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Despite over 50 years of research into the immunology of periodontal disease,

the precise mechanisms and the role of many cell types remains an enigma.

Progress has been limited by the inability to determine disease activity clinically.

Understanding the immunopathogenesis of periodontal disease, however, is fundamental

if immunomodulation is to be used as a therapeutic strategy. It is important for the clinician

to understand what could bemodulated andwhy. In this context, potential targets include

different immune cell populations and their subsets, as well as various cytokines. The

aim of this review is to examine the role of the principal immune cell populations and

their cytokines in the pathogenesis of periodontal disease and their potential as possible

therapeutic targets.
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INTRODUCTION

Periodontitis is defined as a microbially-associated, host-mediated inflammation that results in loss
of periodontal attachment and apical migration of the junctional epithelium (1). Analysis of the
Global Burden of Disease Study 2019 showed that there were 1.1 billion cases of severe periodontitis
globally and that the age-standardized prevalence rate of severe periodontitis had increased 8.44%
worldwide from 1990 to 2019 (2, 3). In conjunction with growing evidence of periodontal-systemic
associations (4, 5), periodontitis is responsible for widespread and significant morbidity.

Although periodontal bacteria are the etiological agents in periodontitis, the host immune
response to these bacteria is of fundamental importance (6, 7). Over the past few decades different
models have been proposed to explain the pathogenesis of periodontitis, examining the dynamics
between the host-immune responses and bacteria (8–10). Both innate and adaptive immune
responses have been extensively studied (Figure 1), however, despite over 50 years of research into
the immunology of periodontal disease, the precise mechanisms and the roles of many different
immune cells are still not well understood.

As a consequence, nonsurgical treatment remains the mainstay treatment modality and
adjuncts are mostly limited to surgical and antibiotic therapy (11, 12). Multiple avenues of
research into the possibility of host modulation therapeutics are currently being explored (13).
However, recent systematic reviews have shown there is currently limited and conflicting evidence
supporting the use of host modulation therapeutics as adjuncts to nonsurgical treatment (14, 15).
Understanding the immunopathogenesis of periodontal disease will prove key to the development
of commercially available immunomodulation therapeutics. Thus, it is important for the clinician
to understand what could be modulated and why. In this context, potential targets include
different immune cell populations and their sub-populations, as well as various cytokines secreted.
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FIGURE 1 | The innate and adaptive immune pathways, interactions and possible targets.
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This review, however, is not intended to be a comprehensive
review of the immunopathogenesis of periodontal disease nor
is it a comprehensive review of host modulation in periodontal
disease, but rather the aim is to provide an overview of the role of
the principal immune cell populations and their cytokines in the
pathogenesis of periodontal disease and hence their potential as
possible therapeutic targets.

INNATE IMMUNITY

Epithelial Cells
The epithelial cells of the gingiva not only prevent the ingress
of periodontopathic bacteria and their products into the gingival
tissues, but they are also important cellular components of innate
immune mechanisms in the gingival sulcus. The activation of
their toll-like receptors (TLRs), such as TLR-2, leads to the
production of IL-8 which is a very powerful chemoattractant
for polymorphonuclear neutrophils (PMNs). TLR signaling of
epithelial cells and PMNs further results in the production of α-
and β-defensins, the cathelicidin LL37, and calprotectin. These
antimicrobial molecules not only limit the plaque microbiota
within the gingival sulcus but also play a critical role in
innate immunity. α-defensins activate the classical complement
pathway and upregulate the production of IL-8, while β-
defensins may further mediate inflammation (16). Although
these molecules have long been advocated as possible therapeutic
adjuvants in the control of oral infections including periodontal
disease (17, 18), further research, including clinical trials, is
still necessary.

Polymorphonuclear Neutrophils (PMNs)
PMNs are present at all stages of periodontal disease. They are
the predominant cell in the “initial lesion” (19), and continue
to migrate through the sulcular and periodontal pocket lining
epithelium in gingivitis and periodontitis, respectively, where
they form a barrier between the tissues and plaque. Indeed,
by day 21 of an experimental gingivitis there is a four-fold
increase in PMN numbers within the junctional epithelium (20).
Within the gingival sulcus and periodontal pocket, they are able
to control potential periodontal pathogens via reactive oxygen
species, proteases and the formation of neutrophil extracellular
traps (NETs) (21).

The release of tumor necrosis factor-alpha (TNF-α) and
interleukin-1beta (IL-1β), from mast cells and local resident
macrophages, results in the expression of adhesion molecules
by endothelial cells thus mediating the adhesion and ultimate
migration of PMNs into gingival tissues. PMN migration into
the gingival sulcus is initially mediated by bacterially-derived
chemotactic substances together with the activation of the
alternate complement pathway and the formation of C5a (22).
Within the gingival sulcus, PMNs produce and release a variety
of cytokines, including IL-1, IL-1 receptor antagonist (IL-1RA)
and high levels of IL-17, which subsequently stimulates the
production of IL-8 by sulcus epithelial cells. The resultant
positive feedback loop establishes a rapid flow of PMNs into
the gingival sulcus via the junctional epithelium (23), allowing
the formation of a PMN barrier against plaque micro-organisms

(24). This barrier persists into the periodontitis lesion, likely
retarding disease progression.

Paradoxically, however, PMN-mediated tissue destruction
may also occur via degranulation and the release of hydrolytic
enzymes, reactive oxygen species, matrix metalloproteinases
and the formation of NETs (25). This destruction is confined
to the tissues immediately subjacent to the pocket lining
epithelium. Nevertheless, the role of PMNs in the pathogenesis of
periodontitis remains to be defined. An improved understanding
of PMN heterogeneity and possible subtypes (26, 27), may allow
harmful sub-populations to be identified and targeted while
avoiding the suppression of beneficial protective functions.

The importance of the PMN barrier function in the
preservation of periodontal health is evidenced by the rapid
and severe progression of periodontal destruction in conditions
of PMN dysfunction (28). This may occur in complete PMN
depletion [e.g. Leukocyte Adhesion Deficiency type I/LAD-I
syndrome (29)], as well as in defective PMN function as seen in
Papillon-Lefèvre syndrome (30) and Chediak-Higashi syndrome
(31). These conditions suggest that caution must be taken
when considering PMN immunomodulation, as suppressionmay
inadvertently exacerbate disease rather than reduce it.

Developmental endothelial locus-1 (DEL-1) is an extracellular
matrix protein that has been shown to interact with both the
αvβ2 and αvβ3 integrins (32, 33), resulting in reduced PMN
transmigration. In support of a destructive role for PMNs in
periodontal disease, animal studies have shown that DEL-1-
deficient mice have an accompanying increase in RANK-L and
osteoclastic activity in the periodontium (34). This is in contrast
to mice with combined DEL-1 and IL-17 receptor deficiency,
where complete protection against bone loss was observed in
the same study. In a clinical study, examining the effect of
periodontal treatment an increase in DEL-1 levels in gingival
crevicular fluid was observed, after scaling and root planning,
in patients with active periodontitis (35). In a pre-clinical trial,
the authors from the same group demonstrated that local
administration of DEL-1 may prevent bone loss in non-human
primates (36). Consequently, DEL-1 may be a future therapeutic
target, but care must be taken before extrapolating animal studies
to human disease.

In contrast, increased levels of pentraxin-3 (PTX3) have
been reported in the saliva of patients with previously
classified aggressive periodontitis, compared with patients
with chronic periodontitis and controls (37). Pentraxins
are a superfamily of proteins involved in the acute-phase
response and innate immunity. Pentraxin-3 (PTX3) has
been shown to bind P-selectin, which downregulates PMN
recruitment via a negative feedback loop (38). The increased
levels of PTX3 seen in what would be now classified as
severe periodontitis—possible Stage 3 Grade C—would
suggest a protective role for PMNs in periodontal disease.
Current understanding of pentraxins is limited, but there
may be the potential for PTX3 to be a therapeutic target
in the future. As stated above care must be taken when
considering PMN immunomodulation, as suppression
may inadvertently exacerbate disease rather than reduce
it. Clearly, phase I clinical trials involving patients with
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periodontal disease are essential to establish the safety of
PMN immunomodulation.

ADAPTIVE IMMUNITY

T Cells
The importance of T cells in periodontal diseases was first
suggested in seminal studies by Ivanyi and Lehner (39, 40). It
is now well established that the gingivitis lesion is characterized
by a predominance of T lymphocytes (41–44). The periodontitis
lesion on the other hand is comprised mostly of B lymphocytes
and plasma cells (45–47).

Seymour and colleagues have shown that the development
of gingivitis immunologically mirrors the process involved in
delayed-type hypersensitivity (DTH) (48, 49). This results in the
development of a perivascular lymphocyte/macrophage infiltrate,
which increases in size, leading to the typical clinical presentation
of inflammation in gingivitis. In the gingivitis lesion, consistent
with a lesion of DTH, the lymphocytes mainly consist of T cells
with a low expression of IL-2 (<10%) and a CD4/CD8 ratio of
2:1. Langerhans cells (in oral and sulcular epithelium) are also
present, increasing in quantity in tandem with lesion expansion
(49). Suggestive of activation, T cells and epithelial cells express
high levels of MHC class II antigens (HLADR and HLA-DQ)
(49). The production of interferon gamma (IFN-γ) by activated
CD4T cells further activates PMNs andmacrophages, controlling
lesion progression. The persistent microbial challenge from
plaque microorganisms results in a chronic but stable lesion.

Th1/Th2 Cells
It is now well established that periodontitis is dominated by large
numbers of B lymphocytes (50, 51). Additionally, the proportion
of B cells appears to increase with the severity of the disease
(52, 53). In line with the T cell nature of gingivitis and the B
cell predominance of periodontitis, it has been suggested that the
stable lesion is mediated by a Th1 response, while the progressive
lesion is mediated by Th2 cells (54). This model proposed that a
robust innate immune response results in significant production
of IL-12 (55), by both PMNs and macrophages and consequently
a Th1 response. This leads to cell-mediated immunity, protective
antibodies and a stable periodontal lesion. IFN-γ produced from
a Th1 response enhances the phagocytic ability of PMNs and
macrophages (56, 57). On the other hand, disease progression
is suggested to be the result of a poor innate immune response,
polyclonal B-cell activation, a resultant Th2 response and non-
protective antibodies (reviewed in Gemmell et al. (58)). It
is now generally accepted that both Th1 and Th2 cells are
involved in the pathogenic process and a loss of homeostatic
balance, shifting toward a Th2 response, is responsible for disease
progression (59, 60).

A number of studies have investigated T cell cytokine profiles
present and their activity during different stages of periodontal
disease, with conflicting results (61–63). The ability to define
the role of different cytokine profiles in the pathogenesis of
periodontitis is hindered by heterogeneity in study designs
and case definitions. Additionally, as periodontitis proceeds
in cycles of stability and progression the ongoing inability to

determine the activity of a periodontitis lesion clinically hinders
a meaningful interpretation of results (64, 65). In this context
and with the high level of redundancy in cytokine networks
(66), careful consideration must be given if individual cytokines
are to be targets for immunomodulation in periodontal disease.
Nevertheless, human recombinant cytokines related to Th1 and
Th2 subtypes are being examined for and have seen limited use
in the treatment of malignancies with varying degrees of success
(67, 68). Currently however, there are no studies investigating the
role of these agents in the context of periodontitis.

In recent years, Th17 cells and the corresponding
cytokine IL-17 have been suggested as possible targets for
immunomodulation in the treatment of periodontitis (69). Th17
cells were identified as a distinct T cell subset which produces
IL-17A (commonly referred to as IL-17) by Park et al. (70).
These cells also produce IL-17F, IL-21, IL-22, and IL-26 (71, 72).
Nonetheless, other cells are also capable of expressing IL-17
such as PMNs, mast cells, NKT cells and periodontal ligament
cells (73–76). However, the role of Th17 cells and IL-17 in
periodontitis remains enigmatic. Although IL-17 modulates
bone loss, increasing osteoclastogenesis in rheumatoid arthritis
(77), this has yet to be confirmed in periodontitis in humans.

There is significant controversy around the role of IL-17 in
periodontitis. Animal studies have supported both a destructive
(34, 69) and a protective role (78, 79). This protective role may
be due to the recruitment of PMNs to inflamed gingiva (80). It
has been demonstrated that P.gingivalis infection downregulates
the IL-17 receptor gene in mice (81) which may explain reduced
PMN entry into P.gingivalis-induced lesions in these animals
(82). Utilizing IL-17RA-deficient mice, Yu et al. also showed
that monoinfection with P.gingivalis reduced PMN migration,
resulting in increased bone loss (79). In addition, P.gingivalis
stimulation of peripheral blood mononuclear cells resulted in
higher mean levels of IL-17 in gingivitis patients compared with
periodontitis patients (83), further suggesting a protective role for
IL-17 in periodontal disease.

Clinical studies examining the association between Th17 and
IL-17 in gingival tissues, GCF, saliva and serum have shown
similarly conflicting results (reviewed by Cheng et al.) (84).
A comparison of gingival biopsies from both gingivitis and
periodontitis patients showed that the density of CD161+ T cells,
which may include a small population of IL-17 producing T-
cells, was higher in periodontitis compared with gingivitis (85).
In contrast, double immunofluorescence labeling has revealed
that IL17+ cells were neither CD4+ nor CD8+. Instead, these
cells were tryptase+, suggestive of mast cells (86, 87). This is
consistent with mast cells being found to be a major source
of IL-17 in a number of other lesions such as psoriasis and
rheumatoid arthritis (88, 89). This has been further supported
by gene expression studies on diseased human tissue in which
low levels of IL-17 and low expression of IL-17 pathway genes
were found (90). These results were confirmed by Parachuru
et al. who demonstrated very few IL-17+ cells (<1%) in human
periodontitis lesions together with down regulation of IL-17
pathway genes and low levels of IL-17 (86, 87). These findings
suggest that IL-17 is not essential for periodontal bone loss in
human disease, potentially playing a minor role.
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T cells also have a high degree of plasticity, being able to switch
from one lineage to another dependent on the antigen presenting
cell (APC) and the tissue micro-environment. Th17 cells in
periodontal tissues may, under the influence of IL-4, become a
Th2 cell and a Th2 cell under the influence of IL-12 and dendritic
APCs may become a Th1 cell (91). It has further been shown
that Foxp3 positive regulatory T cells (Tregs) can become Th17
cells in autoimmune arthritis (92). Although likely not a common
occurrence (90), this indicates the possibility for variation in
T cell expression alongside disease progression. Predicated on
the belief that Th17 and exFoxp3Th17 are pathogenic (93),
some studies have advocated targeting the Th17/Treg balance.
IL-35 has been shown in the treatment of ligature-induced
periodontitis to reduce Th17 lymphocytes, increase Tregs and
result in a benefit in terms of alveolar bone resorption (94).
All-trans retinoic acid also demonstrated modulation of the
Th17/Treg ratio and prevention of alveolar bone resorption (95).
Further animal studies have shown that mice deficient in CD11a
(LFA-1 knockout mice), with significantly higher levels of IL-23
and IL-17 than wild-type (C57BL/6) controls, experienced severe
periodontal bone loss (69). When these LFA-1 knockout mice
were treated with local anti-IL-17 or anti-IL-23p19 antibodies,
bone loss was attenuated, while untreated mice had progressive
disease. There are, however, some important differences between
mouse models of periodontal bone loss and human disease. As
noted above human periodontal disease tissues have low levels
of IL-17 and low expression of IL-17 pathway genes (86, 87,
90) and very few IL-17-positive cells (<1%) (86). Nevertheless,
Moutsopoulos et al. described significant improvement in
bleeding on probing with a concurrent decrease in IL-23 and
IL-17 levels after treatment with ustekinumab (IL-12/IL-23
inhibitor), in a patient with LAD-I and severe periodontitis
(96). Another case report described successful resolution of
acute periodontitis in five psoriatic patients, after substitution
of adalimumab (TNF-alpha inhibitor) for secukinumab (IL-17
inhibitor), with no recurrence of psoriasis or periodontitis after
14 months (97). On the other hand, there is some anecdotal
evidence of an exacerbation of periodontitis in patients treated
with an IL-17 inhibitor. At present, the role of IL-17 in
periodontitis is complex and controversial and caremust be taken
in extrapolating early animal studies and case reports. In view
of the apparent conflicting results, further studies are clearly
required to determine the role of IL-17 in the pathogenesis of
human periodontal disease before its suitability as a therapeutic
target can be determined.

Regulatory T Cells (Tregs)
Tregs are a subset of T cells which is closely regulated
by characteristic forkhead/winged helix transcription factor
(Foxp3) expression. Tregs regulate immune responses and
autoimmunity (98) via both contact dependent and independent
mechanisms including the release of IL-10 and TGF-β. Tregs
have demonstrated suppression of other effector T cell subtypes
including Th1, Th2, and Th17 (99–101).

Association studies have shown an increased number of
Tregs in periodontitis lesions (87, 102, 103). Gene expression
analysis by Nakajima et al. showed significantly higher Foxp3

mRNA expression in periodontitis compared with gingivitis
(102). Similarly Tregs, identified with Foxp3 and other specific
markers, were found with increased frequency in periodontitis
patients (104). In this study Tregs increased CCR4 expression
which suggested attraction to the site of inflammation by CCL17
and CCL22. Foxp3 positive cells are also significantly correlated
with the B cell-Plasma cell/T cell ratio in B cell-Plasma cell
dominated lesions (87) and the mean expression of STAT5A,
TGFβ1 and IL10 genes has also been found to be higher in
B-cell-Plasma cell predominant gingival tissues (86).

Tregs may play a key role in the pathogenesis of periodontitis.
On one hand they may suppress Th1 responses and increase B
cell proliferation via IL-10 production. On the other hand, animal
models have supported a protective role of Treg suppression
(105, 106) while Motta et al. found less Foxp3 expression in more
severe periodontitis (107). Currently our understanding of Tregs
in the context of periodontitis is lacking. Further complicating
the situation is the already discussed plastic nature of T cells,
allowing conversion between different subtypes in situ (108).
Additional studies elucidating the role of these cells are clearly
necessary before therapeutic targeting could be considered.

CD8T Cells
In the progressive lesion of periodontitis there is a decrease in the
CD4:CD8 ratio to 1:1 (49, 109, 110) compared with the 2:1 ratio
seen in the gingivitis lesion. Despite this increased representation
in the lesion, little is known about the role of CD8+ T cells in
the context of periodontitis. It appears, however, they do not
directly mediate the periodontal destruction in animal models
(111). Currently, the potential of CD8 T-cells as host modulating
targets is unknown.

ADAPTIVE IMMUNITY

B Cells
As stated earlier, the periodontitis lesion is dominated by B
cells and plasma cells (46, 47, 112), suggesting a crucial role in
disease progression.

Antibodies
The role of antibodies in periodontal disease pathogenesis is still
poorly understood, however, it has been shown that oral bacteria
such as P. gingivalis and F. nucleatum have polyclonal B-cell
activation properties (113), which result in the production of
low affinity antibodies in the periodontal tissues. In vitro studies
have reported patients with severe periodontitis with high anti-
P.gingivalis antibodies inhibited bone resorption, while patients
with low amounts of these antibodies showed increased bone
destruction (114), supporting the protective role of antibody
production. On the other hand, other studies have demonstrated
that higher antibody levels to subgingival plaque, positively
correlated with increased periodontal bone loss, indicating a lack
of protection (115).

In the context of autoimmunity, anti-collagen type I and III
antibodies were observed in the gingival tissues of periodontitis
patients (116) and collagen type I-specific T-cell clones were
isolated from the periodontal lesions (117). It is postulated that
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the autoantibodies present in periodontal disease are derived
from the natural antibodies and most likely play a physiological
role in removal of damaged tissue and dead cells as a consequence
of periodontal tissue destruction. However, there is still a
possibility that the production of these antibodies may become
excessive and contribute to disease progression (118).

B Cell Subsets
There are largely two types of B cells: B-1 which is subdivided into
B-1a and B-1b and B-2. B-1 cells can act independent of T cells for
an early antibody response of low affinity or interact with T cells
and produce IgG antibodies with high affinity (119). On the other
hand, B-2 cells are the traditional group of B cells that interact
with T cells and develop into memory cells and plasma cells.

B-1 cells have been of particular interest due to their ability
to act independently of T cells. Flow cytometry of peripheral
blood has demonstrated that B-1a cells, which express the T cell
marker CD5, occur in significantly larger amounts in periodontal
patients compared with healthy controls (120). In addition,
Berglundh et al. reported that B-1a cell proportions in peripheral
blood were up to six times greater in periodontitis subjects
compared with controls (121), suggesting the potential of these
cells to act as a diagnostic marker for periodontitis. On the
other hand, a more recent study showed similar levels of B-1a
cells when comparing peripheral blood samples from patients
with or without periodontitis (122). However, it is important to
highlight that the case definition of periodontitis used in those
studies was different. The former study included more severe
periodontitis cases compared with the latter study, contributing
to the contradicting observation.

More B-1a cells are also found in periodontitis tissues
compared with gingivitis tissues (123) and an experimental
gingivitis study in periodontitis patients also demonstrated the
involvement of B-1a cells (124). Although, these studies highlight
the importance of B-1a cells in the pathogenesis of periodontitis,
their role in periodontitis remains to be determined. A significant
aspect of B-1a cells is their ability to produce IL-10. IL-10 has both
anti-inflammatory and pro-inflammatory functions, including
B cell activation and as an autocrine growth factor for B-1a
cells (125, 126). Although, higher levels of IL-10 have been
found in gingival tissues compared with peripheral blood, its
role in periodontal disease remains speculative and because of
its U-shaped dose response curve its role in any lesion would
be dependent upon its concentration within the tissue micro-
environment. Nevertheless, transfer of IL-10 secreting B-1a cells
into experimental periodontitis animals, resulted in decreased
alveolar bone resorption and decreased RANKL, IL-17, TNF-α
and IL-1β in the test group (127, 128). However, as pointed out
earlier, care must be taken in extrapolating the results from pre-
clinical animal models, when determining whether B-1a cells or
indeed IL-10 offer potential therapeutic modalities.

Nevertheless, evidence supporting B cells as therapeutic
targets for host modulation in periodontal disease is emerging
but limited. Two cytokines, a proliferation inducing ligand
(APRIL) and a B lymphocyte stimulator (BLyS), are known
to be important for survival, proliferation and maturation of
B cells. Abe et al. demonstrated these two cytokines to be
upregulated in natural and experimental periodontal disease in

humans and mice, respectively, which in turn correlated with
increased numbers of B cells/plasma cells in both species (129).
When APRIL and BLyS were neutralized, the number of B cells
decreased in gingival tissue and inhibited bone loss in wild-type
mice. Interestingly, the authors found that neutralizing either
cytokine was enough to reduce bone loss.

Another group of researchers evaluated the concentrations of
BLyS and APRIL in saliva and serum of patients with chronic or
aggressive periodontitis compared with healthy controls (130).
They found higher concentrations of BLyS in periodontitis
patients compared with controls, but no statistically significant
differences were found in the levels of APRIL. However, it is
important to note that the levels of cytokines in the gingiva
may not correlate with concentrations in the serum or saliva.
Even so, the same group detected both APRIL and BLyS in
gingival crevicular fluid of periodontitis patients with or without
rheumatoid arthritis or osteoporosis, however, there were no
comparisons with periodontally healthy controls (131). These
observations indicate that B cells and its cytokines are important
in the pathogenesis of periodontitis and may provide specific
targets for host modulation.

Coat et al. assessed the effect of anti-B lymphocyte
immunotherapy, using rituximab (an anti-CD20 monoclonal
antibody), on the periodontal status of 21 subjects with
rheumatoid arthritis using cross-sectional and longitudinal
analyses (132). At baseline group 1, which had not received a
course of rituximab, appeared to have more severe periodontitis
compared with group 2, which had received at least two courses
of rituximab. A follow-up of group 1, 6 months after their first
rituximab treatment, found a significant decrease in probing
pocket depths (PPD) and clinical attachment loss (CAL) with
no changes in plaque index and which persisted for up to 4
years following the rituximab treatment. Although this study
is suggestive of a therapeutic effect, further studies with larger
sample sizes are nevertheless required. It must be noted that in
these patients anti-TNF-α treatment had failed before rituximab
therapy commenced. In this context, a study by the same group
found increased gingival inflammation albeit with a reduction
in attachment loss in patients after anti-TNF-α treatment (133).
When comparing these two studies, it is possible that anti-B cell
treatment may have provided better protection since blocking
TNF-α may have led to the upregulation of a compensatory
cytokine pathway.

More, recently, early phase II and III controlled clinical trials
have evaluated the effects of belimumab (a recombinant human
IgG monoclonal antibody), that inhibits B-cell activating factor,
for the treatment of systemic lupus erythematosus (SLE) and its
most common, severe, manifestation lupus nephritis (LN) (134,
135). Although the safety profile of these medications prohibits
their use for periodontitis, studies evaluating the use of biologics
modulating B-cell recruitment and function will provide insights
into the role of B cells in periodontitis.

NK CELLS

There has been suggestions that natural killer (NK) and natural
killer T (NKT) cells could be potential host modulatory targets
in the management of periodontal disease. However, there are no
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studies to date that have targeted NK or NKT cells and its effect
on periodontal disease.

NK Cells in Periodontitis
There have been multiple studies demonstrating the increased
levels of NK cells in relation to periodontal disease. In an
experimental gingivitis group, NK cells were not present
in healthy subjects and increased gradually with increasing
inflammation (136). In periodontitis patients, the greatest
number of NK cells were found in those lesions with the highest
proportion of B cells. Fewer NK cells were found in T cell
dominated lesions. Interestingly, the NK cells were also found to
be in close physical association with B cells which supports the
view that NK cells may regulate B cell function in vivo (137).
Similarly, a immunohistochemical study of gingival specimens
in humans found NK cells to have infiltrated connective tissue
more greatly in severe forms of periodontitis compared withmild
periodontitis (138). In addition to their cytotoxic effects (139),
NK cells produce a range of cytokines including IFN-γ (140),
IL-15 (141), and TNF-α (142).

The role of IFN-γ in the pathogenesis of periodontitis is
controversial. Although there has been studies showing the
protective role of IFN-γ (56, 57), others have demonstrated
increased levels of IFN-γ in periodontitis tissues compared with
healthy controls (143). This latter finding is not surprising as
healthy tissue would not be expected to have high cytokine levels.
Equally, the cellular source of IFN-γ in periodontitis lesions is
unknown. In mice, the lack of IFN-γ has been shown to lower
TNF-α and IL-1β levels and reduce the severity of the local
pro-inflammatory response compared with control mice (144).
When IFN-γ was reconstituted at the site of inflammation, TNF-
α levels increased, and IL-10 decreased. Interestingly, it has been
shown that NK and NKT cells produce the majority of IFN-
γ after an E. coli lipopolysaccharide (LPS) challenge in mice
spleen (145) whereas P. gingivalis LPS did not induce IFN-γ
production by NK cells (146). Clearly further research is required
to determine the mechanisms of how NK cells are involved in
periodontal disease before they could be considered as a potential
therapeutic target. Again, care must be taken before extrapolating
from animal studies.

NKT Cells in Periodontitis
NKT cells were first described in 1995 where a subset of T
lymphocytes were found to have similar characteristics to NK
cells (147). They are directly activated by the binding of glycolipid
antigens with the CD1d receptor expressed by APCs (148).
The interest in NKT cells has gradually increased because they
have been demonstrated to have important immunoregulatory
functions through the production of pro-inflammatory and anti-
inflammatory cytokines (149). However, most current research in
NKT cells is in mice, with minimal studies in humans.

In vitro and in vivo studies have demonstrated a possible role
of NKT cells in the pathogenesis of periodontitis. Periodontal
pathogens such as P. gingivalis, A. actinomycetemcomitans, T.
forsythia, and T. denticola can express glycophingolipids in their
structure that have the ability to activate NKT cells (150, 151). In
addition, after oral inoculation of P. gingivalis and administration

of α-galatoxylceramide (α-GalCer, a synthetic glycolipid) in
mice, NKT cells were found to increase systemic inflammation,
RANKL production, osteoclastogenesis and alveolar bone loss.
Intriguingly, when periodontitis was induced in mice without
NKT cells, these mice showed less alveolar bone loss (152). In
humans, gingival biopsies have shown a higher expression of
NKT cells in periodontitis patients compared with gingivitis
patients (151, 153). These early observations suggest a link
between NKT cells and periodontitis; however, further human
studies are required to strengthen this link.

NKT cells have been suggested to regulate possible
autoimmunity in periodontal disease. Cross reactivity of
human heat shock protein (HSP) 60 and P. gingivalis GroEL
(a bacterial homolog) has been reported in periodontal disease
(154, 155). In addition, it has been suggested that NKT cells may
control the immune response to autoantigens such as collagen
type I or HSP60 (153). However, the role of autoimmunity
in periodontal disease is yet to be understood. While there is
evidence showing autoimmune responses may be involved in the
disease process, further studies are required to elucidate the role
of autoimmunity in periodontal disease.

More recently, a subset of NKT cells called NK10 cells have
been described due to its production of IL-10 (156). The ability
to produce IL-10 suggests that NKT have an immunoregulatory
function by increasing clonal expansion and activity of T-
reg cells and M2 macrophages. This characteristic has piqued
interest in its potential to be targeted for certain inflammatory
diseases. Evidence has shown that NKT10 cells protect mice from
autoimmune encephalomyelitis by inhibiting the pathogenicity
of Th1 cells in the central nervous system (157). Furthermore,
a SLE mice model study suggested that NK10 cells could
have a protective role in SLE by regulating the production of
autoreactive IgG by CD1d+ B cells (158). In a theoretical sense,
the activation of NKT10 cells could create an anti-inflammatory
environment for certain diseases, however, there have not been
any studies to date attempting to understand this potential target
in relation to periodontal disease.

MACROPHAGES

Macrophages participate in the development of the gingivitis
lesion. It is proposed that a strong innate immune response
leads to the production of high levels of IL-12 by both
PMNs and macrophages, which in turn leads to a Th1
response, cell-mediated immunity, protective antibody, and a
stable periodontal lesion. The production of IFN-γ by the
activated CD4T cells further activates PMNs and macrophages.
Macrophages are a non-dominant feature in periodontitis,
comprising fewer than 5% of the cells (159). There have been
mixed reports regarding the role of macrophages in periodontitis
with some evidence suggesting that there are minimal changes in
macrophage numbers when comparing advanced periodontitis
and periodontal health, with little evidence of activation
(160, 161). This however does not preclude their role in
the pathogenic process, as quantitative measurements do not
necessarily correlate to significance (66).
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Macrophage Polarization
Macrophage polarization refers to an estimate of macrophage
activation at a given point in space and time. Macrophages
are highly plastic and may change under the influence of
intrinsic factors such as epigenetics and extrinsic factors such
as microbial products and cytokines which determine the tissue
micro-environment (162, 163). In a simplistic point of view,
two macrophage phenotypes have been identified, namely M1
and M2. The classical M1 phenotype, produces mainly pro-
inflammatory cytokines (IL-6 and TNF-α), whereas M2 is
thought to play a role in inflammation resolution and promotion
of healing, producing comparatively higher amounts of IL-10
(164), low levels of IL-6 (165) and participating in the synthesis
of specialized pro-resolving mediators (166).

While in the developing lesion most macrophages are
phagocytic cells, in established gingivitis the major APC is
the CD14-positive/CD83-positive dendritic cell (167), with
fewer classical proinflammatory M1 macrophages compared
with the alternative prohealing M2 macrophages (168). A well
controlled study by Garaicoa-Pazmino et al. (168) investigated
the polarization of M1 and M2 macrophages in gingivitis
and in periodontitis. This study found that there were more
macrophages in gingivitis samples compared with periodontitis,
yet the M1:M2 ratio was similar in both lesions.

Other studies, however, have indicated an increased M1/M2
ratio in periodontitis compared with gingivitis (169, 170).
Although the dichotomous model of M1/M2 polarization
provides a good outline, this categorization is likely an
oversimplification that describes the extremes of what is more
likely a continuum of activation states (171, 172). Clarifying
this phenotypic diversity during periodontitis is essential
to our understanding of the role of macrophages in the
pathogenic process and consequently host modulation targeting
of macrophages.

Attempts to target macrophages as part of host modulation
have been directed at altering the balance of macrophage
polarization, suppressing M1 macrophages and the associated
pro-inflammatory cytokines, which include PGE2, TNF-α, IL-1
and IL-6, as well as stimulating M2 macrophages and consequent
production of anti-inflammatory factors such as IL-10 and
IFN-γ (173).

Anti-cytokine therapy has been utilized to inhibit downstream
M1 pro-inflammatory cytokines, although studies examining the
periodontal implications of such treatment have been limited.
Two such agents are infliximab (chimeric mAb to TNF-α)
and etanercept (soluble form of TNF receptor). Pers et al.
showed perplexingly both an increase in gingival inflammation
and decreased attachment loss (133). This may indicate a
transition from a progressive periodontitis to stable gingivitis. A
systematic review examining the effect of anti-TNF-α therapy in
rheumatoid arthritis subjects with periodontitis showed studies
had produced inconsistent results (174). A more recent review
however by Zamri and colleagues supported improvements in
clinical parameters over time (175). Tocilizumab, a recombinant
mAb which inhibits IL-6, has also been shown to produce a
small statistically significant improvement in PPD and CAL after
6 months (176).

Understanding how anti-cytokine therapy may modify a
patient’s response to periodontal pathogens may allow us
to prescribe interceptive periodontal treatment prior to anti-
cytokine therapy initiation. Consistent with this are results from
a study indicating an increased risk of etanercept discontinuation
in patients diagnosed with periodontitis 5 years prior to or during
etanercept treatment (177). Utility of anti-cytokine therapy is
currently limited by cost, functional redundancy in the cytokine
network and unacceptable side-effects (178). These limitations
need to be addressed to make anti-cytokine therapy viable in the
treatment of periodontitis.

Specialized pro-resolving mediators (SPMs) are agonists,
which initiate proresolving pathways, terminating inflammation
and promoting tissue homeostasis (179). As well as reversing
dysbiosis and preventing PMN transmigration there is
evidence that SPMs increase M2-like healing macrophages,
which promotes phagocytosis of bacteria and apoptotic
PMNs (180). Resolvin E1 (RvE1) has been shown in
other inflammatory diseases to induce M2 macrophages
(181, 182). Furthermore, macrophages from localized aggressive
periodontitis patients showed reduced phagocytosis which was
reversed by RvE1 (183). Consequently SPMs show promise
as possible host modulation agents targeting multiple aspects
of the pathogenic process including macrophage function,
however the inhibition of PMN transmigration and hence
the development of a PMN barrier in the gingival sulcus may
represent a problem.

MAST CELLS

Mast cells are resident cells of the connective tissue and contain
granules rich in histamine and heparin. During periodontal
disease, lipoteichoic acid and peptidoglycans from early bacterial
colonizers activate complement via the ‘alternative pathway’.
The production of anaphylatoxins C3a and C5a results in
the release of vasoactive amines from resident mast cells and
consequently leads to vascular permeability and formation of
edema. In addition, mast cells can release cytokines, serine
proteases, mast cell extracellular traps (184), and express
MMPs (185).

Mast cells play a key role in the inflammatory process
and have been found to be present in both healthy and
inflamed gingival tissues (186–188). However, studies examining
the proportion of mast cells within gingival tissues have
been conflicting. Batista et al. found increased mast cells
in chronic periodontitis/gingivitis lesions compared with
clinically healthy gingival tissue (189), while Gemmell et al.
found decreased numbers in chronic periodontitis tissues
compared with healthy/gingivitis samples (190). Although
different case definitions may have contributed to this
discrepancy it is clear that mast cells play an important
role not only in the initial but also the chronic stages of
periodontal disease.

Many cytokines have been identified in mast cell lines or
in vivo-derived mast cells, including SCF, TGF-β1, TNF-α, IL-
4, IL-5, IL-6, IL-15, IL-17, bFGF, and VEGF (191). Mast cells
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have been reported to release a substantial amount of TNF-
α without obvious stimulation, while macrophages, T and B
cells contain little or no preformed TNF-α bioactivity without
stimulation. In a model of acute septic peritonitis, blocking
TNF-α suppressed the protective role of mast cells via reduced
PMN influx (192). This study indicates the importance of mast
cell derived TNF-α in inflammation and host defense. It is
interesting to note that TGF-β1 released by mast cells is a potent
chemoattractant for leukocytes including PMNs, monocytes and
mast cells (193), and that 50% of gingival mast cells produce
TGF-β1 (194).

Another possible role of mast cells within periodontal disease
is the presence of serine proteases, tryptase and chymase, which
have the potential to mediate breakdown of the extracellular
matrix. Mast cell-derived tryptase is a potent chemoattractant
for PMNs (195) promoting IL-8 secretion, increasing epithelial
expression of intercellular adhesion molecule-1 (196) and
inducing expression of mRNA for IL-1β and IL-8 in endothelial
cells (197). Within the gingival tissues mast cells also appear
to be the major source of IL-17 (86, 87) which as noted
above leads to the production of IL-8 and continued PMN
migration. Chymase can activate latent IL-1β (198) or MMP-
9 (199). However, the biological significance of these proteases
is still unknown. Small quantities of tryptase and chymase
have been found in the extracellular matrix in healthy
gingiva (185, 200), which may indicate periodontal lesion
stability. In this context, however, it must be remembered
that capability does not indicate function within the specific
tissue micro-environment.

There has been limited research examining mast cells as
a possible host modulation target. Jeffcoat et al. evaluated
the use of iodoxamide ethyl, a mast cell release inhibitor, in
beagle dogs (186). Following oral treatment with iodoxamide
ethyl for 12 months, the rate of alveolar bone loss was
significantly reduced compared with untreated controls.
Additional benefit was observed in combination with
periodontal flap surgery. Although this study suggests a
possible benefit in targeting mast cell degranulation, further
research is required to understand the role of mast cells in
periodontitis before they can be considered a potential host
modulation target.

CONCLUSION

In conclusion, we must address the limitations of this review.
Examining components of the innate and adaptive immune
response separately is artificial and ignores the complex
interactions between different components and overlapping
functions. This discussion has also been limited to the
principal immune cells and their cytokines, and as such
overlooks other cellular functions and aspects of the immune
system which are also likely to play significant roles in
both the protective and pathogenic responses. This review,
however, highlights the current heterogeneity and deficiencies
in our understanding of immunopathogenesis, which will
need to be addressed when developing host modulation

TABLE 1 | Potential biological therapies, immune targets and their mechanisms.

Epithelial cells

Potential biological therapies Mechanism of action

α-defensins Broad spectrum of bactericidal activity and

activation of the classical complement

pathway and upregulation of IL-8 production.

β-defensins Antibacterial activity, chemotactic functions.

Cathelicidin LL37 Bactericidal activity, chemotactic functions.

Calprotectin Antimicrobial activity resulting from ability to

chelate.

Polymorphonuclear neutrophils (PMNs)

Immune modality/target Possible mechanism for host modulation

Developmental endothelial

locus-1 (DEL-1)

Interacts with both the αvβ2 and αvβ3

integrins (32, 33), resulting in reduced PMN

transmigration. Reduced PMN transmigration

may result in disease exacerbation.

Pentraxin-3 (PTX3) Binds P-selectin downregulating PMN

recruitment via a negative feedback loop (38).

Reduced PMN recruitment may result in

disease exacerbation.

T cells

Immune modality/target Possible mechanism for host modulation

Th1/Th2 cells Shifting Th1/Th2 balance toward a Th1

phenotype may promote a stable lesion.

IL-17 Suppression of IL-17 likely from PMNs and

mast cells. Suppression may result in a

decrease in the recruitment of PMNs and

disease exacerbation. Ustekinumab (IL12/IL23

inhibitor) and secukinumab (IL-17 inhibitor)

have shown benefit in patients with Leukocyte

Adhesion Deficiency and psoriasis (96, 97).

B cells

Immune target Possible mechanism for host modulation

CD-20 B cell apoptosis by anti-CD20 antibodies.

Rituximab (anti-CD20 monoclonal antibody)

used in rheumatoid arthritis.

NK and NKT cells

- No studies to date that have examined NK or NKT cells as targets

Macrophages

Immune modality/target Possible mechanism for host modulation

M1/M2 macrophage

polarization

Anticytokine therapy targeting downstream

M1 pro-inflammatory cytokines. Promotion of

M2 phenotype: Specialized pro-resolving

mediators e.g. Resolvin E1 (182, 183).

Mast cells

- Proportion in healthy and inflamed gingival tissues conflicting (190, 191)

- Limited research examining mast cells as a possible host modulation target

- The role of chymase and tryptase is unknown

agents. Although immunomodulation in periodontal disease
offers exciting prospects for understanding the disease and
its treatment, researchers must remain cognizant of the fact
that the there is a high degree of overlap, redundancy and
even plasticity in the immune system (Figure 1). Furthermore,
it is becoming increasingly clear that not all individuals
respond in the same way, resulting in individuality of disease
expression. The targeting of a single molecule or mediator,
or indeed a single cell type therefore, may not result in the
expected disease outcome in all individuals. Notwithstanding

Frontiers in Dental Medicine | www.frontiersin.org 9 June 2022 | Volume 3 | Article 883342

https://www.frontiersin.org/journals/dental-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/dental-medicine#articles


Quach et al. Immunomodulation—Potential Immune Targets

this caveat however, further research in all aspects of the
immune system and its potential for immunomodulation in the
treatment of periodontal disease is essential. In this context,
the present review (summarized in Table 1) highlights that
care must always be taken when extrapolating from animal
studies to human trials with the principle of “do no harm”
being paramount.
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