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Materials informatics for developing
new restorative dental materials:
a narrative review
Satoshi Yamaguchi*, Hefei Li and Satoshi Imazato

Department of Biomaterials Science, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan

Materials informatics involves the application of computational methodologies to
process and interpret scientific and engineering data concerning materials.
Although this concept has been well established in the fields of biology, drug
discovery, and classic materials research, its application in the field of dental
materials is still in its infancy. This narrative review comprehensively summarizes the
advantages, limitations, and future perspectives of materials informatics from 2003
to 2022 for exploring the optimum compositions in developing new materials using
artificial intelligence. The findings indicate that materials informatics, which is a
recognized and established concept in the materials science field, will accelerate
the process of restorative materials development and contribute to producing new
insights into dental materials research.
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Introduction

Materials informatics (MI) is a field of research in materials science, and its significance has

increased steadily in the discovery of new materials such as alloys (1–3), polymers (4, 5), and

ceramics (6). Some of the materials have been successfully synthesized according to the

discovery (7–9). The term “materials informatics” was first used in 2003 by Rodgers JR (10)

and defined as “the application of computational methodologies to processing and

interpreting scientific and engineering data concerning materials.” The publications related to

this field have dramatically increased since 2015 (11), a few years after the statement of the

Materials Genome Initiative in 2011 (12). The success of deep learning (13) and big data (14,

15) has also triggered an acceleration in MI studies.

Machine learning, which is a broader concept of deep learning (16), is a data analytics

technique that employs artificial intelligence (AI) to explore the regulations underlying

datasets by defining clear relationships between input and output datasets from in vitro

experiments. It has recently become a major tool in MI and has been used for the prediction

of material properties as a solution to a direct problem from unknown features

(compositions, experimental conditions, etc.) (17) that cannot be used for the development of

a regression model. Compared to the conventional method based on density functional

theory requiring high-performance computer clusters, the machine learning models can be

developed with minimum computer resources (18). In MI, solving an inverse problem to

derive features for achieving desirable material properties is particularly important for

discovering new materials (Figure 1).

In the dental field, Li et al. were the first to apply the MI approach to predict the flexural

strength of computer-aided design/computer-aided manufacturing (CAD/CAM) resin

composites, and they successfully explored the optimum compositions to achieve desirable
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FIGURE 1

Schematic illustration of the materials informatics approach.
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flexural strength (19). Thus, the MI approach promises to make

dental material research more efficient than the conventional trial-

and-error approach (20).

This narrative review comprehensively summarizes the

advantages, limitations, and future perspectives of MI from 2003 to

2022, particularly focusing on the methodology to explore the

optimum compositions and thereby achieve the desired properties

of dental materials using machine learning approaches.
For restorative materials and their
important properties

Resin composites

Resin composites as indirect restorative materials consist of a

glass filler, monomers, and a silane coupling agent (21). Flexural

strength is the most typical mechanical property for evaluating

the fracture and deformation resistance of resin composites (22)

and can be measured by a three-point bending test according to

ISO 4049:2019 (23). Filler press and monomer infiltration have

been established to fabricate computer-aided design/computer-

aided manufacturing (CAD/CAM) resin composites (24). The

flexural strength of such CAD/CAM resin composites is

significantly better than that of resin composites for filling and is

acceptable for posterior tooth restorations (25). However, CAD/

CAM resins still have lower flexural strength than glass-ceramic

materials (26) because of the degradation of the silane coupling

agent (27).
Frontiers in Dental Medicine 02
Glass ceramics

Ceramics are widely used as indirect restorative materials owing

to their high biocompatibility and pleasing aesthetics (28). Lithium

disilicate glass ceramics are the top material choice for anterior

tooth restorations as a single-unit crown (29). The pre-crystallized

state contains metasilicate and lithium disilicate nuclei, which are

recrystallized by heat treatment. After heat treatment, the flexural

strength increases dramatically (28). Recently developed lithium

disilicate glass ceramics do not require any firing after milling (30)

and are expected to reduce chair time. In this regard, the MI

approach will fit the recent lithium disilicate glass ceramics, that is,

no phase change. In addition to the three-point bending test, the

biaxial flexural strength test (31) is commonly used to evaluate the

flexural properties of lithium disilicate glass ceramics (32).
Resin/glass ionomer cements

The long-term clinical success of dental restorations depends, in

part, on the use of luting cements and cementation procedures. The

main task for luting cements is to provide an impervious seal

between the abutment and the restoration (33). Resin composite

cement and glass ionomer cement (GIC) are widely used types of

dental adhesives (34). The conventional GIC is made of calcium

fluoro-aluminosilicate glass powder combined with water-soluble

polycarboxylic acid. Resin composite cements can be divided into

adhesive and self-adhesive resin cements (35). The former has a

composition similar to that of restorative resin composites, with a
frontiersin.org

https://doi.org/10.3389/fdmed.2023.1123976
https://www.frontiersin.org/journals/dental-medicine
https://www.frontiersin.org/


Yamaguchi et al. 10.3389/fdmed.2023.1123976
lower filler concentration to ensure a thin film thickness and an

acceptable working time (36). The latter allows tooth restoration

adherence without the use of separate adhesives and etchants. The

major constituents of self-adhesive resin cement include functional

acidic monomers, conventional dimethacrylate monomers, fillers,

and activator-initiator systems (35). Mechanical strength and

handling properties are important properties to consider when

using different luting cements. For flexural strength testing, the

testing method for resin composites and cements specified in ISO

4049:2019 is usually adopted. However, because the luting cement

applied for fixed prostheses is formed as a thin layer, Kawashima

et al. proposed an evaluation method to assess the mechanical

strength (flexural, tensile, and shear strength) of film-formed self-

adhesive resins reflecting cement thickness (37). A consistency

evaluation method to determine whether a resin cement to be

tested has appropriate flowability for the setting of prosthetic

appliances was also proposed by the same author (38).
FIGURE 2

Relationship between prediction performance and model interpretability.
Materials informatics

Data preparation

Descriptors (x) such as material compositions (e.g., filler,

monomers, and silane coupling agent) and synthesis conditions

(e.g., pressure and temperature) for the material properties (y)

(e.g., flexural strength) are defined according to human knowledge

from in vitro experiments (e.g., three-point bending test).

Descriptors are commonly normalized (from 0 to 1) and

standardized (mean = 0, standard deviation = 1) to avoid non-

convergence. To develop a good generalization model, descriptors

should be appropriately selected from the experimental data.
Regression model development

Machine learning can be categorized into supervised and

unsupervised learning. Supervised learning is represented by the

following equation:

y ¼ f x1; x2; x3; � � � ; xMð Þ; (1)

where x is the descriptor in MI and y is the objective variable. When

the objective variable is represented by consecutive numbers, to solve

this equation, the relationship between x and y is called regression. A

fitted line or curve can be drawn using a machine learning algorithm.

This fitted line or curve is called the regression model. In cases

involving many descriptors, fitting on plots is difficult, and

machine learning algorithms such as neural networks, support

vector machines, and random forests are required. In the MI

approach, interpretable machine learning is useful for obtaining

new ideas to determine the optimum descriptors for new materials.

The relationship between prediction performance and model

interpretability is a tradeoff, as shown in Figure 2.
Frontiers in Dental Medicine 03
Model evaluation

The most appropriate relationship between descriptors (x) and

objective variables (y) can be determined by identifying the most

appropriate hyperparameters for the selected algorithms to

represent the relationship. During this process, the in vitro dataset

was often divided into training and test data to avoid overfitting,

wherein the identified relationship fit the training data well, but

was unable to fit unseen data in the testing set (39). The training

dataset was randomly split into two groups: 80% or 70%

(depending on how large the dataset is) of the data was used for

training the model, and the remaining 20% or 30% was used for

testing. For the training dataset, to further avoid overfitting, the

k-fold cross-validation method was used, in which the model fits

the training data k times. For each iteration, the training data were

split into k subsets; k−1 subsets were used to train the model, and

the kth subset was used as the test data. The hyperparameters that

exhibited the best performance during the cross-validation process

were selected for the machine learning models. The coefficient of

determination (R2 value), root mean square error (RMSE), and

mean absolute error (MAE) were used to assess the regression

accuracy of the trained machine learning models. These metrics are

expressed as follows:

R2 ¼ 1�
Pm

i¼1 ŷ ið Þ � y ið Þ
� �2

Pm
i¼1 �y � y ið Þð Þ2

(2)

RMSE ¼ 1
m

Xm
i¼1

y ið Þ � ŷ ið Þ
� �2

(3)

MAE ¼ 1
m

Xm
i¼1

y ið Þ � ŷ ið Þ
���

��� (4)
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where y ið Þ was the material properties obtained from in vitro

experiments, ŷ ið Þ was the predicted material properties from the

trained machine learning algorithms, and m was the number of

test samples. R2 values close to 1 indicated good predictability of

the model, while the other two indices close to zero indicated good

predictability.
Optimum descriptor search

If a good regression model is successfully developed, the

optimum descriptors that achieve desirable material properties can

be inversely searched. The simplest method is an exhaustive search

using a linear regression model. From all combinations of

descriptors, the material properties are predicted according to the

regression model, and the material property with the best

performance can be selected. However, in searches involving many

descriptors, the prediction process will be time-consuming.

Bayesian optimization (BO) can overcome this issue by developing

non-linear regression models (also called “surrogate model”) and

acquisition functions. The commonly used probability distribution

model is Gaussian process regression, which estimates the mean

and variance of the training data as a posterior distribution.

However, the dimensions of the descriptors could be large,

resulting in a large reaction space of up to tens of thousands of

possible compositions that cannot be all conducted in vitro to

update the posterior distribution. Therefore, after training the

surrogate model, an acquisition function was used to select the

next trial experiment from the reaction space. There are two

typical strategies for acquisition functions: exploration and

exploitation. Exploitation tends to select the next experiment

around the neighborhood of the current best observed value, while

exploration tends to select the next point with the greatest

predictive uncertainty and tends to investigate the entire reaction

space thoroughly (40). Commonly used acquisition functions such

as expected improvement (EI) aim to balance these two strategies.

Shields et al. used the BO method to optimize the yield of two

reactions in the pharmaceutical field and successfully found

unconventional compositions and configurations that were not

commonly selected by human experts, and improved the yield

within only 40 experiments (40). Overall, an exhaustive search

could be considered when dealing with a small reaction space;

however, in searches involving a large reaction space with varied

compositions, concentrations, temperature, and pressure, such as

the development of new dental materials, all failure datasets

accumulated during the developing process could be used as

training data, and the BO method could be considered to

accelerate the procedure for finding the new formulations.
Limitations and future perspectives

The MI approach has opened the door to accelerating the

discovery and design of new dental materials. However, the
Frontiers in Dental Medicine 04
synthesis of such new dental materials is still difficult owing to the

complexity of the manufacturing process. With further

advancements in dental materials research, process informatics (PI)

(41, 42), which is the methodology for synthesizing actual

materials on the basis of the MI approach, will receive more

attention. Building a sustainable open database to accumulate

information regarding various manufacturing processes, regardless

of success or failure, is important to achieve PI. The autonomation

of the manufacturing process using machine learning (43–47) will

assist in the combination of MI and PI approaches.
Summary

In this narrative review, we have comprehensively summarized

the methodology to explore optimum material compositions using

an MI approach. The MI approach promises to accelerate dental

material research and contribute to multidisciplinary research in

dentistry.
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