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Translational Dental Medicine and Department of Endodontics, Boston University Goldman School of
Dental Medicine, Boston, MA, United States

Apical periodontitis (AP) develops as a result of an immune response to pulpal
bacterial infection, and various cytokines are involved in the pathogenesis of
AP, with Interleukin (IL)-1 being considered a key cytokine. The role of IL-1 in
the pathogenesis of AP has been well studied. It is known that IL-1
expression in periapical lesions correlates closely with the development of
AP. IL-1 is a potent bone-resorptive cytokine that induces osteoclast
formation and activation. Hence, inhibiting its signaling with IL-1 receptor
antagonist (IL-1RA) results in a reduction in periapical lesion size. On the
other hand, IL-1 is also a central cytokine that combats bacterial infection by
activating innate immune responses. Therefore, a complete loss of IL-1
signaling leads to a failure to limit bacterial dissemination and consequently
exacerbates AP. In vivo, IL-1 expression is tightly regulated and its signaling is
modulated to optimize the immune response. Obesity causes systemic low-
grade chronic inflammation and increases the risk of cardiovascular, renal,
and other disorders. In experimentally induced AP, obesity significantly
increases periapical bone loss, albeit the underlying mechanism remains
unclear. Recent technological innovations have enabled more
comprehensive and detailed analyses than previously, leading to new insights
into the role of IL-1RA in regulating IL-1 signaling, and modulating apical
lesion progression in obesity. In this review, we provide a brief overview of
the function of IL-1 in AP development, with special emphasis on the latest
findings in normal weight and obese states.
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OAF, osteoclast-activating factor; RANKL, receptor activator of NF-κB ligand; Treg cell, regulatory T
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Introduction

Apical periodontitis (AP) involves chronic inflammation
and alveolar bone loss. Kakehashi et al. demonstrated for the
first time that AP is caused by pulpal infection. Rats
maintained in a conventional microbial environment
developed pulp necrosis and periapical inflammation after
pulp exposure. In a germ-free environment, the pulps
remained vital without periapical bone destruction, and
dentin bridges formed over the exposed pulp, demonstrating
the capacity for tissue regeneration in the absence of
infection (1).

In response to infection, complexly mixed immune cells
migrate to the infected site. First neutrophils infiltrate,
followed by monocytes/macrophages, and subsequently by
lymphocytes [T, B, and natural killer (NK) cells] (2, 3). These
cells play critical roles in innate and adaptive immunity.
Innate immunity comprises nonspecific responses that do not
require prior sensitization to an antigen. Phagocytes are key
to innate responses; neutrophils and macrophages engulf
bacteria; and NK cells eliminate infected cells. Innate cells
also produce inflammatory cytokines, which mediate immune
and connective tissue cell activity (4–6). To eliminate
pathogens and establish immune memory, the adaptive
response activates antigen-specific CD4 + helper and CD8 +
cytotoxic T cells, as well as B cells and plasma cells that
produce antibodies (7, 8). The innate immune system also
eliminates bacteria, apoptotic/dead cells, and debris. These
responses are precisely regulated by the complex cytokine
network.

Cytokines thus primarily protect the pulp and periodontal

tissue from infection; however, cytokine-activated immune

and inflammatory responses induce tissue destruction,

particularly bone resorption (9, 10). Regarding bone

resorption, Horton et al. first reported in 1972 that immune

cells can influence osteoclast activity. Osteoclast-activating

factor (OAF), a powerful stimulator of osteoclastic bone

resorption, was released from human peripheral blood

leukocytes stimulated by the mitogen phytohemagglutinin, or

by antigenic material present in human dental plaque (11). In

1985, OAF was subsequently purified to homogeneity and

sequenced, and shown to be identical to interleukin-1-beta

(IL-1β). It was later shown that macrophage-derived IL-1 is a

prominent mediator in developing bone destructive periapical

lesions (12–15). These and other basic studies on the

interactions between the immune system and bone following

pulpal infections have been important in establishing the field

of osteoimmunology. These basic studies have provided a

rationale of clinical research on IL-1/IL-1 signaling in AP and

foundation for interpreting their outcomes (16–22).

Obesity is one of the most prevalent non-communicable

diseases and predisposes to various disorders, including

hypertension, type 2 diabetes mellitus (DM), dyslipidemia,
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and coronary heart disease (23, 24). The increased morbidity

associated with obesity is a worldwide public health issue

(25). Besides, obese people are more susceptible to infections

than their non-obese counterparts as well as to developing

serious complications from common infections (26). AP is

one of the most prevalent oral infectious diseases. In DM

subjects, where obesity is the greatest risk factor, the success

of root canal treatment is decreased in teeth with AP (27, 28).

Moreover, studies in the rodent diet-induced obesity (DIO)

model have revealed that obesity promotes the progression

and severity of experimental AP (29–31). However, the

underlying mechanism(s) by which obesity alters the immune

response in AP remain unclear.

As the background for future basic and clinical research,

this mini review aims first to reaffirm the role of IL-1

signaling in the development of AP in the lean state, and then

to provide new insights into the possible mechanisms

underlying the expansion of periapical bone destruction

associated with obesity, based on the latest experimental

findings.
IL-1 signaling is the central pathway
in periapical lesion development

The IL-1 family comprises 11 cytokines: 7 pro-

inflammatory mediators (IL-1α, IL-1β, IL-18, IL-33, IL-36α,

IL-36β, and IL-36γ), and 4 anti-inflammatory cytokines [IL-1

receptor antagonist (RA), IL-36RA, IL-37, and IL-38] (32).

Each family member binds to a specific primary receptor,

which combines with co-receptors to transduce pro-

inflammatory or anti-inflammatory activity. The primary

receptors include IL-1 receptor type 1 (IL-1R1), IL-1R2, IL-

1R4, IL-1R5, and IL-1R6. The co-receptors include IL-1R3,

IL-1R7, IL-1R8, IL-1R9, and IL-1R10 (32, 33). IL-1α, IL-1β,

and IL-1RA are the primary members that regulate the

progression of periapical lesions, and their roles have been

well studied. In contrast, the role of the other family members

in the development of AP has not been systematically evaluated.

IL-1α and IL-1β are encoded by IL1A and IL1B,

respectively, in humans (34). Both isoforms bind to IL-1R1

and show similar biologic activities, including immune cell

activation (33, 35). IL-1 is also closely involved in both bone

formation (36) and resorption (12, 15). IL-1 inhibits nodule

formation by osteoblasts in a dose-dependent manner (36).

IL-1 strongly promotes osteoclast differentiation indirectly by

inducing the expression of receptor activator of NF-κB ligand

(RANKL; tumor necrosis factor ligand superfamily member

11) in osteoblasts (37). IL-1 directly induces the fusion of

mononuclear pre-fusion osteoclasts and enhances osteoclast

function (resorption pit-forming activity) (38–40). Moreover,

activation of NF-κB promoted by IL-1 prolongs osteoclast

survival (41, 42). However, IL-1α and IL-1β differ in several
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ways. First, species differences are found in their expression in

periapical lesions. In rodent lesions, the predominant isoform

is IL-1α rather than IL-1β (43, 44). In contrast, the protein

level of IL-1β in human periapical exudate is double that of

IL-1α (45). Furthermore, the bone resorption potency of IL-

1β is 13-fold that of IL-1α in a rat assay system (10). Second,

the expression level after root canal treatment is different.

Following treatment, the level of IL-1β in the periapical

exudates decreased, while the level of IL-1α increased. This

suggests that IL-1α and IL-1β may play different biological

roles in the healing process (45, 46). In this regard, a finding

that bacteria-induced IL-1β and IL-1RI-myeloid differentiation

factor 88 (MyD88) signaling are necessary and sufficient for

efficient wound healing and tissue regeneration (47) is

interesting. Third, the IL-1β cannot bind to IL-1R1 unless it is

cleaved into its biologically active mature form. Conversely,

IL-1α precursor can bind to and activate the IL-1 receptor

without proteolysis (48).

The expression level of IL-1 positively correlates to the

extension of bone destruction and severity of AP. IL-1α

mRNA and protein expression was identified in murine

periapical lesions from the early stage of development, with

increased levels found on day 7 after pulp infection (43, 44,

49). Higher levels of IL-1α and IL-1β were detected in human

periapical lesions with severe inflammation than mild

inflammation (50, 51). In periapical lesions, IL-1 is produced

by various cells, including macrophages, fibroblasts,

polymorphonuclear leukocytes, endothelial cells, osteoblasts,

and osteoclasts in response to infections (44, 49). Among

these cells, macrophages are the major source of IL-1.

Macrophage-derived IL-1 plays a critical role in periapical

immunity. IL-1β and IL-1α are 1000- and 75-fold more

potent, respectively, in stimulating bone resorption than

TNFα or TNFβ (lymphotoxin) in vitro (10). Besides, IL-1

neutralization significantly reduced bone resorptive activity in

extracts from periapical tissue explants, whereas TNF-α

neutralization had no effect (13, 15).

These studies focused on the bone-destructive effects of IL-

1, but IL-1 also protects the host early after bacterial challenge.

Antibody-mediated neutralization of both IL-1α and IL-1β

leads to a failure to contain pulpal infection in male but not

female mice, resulting in orofacial abscesses and sepsis (52).

Ovariectomized mice also developed sepsis, but were

protected by an estrogen implant. Accordingly, IL-1 signaling

synergizes with estrogen signaling to prime phagocytic cells

for enhanced anti-microbial activity resulting in infection

localization. IL-1R1 deficient mice identically showed severe

bone destruction and sepsis after pulpal infection (53, 54).

Taken together, a severe deficiency of IL-1 signaling leads to

poor infection control, dissemination of infection, and

elevated bone destruction.

Subsequent studies using IL-1RA have confirmed the

correlation between IL-1 and bone resorption. IL-1RA,
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produced by macrophages and monocytes (55), competitively

blocks the action of IL-1. IL-1RA binds to IL-1R1 with equal

or greater affinity than IL-1α and IL-1β but does not activate

downstream signaling (34, 55, 56). IL-1RA has a significant

impact by suppressing periapical lesion development.

Stashenko et al. demonstrated a 14-day IL-1RA treatment

inhibited lesion development by approximately 60% (57).

Maintaining IL-1 and IL-1RA in balance prevents excess

inflammation and bone destruction. Once this balance is

upset, inflammation and tissue damage may deteriorate (58).

To block IL-1-mediated bone resorption ex vivo, rat fetal long

bones and mouse newborn calvariae require approximately

10-fold and 100–1000-fold IL-1RA to IL-1, respectively (59).

In periapical lesions, the level of IL-1RA is more abundant

than IL-1 (mean IL-1RA: IL-1β ratio = 128: 7). Interestingly,

exudates from symptomatic human lesions contained a

significantly lower ratio of IL-1RA to IL-1β than exudates

from asymptomatic human lesions (22). Taken together, the

local balance of IL-1 and IL-1RA is crucially important in the

periapical lesion development.
The cytokine network in periapical
lesions centered on IL-1 signaling

Macrophages are major players involved in the cytokine

network, and secrete various immunoregulatory mediators,

including IL-1 (35, 60). TNF-α is another pro-inflammatory

cytokine expressed by macrophages (61) and increased in

periapical lesions (44, 49). TNF-α promotes IL-1 secretion

from murine resident peritoneal macrophages in vitro (62)

and increases osteoclastogenesis by upregulating RANKL (63,

64). However, as noted above, TNF-α itself is not much

bone resorptive as IL-1 isoforms, and TNF-α deficient

mice exhibited similar periapical lesion size to wild-type

controls (65).

The role of type-1 T-helper (Th1) cytokines [gamma

interferon (IFN-γ), IL-12, IL-18] and Th2 cytokines (IL-4, IL-

6, IL-10) on periapical bone destruction has also been

evaluated. IFN-γ, IL-12, and IL-18 potentiate pro-

inflammatory signaling (66–68) and their expression is

increased in periapical lesions (43, 69, 70). IFN-γ modulates

macrophage-derived IL-1 expression, but its effect is not

consistent. IFN-γ promotes secretion of IL-1 from LPS-

stimulated human macrophages in vitro (71), whereas

suppresses it IL-1 in mouse RAW 264.7 macrophages (72).

IL-12 induces Th1 cell development, and IL-18, with IL-12,

activates established-Th1 cells to produce IFN-γ. Thus, IL-12

and IL-18 are considered pro-inflammatory cytokines that

facilitate type-1 responses (67, 73). However, previous studies

demonstrated that gene knockouts of IL-12, IL-18, and IFN-γ

all exhibited similar lesion sizes as wild-type controls (65, 74).

Recombinant IL-12-infused wild-type mice also showed
frontiersin.org
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TABLE 1 The effect of deficiency/neutralization of each cytokine or
receptor on periapical lesion.

Cytokine/
receptor

Effect on
lesion
size/

abscess

IL-1 level
in lesion

References

Neutralization IL-1βa Down (95)
IL-1α and IL-
1β

Abscess
formation

N.S. (52)

Deficiency IL-1R1 Up (53, 54)
TNF-α N.S. (65)
IL-17A Drastically

down
(65)

IL-17RA Up Up (95)
IFN-γ N.S./up N.S. (65, 74, 75)
IL-12 N.S. N.S. (74)
IL-18 N.S. N.S. (74)
IL-6 Up Up (69, 85)
IL-4 N.S. Down (75, 91)
IL-10 Drastically

up
Drastically
up

(75, 91)

aThe effect of IL-1β neutralization was evaluated in IL-17RA−/− model. Blank,

not evaluated; N.S, not significant.
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similar bone resorption to controls. The findings with IFN-γ

were not confirmed in another study, which reported that

IFN-γ-deficient(−/−) mice presented with periapical lesions

larger than those in wild-type animals (75). The expression

level of IL-1 in periapical lesions was unchanged in these

mice (74). Taken together, these results indicate that none of

these cytokines has a non-redundant function in mediating

periapical bone resorption.

IL-6, another macrophage-derived cytokine, was also

detected in inflamed periapical tissue (76, 77). Its expression

was found to be transiently increased on day 14 after

infection and decreased in the chronic phase (43). IL-6 is a

well-known pro-inflammatory cytokine, promoting bone

resorption via osteoclastogenesis (78–80). Recent research has

demonstrated that IL-6 also has anti-inflammatory effects by

promoting macrophage IL-1RA secretion (81) and bone-

forming effects by enhancing osteoblast differentiation (82–

84). Previously, the protective role of IL-6 in periapical lesions

was shown in vivo. Bone destruction was significantly

increased in IL-6−/− mice versus in wild-type mice (69, 85).

IL-6 antibody-mediated neutralization also increased bone

resorption compared to untreated controls. In IL-6−/− mice,

increased bone resorption importantly correlated with

osteoclast count and IL-1 expression in periapical lesions, and

inversely with anti-inflammatory IL-10 expression (69).

Both IL-4 and IL-10 are increased in periapical lesions (69).

IL-4 is an anti-inflammatory cytokine playing pleiotropic roles

in inflammation (86, 87). IL-10, a potent anti-inflammatory

cytokine produced by regulatory T cells (Treg), macrophages,

dendritic cells, Th 2 cells, and Th1 cells, among other

immune cells (88–90). However, IL-4 and IL-10 have different

anti-inflammatory effects on macrophages. In macrophages

stimulated by oral pathogens, recombinant IL-10 inhibited IL-

1α production, whereas recombinant IL-4 had no significant

suppressive effect (91). Consistent with these in vitro findings,

IL-10−/− mice exhibited significantly greater infection-

stimulated bone resorption than wild-type mice, as well as

markedly elevated IL-1 production in periapical inflammatory

tissues (91). In contrast, there was no difference in periapical

lesion size between IL-4−/− and wild-type mice (75, 91).

IL-17 is a pleiotropic cytokine produced by Th17 cells that

induces a myriad of pro-inflammatory mediators (92). The

expression of IL-17 was increased in infection-induced

periapical lesions (65) and was significantly higher in

symptomatic versus asymptomatic lesions (93). IL-17 induces

human macrophages to produce and secrete pro-inflammatory

cytokines IL-1β and TNF-α in vitro (94). IL-17A−/− mice

were resistant to periapical lesions versus wild-type controls

(65). However, IL-17 receptor type A-deficient (IL-17RA−/−)

mice conversely exhibited significantly increased bone

destruction and inflammation. The expression of IL-1 was

significantly upregulated in IL-17RA−/− lesions in vivo and

IL-17RA−/− macrophages in vitro. The lesion size of IL-
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17RA−/− mice was decreased by IL-1β neutralization (95). IL-

17A utilizes two IL-17 receptors, and IL-17RA has four

ligands (96); therefore, this system must be meticulously

dissected to comprehend these data. Nevertheless, IL-17RA

signaling likely plays a protective role in periapical lesions via

IL-1 signaling and neutrophil priming.

Table 1 Summarizes the effect of cytokine or receptor

deficiency/neutralization on periapical lesions. Although it is

difficult to evaluate the effect of each cytokine because of

their complex interactions (97), the above reviewed

experimental models suggest that anti-inflammatory cytokines

such as IL-10 and, to a lesser extent, IL-6 are dominant and

have non-redundant functions, compared to inflammatory

cytokines in the immunomodulation of AP. In addition, the

positive correlation between the IL-1 level and lesion size

implies IL-1 is a principal cytokine in periapical lesion

expansion and a useful biomarker for assessing inflammation.
The impact of obesity and diabetes
mellitus on periapical lesions

It is now widely accepted that obesity causes systemic low-

grade chronic inflammation (98). As noted above, obesity

increases the risk of severe inflammation (26), and

predisposes to the development of postoperative and

nosocomial infections, as well as serious complications of

common infections (98, 99). Obesity also increases the risk

for severe symptoms and poor prognosis in viral infections,

including coronavirus disease 2019 (100). In the oral cavity,

obesity correlates with the prevalence and severity of
frontiersin.org
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periodontitis (101). Deshpande et al. reported that obesity

worsens all gingival index, probing depth, gingival recession,

and clinical attachment levels than non-obese patients (102).

Diabetes, as an obesity complication, also has negative

effects on AP. Diabetes decreases the success rate of

endodontic treatment in teeth with AP preoperatively, and

increases the risk of post-treatment tooth loss (27, 28, 103–

105). According to previous in vivo rodent studies, obesity

significantly increases bone destruction in experimentally

induced AP (29–31). As discussed in the following section,

several potential mechanisms underlying obesity-induced

inflammation have been proposed, but the actual mechanism

is not yet fully understood.
Potential mechanism of obesity-
exacerbating periapical bone
destruction

Many studies provide evidence that obesity alters immune

responses. In obesity, macrophages significantly accumulate

in the white adipose tissue (106, 107); and the phenotype of

accumulated macrophages possesses a pro-inflammatory M1-

polarized state, whereas resident macrophages in lean mice

have a pro-resolving M2 phenotype (108–111). The M1-

dominant adipose macrophages likely develop an

inflammatory milieu (112). The circulating levels of pro-
FIGURE 1

(A) Representative microCT images and periapical lesion size in phosphate b
endodontic infection. Values are mean and SD; *p < 0.05. Arrow: periapical
infection. Representative images of hematoxylin and eosin (HE) staining for
bone; R, dental root; Scale bars = 200 µm.
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inflammatory cytokines, including TNF-α, IL-6, and IL-1β

were elevated in obese subjects (113, 114). Chronic exposure

to these cytokines potentially causes insulin resistance

resulting in hyperglycemia (115, 116). In addition, the serum

levels of adipose tissue-derived cytokines, adipokines and

adiponectin are also altered in the obese state. Obese adipose

tissue increases inflammatory adipokines, including leptin,

resistin, visfatin, IL-6, TNF-α, and monocyte chemoattractant

protein-1, while decreasing anti-inflammatory adipokines,

including adiponectin, omentin, IL-10, and IL-4. The

dysregulation of adipokine production may alter cellular

immune function and contribute to chronic low-grade

inflammation and disease pathology (117–119). Obesity also

increases the populations of activated CD4+ and CD8+ T

cells in adipose tissue (120) and significantly reduces

circulating Treg cells (121–123) which may sustain low-grade

chronic inflammation. Furthermore, obesity induces thymic

involution and convergent T cell repertoire, impairing

immune responses and increasing the risk and severity of

infections (124).

As noted above, the effects of obesity on immune function

are manifold. However, it remains unclear how obesity is

associated with the expansion of periapical bone destruction.

Therefore, our group examined possible pathways involved in

bone loss in obesity using bulk-mRNA next-generation

sequencing analysis. Comprehensive gene expression analysis

revealed that, among a total 15,029 expressed genes, only 51
uffered saline (PBS)-control and IL-1RA administration on day 42 after
lesion. (B) Histology of periapical lesions on day 42 after endodontic
each group are shown. PBS, phosphate buffered saline; AB, alveolar
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were differentially expressed in periapical lesions in DIO-B6

mice versus lean controls. Among them, Il1rn encoding IL-

1RA was remarkably down-regulated (Log2 fold change =

−1.18, false discovery rate (q-value) = 0.0002). At the same

time, Il1a, but not Il1b, was also decreased (−0.994-fold, q =
0.046) (31). These results suggest that DIO impairs IL-1RA-

dependent homeostatic suppression of IL-1 signaling, at least

in the local environment.

Systemically, significantly increased IL-1 serum levels (114,

125) likely contribute to worsening of insulin resistance under

obese conditions (116). However, given the lack of significant

changes in the expression of IL-1 signaling genes, including

NF-κB, in AP (31), systemically increased IL-1 may have little

effect on AP. Interestingly, IL-1RA serum levels are also

elevated in obesity (126). However, the concentration of IL-

1RA is likely insufficient to block the effects of elevated IL-1.

Indeed, administration of IL-1RA improves insulin sensitivity

in animal models of obesity (116), suggesting that IL-1RA-

dependent homeostatic regulation of IL-1 signaling is not fully

functional in obesity. We therefore examined if a decrease or

loss of IL-1RA contributes to obesity-associated periapical

inflammation by IL-1RA administration in infected DIO-B6

mice. Remarkably, periapical bone destruction was inhibited

by 41.2% by IL-1RA (Figure 1A, p < 0.05). Histological

analysis revealed that IL-1RA-treated mice showed less

inflammatory cell infiltration and well-developed fibrosis

(Figure 1B). These results indicate that inflammation was

down-regulated by IL-1RA, and that the lesion was composed

mainly of mature granulation tissue compared to the immune

granulomas in the controls. Therefore, immunomodulation by

IL-1RA is likely important for the control of AP, even in obesity.

Appropriate regulation of IL-1 signaling according to the

host and infection status may lead to an optimal immune/

inflammatory response in terms of timely onset/resolution

and adequate host defense. In the first section, we explained

that excessive IL-1 and its signaling cause exacerbation of AP

in the non-obese state. At the same time, IL-1RA

homeostatically regulates IL-1 signaling, suppressing excessive

IL-1-mediated responses. In the second section, we described

that obesity dysregulates IL-1RA-dependent homeostatic IL-1

signaling regulation and causes chronic elevation of

inflammation, tissue destruction, and prolonged healing.

Endodontic infection in DIO may exacerbate bone destruction

in the long term via chronically elevating IL-1 signaling at a

low level due to downregulation of Il1rn. However, the role of

IL-1 signaling is diverse and complex. The impact of IL-1
Frontiers in Dental Medicine 06
signaling on both systemic and local conditions has not been

fully understood. Thus, further studies are essential for the

changes in IL-1 signaling associated with various systemic

conditions, the underlying mechanisms, and infection-

stimulated bone destruction.
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