

clinical advantages nor did it improve the clinical durability of

adhesive restorations, compared with the groups without CHX.

Of late, other compounds have been presented, such as 2%

doxycycline (56), 1,10-phenanthroline (57), captopril (58), ion-

releasing filler (59), and Emblica officinalis (Indian gooseberry or

amla) as an acid etchant and MMP inhibitor. Amla juice has a similar

etching effect as a self-etch adhesive in SEM and 100% amla extract

has been found to inhibit MMP-9 by gelatin zymography (60)

and a novel mussel-inspired monomer [N-(3,4-dihydroxyphenethyl)

methacrylamide] (61) with the aim of preserving the bonding between

the restorative material and the tooth wall.
Polymer hydrolysis

Although several studies consider adhesion to enamel to be a

reliable approach, adhesion to dentin remains a crucial challenge
frontiersin.org

https://doi.org/10.3389/fdmed.2023.1127368
https://www.frontiersin.org/journals/dental-medicine
https://www.frontiersin.org/


TABLE 1 Matrix metalloproteinases inhibitors and strategies to improve the stability of the dentin/resin bonding [Moraes et al (35)]a.

Mechanism of action MMP inhibitor Method of use Period of
testing

Type of
study

References

Chelation CHX 2% diacetate CHX added into an experimental adhesive 1 year In vitro Da Silva et al. (36)

2% digluconate CHX, dentin pretreatment, 60 s 6 months In vitro Lenzi et al. (37)

0.01%, 0.05%, 0.1%, and 0.2% diacetate CHX added into
a commercial adhesive

1 year In vitro Stannislawczuk
et al. (38)

0.5%, 1.0%, 0.2%, and 0.4% diacetate CHX into an
experimental adhesive

18 months In vitro Menezes et al. (22)

2% digluconate CHX, dentin pretreatment, 60 s 20 months Clinical
trial

Ricci et al. (39)

2% digluconate CHX, dentin pretreatment, 30 s 1 year Clinical
trial
In vitro

Brackett et al. (27)

2% digluconate CHX, dentin pretreatment, 60 s 4 years Clinical
trial

Valério et al. (40)

1% digluconate CHX added into a commercial self-etch
adhesive primer

2 years Clinical
trial

Araújo et al. (41)

2% digluconate CHX, dentin pretreatment, 30 s 3 years Clinical
trial

Sartori et al. (42)

2% digluconate CHX, dentin pretreatment, 60 s 1 year Clinical
trial

Galafassi et al.
(43)

2% digluconate CHX, dentin pretreatment, 20 s 1 year In vitro Daood et al. (44)

2% digluconate CHX, dentin pretreatment, 60 s 1 year In vitro Tekçe et al. (45)

EDTA EDTA 0.5 M, dentin pretreatment, 60 s 1 year In vitro Tekçe et al. (45)

Tetracyclines 2% minocycline, dentin pretreatment, 60 s 6 months In vitro Singh et al. (46)

Zinc ZnO or ZnCl2 added into an experimental adhesive and
primer

24 h In vitro Osório et al. (34)

Galardin 0.2 mM galardin, dentin pretreatment, 30 s 1 year In vitro Breschi et al. (30)

5 μM galardin added into an experimental adhesive 1 year In vitro Da Silva et al. (36)

Batmastati 5 μM batmastati added into an experimental adhesive 1 year In vitro Da Silva et al. (36)

QAS 2%, 5%, and 10% QAS, dentin pretreatment, 2 min 14 days In vitro Daood et al. (44)

Quaternary
ammonium
Methacrylates

5% MDPB, 30% METMAC, MCMS, MAPTAC, DDAC,
ATA, dentin pretreatment

1 month In vitro Tezvergil-Mutluay
et al. (47)

BAC BAC-containing acid etchant, 15 s 1 year In vitro Comba et al. (21)

0.5% BAC and
1% methacrylate BAC, 30 min

6 months In vitro El-Gezawi et al.
(19)

1% BAC-containing acid etchant, 15 s
0.5% and 1.0% BAC-containing acid etchant, 15 s
0.5% and 1.0% BAC-adhesive

6 months In vitro Sabatini et al. (48)

1% BAC, dentin pretreatment, 15 s 1 year In vitro Tekçe et al. (45)

Alcohols Methanol, ethanol, 1-propanol, 2-propanol, 1-butanol,
2-butanol, tert-butanol, 2-hydroxyethylmethacrylate, 1-
pentanol, hexanols, heptanols, octanols, 1,2-ethanediol,
and 1,3-propanediol

1 month In vitro Tezvergil-Mutluay
et al. (49)

A series of ethanol concentrations (50%, 70%, 80%, 95%,
and 100%), 15 s each after acid etching

24 h In vivo
In vitro

Kuhn et al. (50)

Collagen cross-linking PA 0.02%, 0.1%, and 0.5% PA, dentin pretreatment 12 h In vitro Hiraishi et al. (31)

3.75% PA, dentin pretreatment, 10 s, 1 min, 30 min,
60 min, 120 min, 360 min, and 720 min

6 months In vitro Ephasinghe et al.
(51)

2% PA-containing acid etchant, 15 s. 6 months In vitro Hass et al. (18)

(continued)
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TABLE 1 Continued

Mechanism of action MMP inhibitor Method of use Period of
testing

Type of
study

References

GA 0.1% GA, dentin pretreatment, 60 s 24 h In vitro Chiang et al. (52)

5% GA, dentin pretreatment, 60 s 24 h In vitro Cilli et al. (53)

5% GA, dentin pretreatment, 60 s 6 months In vitro Li et al. (33)

0.02%, 0.1%, and 0.5% GA, dentin pretreatment, 60 s 12 h In vitro Hiraishi et al. (31)

RB 0.1% RB—1 min—UV;
0.1% RB—2 min—UV;
1.0% RB—1 min—UV,
dentin pretreatment, 60 s

24 h In vitro Chiang et al. (52)

0.1% and 1% RB—5 min—UV or light blue
dentin pretreatment, 60 s

4 months In vitro Fawzy et al. (32)

Resveratrol 100, 250, 500, and 1,000 μg/mL resveratrol solution,
dentin pretreatment, 60 s

4 months In vitro Porto et al. (25)

Quercetin 5% quercetin added into an adhesive 6 months In vitro Gotti et al. (54)

100, 250, 500, and 1,000 μg/mL quercetin solution,
dentin pretreatment, 60 s

4 months In vitro Porto et al. (25)

Competitive inhibition for active sites
of the collagen molecule

Zn 2% ZnCl2 or 10% ZnO added into a commercial etch
and rinse adhesive
2% ZnCl2 added into a commercial self-etch primer
adhesive
2% ZnCl2 or 10% ZnO added into a commercial self-etch
bond adhesive

24 hours In vitro Osório et al. (34)

Multiple action mechanisms (by
inactivating the active sites and
improving the resistance of cross-
linked collagen matrices)

Carbodiimides 0.01, 0.02, 0.05, 0.1, and 0.3 M carbodiimide, dentin
pretreatment, 60 s

1 month In vitro Tezvergil-Mutluay
et al. (13)

1 M carbodiimide solution, dentin pretreatment, 60 s 6 months In vitro Singh et al. (46)

EGCG
Green Tea

0.1% EGCG solution, dentin pretreatment, 60 s 6 months In vitro Singh et al. (46)

1.1% EGCG solution, dentin pretreatment, 60 s 6 months In vitro Monteiro et al.
(55)

0.1% EGCG solution, dentin pretreatment, 60 s 1 year In vitro Neri et al. (14)

MMPs, Matrix metalloproteinases; METMAC, [2(methacryloyloxy)ethyl] trimethylammonium chloride; MCMS, methacryloyl choline methyl sulfate; MAPTAC, [3

(methacryloylamino)propyl] trimethylammonium chloride; DDAC, diallyldimethylammonium chloride; ATA, 2-acryloxyethyltrimethylammonium chloride; MDPB, 12-

methacryloyloxydodecylpyridinium bromide; CHX, chlorhexidine; EDTA, ethylenediaminetetraacetic acid; QAS, quaternary ammonium silane; BAC, benzalkonium chloride;

PA, proanthocyanidin; GA, glutaraldehyde; RB, riboflavin; EGCG, epigallocatechin-3-gallate.
aWith permission from authors.
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(62). Differences in hydrophilicity and water content of adhesives

directly influence the durability of interfaces. The presence of water

plays an important role both in the prior acid-etching technique and

in the self-etching technique. Water is an essential component in

self-etching systems, as it enables the ionization of acidic monomers

that demineralize the underlying enamel and/or dentin (63). In

addition to having water in their composition, the ionizable groups

of acidic monomers are hydrophilic. Therefore, different water

sorption rates can be expected for the bonding interfaces produced

by different bonding systems (64). Newer systems such as Universal

or Multi-mode adhesives offer the option of selecting a conventional

or self-etching bonding strategy, or an alternate strategy of “selective

enamel etching” and self-etching into dentin. Despite the

composition being similar to that of older self-etching adhesives,

universal ones contain specific functional monomers of carboxylate

and/or phosphate, with one of the main adhesives being 10-

methacryloyloxydecyl dihydrogen phosphate (10-MDP), which

ionically binds to dentin and is more effective and stable in water

than that provided by other functional monomers (65).
Frontiers in Dental Medicine 04
There are several factors involved in the sorption of water and

degradation of polymers, such as the following: the pH of the storage

medium (66); conversion degree (67); the polarity of the molecular

structure and the presence of hydroxyl groups able to form hydrogen

bonds with water and the number of crosslinks (68); the presence of

residual water and the presence and type of filler particles (69).

Hydrolysis is considered the main reason for resin degradation

within the hybrid layer, contributing to a reduction in bond

strength over time. After penetrating the polymer matrix, the water

triggers the process of chemical degradation, resulting in the

generation of oligomers and monomers. Water sorption and

solubility rates presented by adhesive systems after polymerization

are important for indirectly determining the longevity and

marginal quality of the restoration (28). It has long been known

that moisture present in the oral or storage environment plays an

important role in the process of chemical degradation of polymers

and has a deleterious effect on the resin–dentin interface (70).

Leaching is facilitated by the penetration of water into weakly

cross-linked bonds or hydrophilic groups in the adhesive.
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Hydrophilic groups show limited monomer/polymer conversion

because of adhesive phase separation (71) and a lack of

compatibility between the hydrophobic photoinitiator and the

hydrophilic phase (72). The poorly polymerized hydrophilic phase

degrades rapidly in aqueous media (73). The structure of

methacrylate adhesives, featuring hydrolytically susceptible groups

such as ester and urethane, as well as hydroxyl, carboxyl, and

phosphate groups (74), can be hydrolyzed by chemical and

enzymatic degradation in an oral environment (75), and the

collagen matrix previously infiltrated by resin becomes susceptible

to attack by proteolytic enzymes (73).

Adhesive systems typically employ 2-bis[4-(2-hydroxy-3-

methacryloxypropoxy)-phenyl]-propane (Bis-GMA) as the base

monomer and low-viscosity 2-hydroxyethyl methacrylate (HEMA)

as a monomer thinner to improve material quality and handling

properties and to ensure proper dentin infiltration (76). However,

adhesive durability and protective ability are often compromised by

a failure of the tooth/restoration interface (77, 78). The issue of

increasing durability and that of toxicity require the development

of longer-lasting dental products without Bis-GMA/HEMA in

adhesive systems.

New monomers and polymerization systems have been suggested

to bypass the process of hydrolysis of the Bis-GMA/HEMA system

(79), for example, triethylene glycol vinyl-benzyl-ether (TEGBE)

monomer, which is a hydrolytically stable ether-based monomer

(80). This compound has a dumbbell-shaped amphiphilic structure

with a hydrophilic core and two hydrophobic vinyl-benzyl groups.

Its polymerization mechanism does not show the limitation of

diffusion and provides a higher degree of conversion (81). Song

et al. (68). showed that the functional amino silane methacrylate

monomer (ASMA) is able to act simultaneously as a co-monomer

and co-initiator with the ability to develop a simplified adhesive

that achieves greater durability and mechanical properties.
Adhesive systems with antimicrobial
activity

Adding antimicrobial substances to dental adhesives has been

shown to improve tooth–restoration bonding (82), inhibiting the

growth and multiplication of remaining bacteria (82, 83), while

preventing the entry of new microorganisms and even limiting the

influence of the factors that initiate the chemical and enzymatic

degradation of dental adhesives (84). As a result, the durability of

the tooth–restoration interface increases and there is a reduction in

secondary caries.

The search for materials with antibacterial properties resulted in

the development of new dental adhesives with antimicrobial agents,

with inorganic fillers, modified monomers, or additives

incorporated both in the polymeric matrix and in the filler

particles (85–87) such as zinc oxide nanoparticles (88), silica

nanoparticles functionalized with amphotericin B (89), silver

nanoparticles (90–92), modified monomers containing quaternary

ammonium (93), flavonoids (94, 95), plant extracts (94, 96), gold

nanoparticles (97), calcium phosphate (87, 98), zinc oxide (99),

and titanium dioxide (100, 101). Aguiar et al. (102) compiled

various studies wherein commercially available antimicrobial
Frontiers in Dental Medicine 05
adhesives (ClearfilTM SE Protect Bond/MDPB, Gluma 2 Bond/

glutaraldehyde, Peak Universal Bond/chlorhexidine) and

experimental materials or commercial adhesives modified with

antimicrobial agents, including materials with quaternary

ammonium methacrylate (QAM), dimethylamine dodecyl

methacrylate (DMADDM), and dimethylamine hexa-decyl

methacrylate (DMAHDM), silver nanoparticles (NAg), titanium

dioxide (TiO2), zinc oxide (ZnO2)], silver- or zinc-doped bioactive

active glass (BAG), titanium, and copper iodide, and compounds

such as triclosan, quercetin, and grape seed extract, were analyzed.

Compared with control groups, all these tested compounds showed

the best results of inhibition for all tested pathogens, both single-

layer bacteria and biofilm, without any adverse effects on the

physicochemical and mechanical properties of adhesive systems.

Silver nanoparticles, either pure or mixed with other substances,

were tested. The addition of silver nanoparticles in dental adhesives

demonstrated specific antibacterial activity at the tooth–restoration

interface (103, 104). In 2020, Münchow et al. (83) combined two

processing methods (electrospinning and cryomilling) to obtain

bioactive fillers based on fibers containing a strong MMP inhibitor,

doxycycline, with antimicrobial and metalloproteinase inhibitor

properties. The filler was used to obtain bioactive adhesives with

the potential to inhibit MMPs and antibacterial activity against S.

mutans and Lactobacillus, without compromising the physical–

mechanical properties or the bond strength (up to 12 months).

Bacterial resistance against silver is difficult to achieve because of

its multiple antibacterial mechanisms (105): (a) interaction with life-

sustaining enzymes and blocking of the electron transport system in

bacteria (106) and the thiol group of enzymes deactivating them,

leading to bacterial cell death (107); (b) binding to bacterial cells

by interacting with their cell membranes or cell walls. This can

inhibit the movement of the organism or trigger leakage or rupture

of the membrane (107, 108) (c) penetration inside the cell and the

damage to intracellular structures (mitochondria, vacuoles,

ribosomes) and biomolecules (protein, lipids, and DNA) (109); and

(d) the formation of an organometallic complex when silver ions

bind to the amino acids. Thus, silver ions can be generated inside

the bacterial cell when this organometallic complex breaks down.

The accumulation of silver ions in the cell can inactivate bacterial

DNA and RNA, and it can damage and rupture the cell

membrane, causing cell death (110).
Bonding agents with the potential for
biomimetic remineralization

To help remineralization of hard dental tissue is a desirable

property in dentin bonding agents. Biomimetic remineralization is

being considered a replacement for the restorative approach, which

currently follows a minimally invasive procedure. Thus, selective

caries tissue removal has become a clinical reality in deep cavities

where demineralized dentin is left on the pulp areas and sealed

with restoration (111).

In this sense, adhesion is a clinical challenge because

conventional adhesives have low bond strength when applied to

demineralized or contaminated dentin, as this dentin layer can be

only partially infiltrated by resin monomers (112), becoming more
frontiersin.org
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prone to hydrolytic and/or enzymatic degradation, which may

compromise the durability of composite resin restorations (113, 114).

Thus, the development of bioactive restorative materials capable

of remineralizing mineral-depleted sites at the dentin–adhesive

interface is one of the main aims of dental research (112, 115–117).

Studies using bioactive glasses incorporated in experimental

adhesives provided mineral gain, increased microhardness, and

better sealing of the resin–dentin interface (112, 115). The

mechanism is based on the ability to release Si(OH)4 from the

bioactive glasses, which binds to collagen exposed by acid etching

and polymerizes into an absorbent SiO2-rich layer. This layer can

aid in the precipitation of amorphous calcium phosphate (118) and

subsequent conversion to nonstoichiometric apatite (119). In

addition, a mineral-rich alkaline environment can allow a

condensation of Si(OH)4 and precipitation of Ca2+ and PO4
−3, and

this can help fossilize metalloproteinases and cathepsins and

reduce their proteolytic activity (28, 120).

It was also found that the use of materials with zinc can reduce

metalloproteinase-mediated collagen degradation within poorly

infiltrated hybrid layers and decayed dentin, protecting the

sensitive collagen cleavage sites within demineralized dentin (121,

122), as zinc ions act as inhibitors of MMP-2 and MMP-9 (123).

The use of casein phosphopeptide-amorphous calcium

phosphate (CPP-ACP) may be associated with an increased

longevity of the dentin–resin interface (124–126) through the

release, deposition, and stabilization of gradients with a high

concentration of calcium and phosphate ions on the tooth (127).

The self-assembling peptide P11
−4 (CH3CO-QQRFEWEFEQQ-

NH3) was designed as a β-sheet-forming peptide that assembles

into hierarchical structures in response to environmental triggers,

resulting in the formation of a 3D biomimetic scaffold that is

capable of nucleating hydroxyapatite, since the anionic groups

present in P11
−4 side chains attract calcium ions, inducing a

hierarchical precipitation of calcium phosphate salts onto the

preformed scaffold (128, 129). The self-assembled peptide possibly

controls the deposition and growth of hydroxyapatite crystals on

enamel (130–132). The behavior and performance of P11
−4 in dentin

has already been described (125, 126, 133) and may be a

promising method in the treatment of caries-affected dentin,

increasing the longevity of bonded restorations.

Sodium fluoride has also been shown to be a possible chemical

inhibitor of MMPs (134, 135). However, Moreira et al. (126) did

not detect an increase in bond strength when using sodium

fluoride compared with CPP-ACP and peptide P11
−4.

A complete remineralization of caries-affected dentin remains a

challenge, but biomimetic remineralization strategies suggest that it

is possible to promote mineral precipitation within the hybrid layer

and reduce collagen degradation. However, more studies are

needed to define viable clinical protocols and ascertain their long-

term efficacy.
Removal of residual water not bound to
collagen

It is common knowledge that the adhesion of resin materials to

conditioned enamel is significantly higher than that of dentin,
Frontiers in Dental Medicine 06
which is mainly attributed to the characteristics of each substrate

(136). The presence of water in the dentin hybrid layer during

polymerization interferes with the quality of hybridization in this

layer (137) and can cause hydrolytic degradation (138), a low-

quality mechanical property (138), and nanoleakage (139).

Due to these problematics related to the presence of water in the

hybrid layer, adhesive systems containing solvent and less

hydrophilic monomers are preferred for residual water removal

(139, 140). The types of solvent most commonly used in these

systems are ethanol, acetone, and water. Ethanol binds to residual

water through hydrogen bonds, increasing evaporation rates, and

is more effective than water as a solvent. On the other hand,

solvents containing acetone show promising performance in a

simplified adhesive system, which uses a single bottle containing

hydrophilic and hydrophobic monomers together (141). In

addition, acetone contains a higher vapor pressure in addition to

the water-chasing effect, which is believed to induce a greater

removal of residual water (142). However, the application of both

types of solvents in challenging clinical situations, as in non-

carious cervical lesions, yields similar clinical performance and

the same survival rates (143).

An alternate technique to remove residual water is called

“ethanol wet bonding,” which is applied on etched and rinsed

dentin, inducing the replacement of water by ethanol. In this way,

ethanol carries out the process of chemical dehydration, increasing

the interfibrillar spaces because of the additional interfibrillar

shrinkage and reducing the hydrophilicity of the collagen matrix

(139). However, it is necessary to point out that this technique is

not a new one (144). Over a period of time, the scientific literature

presents in vitro studies evaluating this technique, showing

favorable and promising results (144, 145). However, when ethanol

wet bonding is applied in in vivo studies or clinical trials, the

results are not promising (50). Thus, the presence of sound dentin

with a constant permeability through the dentinal tubules is a

persistent challenge for the complete removal of residual water by

ethanol (50, 147).

Other adhesive techniques with the same objective are proposed:

the application of multiple adhesive layers or a layer of a hydrophobic

resin agent and air-blowing the adhesive with high intensity are

possibilities reported in the literature as viable (147). Likewise, a

polar aprotic solvent, dimethyl sulfoxide (DMSO), was proposed as

a component that improves adhesive infiltration and reduces

residual water from the resin–dentin interface, thus improving the

bond strength between resin-based materials and etched dentin

(148).

It is relevant to emphasize the evaluation of adhesive systems and

application techniques, from etch-and-rinse ones (by three or two

steps) with a wet dentin substrate, as already mentioned, to a self-

etch adhesive system (by two or single step) and a universal one,

which allow working on a dry substrate, free from moisture (149,

150). Therefore, based on short-term randomized clinical trials,

self-etch and etch-and-rinse adhesive systems applied with multiple

coats appear to yield satisfactory clinical performance (149, 151).

Also, as observed in a long-term clinical trial (13 years), according

to a van Djiken study, a continuous and similar bonding

degradation for all adhesive systems evaluated in non-carious

cervical lesions was demonstrated (152).
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Conclusion and points of view for
further research

Adhesive systems have improved over the years with regard to

their interaction with the dental substrate, material composition,

and technique. Even so, to increase the durability of the adhesive

interface remains a challenge. The measures to improve the dental

bonding systems presented in this review have been driven by the

need to make the best use of the material to resolve issues such as

enzymatic and hydrolytic degradation, preservation of the adhesive

interface bonding strength over time, and the development of new

bioactive products.

There is huge potential for the development of better,

stronger, and bio-based materials purposely made from

chemicals derived from renewable biological resources, such as

natural polymers, propolis, vegetable oils, plant extracts, resins,

and bioactive compounds. However, the accessed studies were

done in a laboratory environment and in a short period of

time. Even with excellent laboratorial results, the materials

require further clinical investigation in different substrates

(sound and carious dentin, abraded and sclerotic dentin) over a

longer period of time in a challenging oral environment so that

better results can be achieved and the presented evidence

validated.
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