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Energy metabolism is crucial in stem cells as they harbor various metabolic pathways

depending on their developmental stages. Moreover, understanding the control of their

self-renewal or differentiation via manipulation of their metabolic state may yield novel

regenerative therapies. Periodontal ligament (PDL) cells existing between the tooth

and alveolar bone are crucial for maintaining homeostasis in the periodontal tissue.

In addition, they play a pivotal role in periodontal regeneration, as they possess the

properties of mesenchymal stem cells and are capable of differentiating into osteogenic

cells. Despite these abilities, the treatment outcome of periodontal regenerative therapy

remains unpredictable because the biological aspects of PDL cells and the mechanisms

of their differentiation remain unclear. Recent studies have revealed that metabolism

and factors affecting metabolic pathways are involved in the differentiation of PDL

cells. Furthermore, understanding the metabolic profile of PDL cells could be crucial in

manipulating the differentiation of PDL cells. In this review, first we discuss the energy

metabolism in osteoblasts and stem cells to understand the metabolism of PDL cells.

Next, we summarize themetabolic preferences of PDL cells during their maintenance and

cytodifferentiation. The perspectives discussed have potential applicability for creating a

platform for reliable regenerative therapies for periodontal tissue.

Keywords: energy metabolism, osteogenic differentiation, metabolic reprogramming, periodontal regeneration,

periodontal ligament cells, osteoblasts

INTRODUCTION

Periodontitis is an inflammatory disease of the tooth-supporting tissue that affects 20–50 percent of
the world population (1). Numerous studies have shown its relation to a variety of systemic diseases,
including metabolic syndrome, a group of risk factors linked to coronary heart disease and type 2
diabetes mellitus (1–3). It has been found that periodontitis and diabetes are interlinked (4). In
addition, it has been reported that periodontal therapy improves metabolic outcomes, including
blood sugar (glucose) levels in type 2 diabetes patients (5–7). However, further investigations are
needed to elucidate the relationship between periodontitis and metabolism.

The periodontal ligament (PDL) plays a pivotal role in periodontal therapy, which is widely
used for regenerating healthy periodontium destroyed by periodontal disease. The PDL is located
between the cementum and alveolar bone and maintains the stability of the teeth in the alveolar
bone (8). It is comprised of heterogeneous cell populations, comprehensively known as PDL cells,
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and acts as a reservoir of mesenchymal stem cells (MSCs) that
can differentiate into multiple cell types, such as osteoblasts,
adipocytes, and chondrocytes (9, 10). The cellular characteristics
of PDL cells and their differentiation mechanisms are crucial
in understanding homeostasis of periodontal tissue and the
induction of effective periodontal regeneration. To date,
numerous efforts have been made to identify the specific gene
markers and the location of PDL cells with stemness (11–13);
however, no direct evidence distinguishes the heterogeneous
population of PDL cells.

Metabolism is a complicated balance between catabolism
and anabolism, which are deeply involved in the fundamental
cellular functions such as proliferation and differentiation (14).
Recent studies have shed a light on energy metabolic profiles,
characterizing the cellular status during the differentiation
process (15). Moreover, the effects of stem cell energy
metabolism on osteogenic differentiation have gained immense
interest as the alterations in metabolism occur depending
on their differentiation stages (16–18). PDL cells comprise a
heterogeneous mixture of several cell types, including PDL
stem cells and osteoprogenitor cells at different stages (19,
20). Although energy metabolism is involved in the osteogenic
differentiation of PDL cells, insufficient evidence is available
in this regard. This current review summarizes recent research
highlighting the major metabolic pathways in osteoblasts and
stem cells and further describes the role of energy metabolism
in PDL cells for the future strategies of periodontal regeneration.

GLUCOSE METABOLISM DURING
OSTEOBLAST DIFFERENTIATION

Glucose is the primary energy source for differentiating
and maturing osteoblasts. Glucose is transported to cells
via the glucose transporter family. To generate adenosine
triphosphate (ATP) for energy, glucose molecules are converted
to pyruvate for the tricarboxylic acid (TCA) cycle-driven
oxidative phosphorylation (OXPHOS) and lactate-producing
glycolysis in the presence and absence of oxygen, respectively
(18, 21). Despite oxygen availability, glucose is utilized via
lactate-producing glycolysis (aerobic glycolysis), a process known
as the Warburg effect, which commonly occurs in cancer
cells (22). Although glycolysis generates less ATP compared
to OXPHOS, ATP production by aerobic glycolysis is faster
and sufficient to support osteoblast differentiation; moreover, it
is involved in citrate production, which is crucial for apatite
nanocrystal formation (18, 21) (Figure 1). Recently, several
studies have reported that disruption of aerobic glycolysis
(such as via inhibition of lactate dehydrogenase A, LDHA),
which is mainly involved in the conversion of pyruvate
to lactate, negatively affects osteoblast differentiation, i.e.,
acceleration and stabilization of aerobic glycolysis upregulates
the differentiation in osteoblasts (23–25). Hong et al. (23)
revealed that overexpression of miR-34a targeting 3’UTR of
LDHA suppresses late osteoblast differentiation in human
mesenchymal stem cells by inhibiting cellular glycolysis. In
addition, Wu et al. (24) showed that addition of exogenous

lactic acid (LA) toMC3T3-E1 cells significantly increases alkaline
phosphatase (ALP) activity, whereas siRNA treatment of lactate
dehydrogenase B (LDHB), an enzyme converting LA to pyruvate,
which is a fuel for OXPHOS, decreases ALP activity in MC3T3-
E1 cells, indicating that lactate is important for osteoblast
differentiation via aerobic glycolysis. Yang et al. (25) reported
that a lack of leucine-rich repeat-containing G-protein-coupled
receptor 4 (Lgr4) in preosteoblasts inhibits osteogenic function
and decreases the glucose metabolism under aerobic conditions.
Also, it causes reduced bone formation and impaired glycolysis
in the osteoblast-specific Lgr4 conditional knockout mice (25).
For another example, the overexpression of malic enzyme helps
to uncouple pyruvate fromOXPHOS and consequently enhances
glycolysis and osteoblast differentiation (26).

Nevertheless, the metabolic preference for glucose during
osteoblast differentiation remains controversial. Some studies
have reported that differentiating cells dominantly utilize glucose
via OXPHOS during osteogenic induction (27, 28). A recent
study has reported that inhibition of glycolysis by an LDHA
inhibitor enhances OXPHOS and osteoblast differentiation
(29). Moreover, the discrepancy in the energy metabolism
is presumably caused by differences in cell types, their
differentiation stage, energy substrate, aging, oxygen availability,
and other experimental conditions (18, 28, 30). For example,
there has been a discrepancy in which high glucose (HG) affects
osteoblast differentiation positively or negatively; the effects of
HG on osteoblast differentiation are altered depending on the
stages of their differentiation (31). Wu et al. (24) have proposed
that a mediator such as lactate enables the maintenance of
homeostasis between glycolysis and OXPHOS, depending on
the heterogeneous preferences of each cell. Therefore, it is
worthy to note that glycolysis and OXPHOS pathways may
orchestrate to keep a balance during various differentiation stages
of osteogenic induction.

METABOLIC REPROGRAMMING OF STEM
CELLS: A WAY TO REGENERATION

Osteoprogenitor cells are committed from mesenchymal
stem cells (MSCs), which are multipotent adult stem cells
capable of differentiating into mesoderm-derived cells to
maintain homeostasis and regenerative functions (32). Several
studies reported that undifferentiated MSCs primarily rely on
glycolysis. In contrast, after osteogenic induction, OXPHOS is
upregulated during osteoblast differentiation, whereas glycolysis
is maintained or gradually declines (16, 17). The transition
from MSCs to mature osteoblasts employs dynamic metabolic
preferences. Moreover, the specific environment of each
MSC may be diversified by substrate and oxygen availability,
leading to different metabolic states (33–37). Understanding
energy metabolism in stem cells may guide the involvement of
metabolic reprogramming during osteoblast differentiation.

Furthermore, metabolic reprogramming can alter the fate
of stem cells, leading to epigenetic modifications (36). Several
years ago, to reprogram human somatic cells, the induced
pluripotent stem cells (iPSCs) were identified by external
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FIGURE 1 | Pathways of intracellular energy metabolism during differentiation and reprogramming. In glucose metabolism, ATP is generated via aerobic/anaerobic

glycolysis or OXPHOS that requires O2. Glycolysis generates ATP faster than OXPHOS, whereas OXPHOS slowly generates much more ATP than glycolysis. Amino

acids and fatty acids fuel the TCA cycle and enhance the OXPHOS pathway to generate additional ATP. ATP, adenosine triphosphate; LDHA, lactate dehydrogenase

A; TCA, tricarboxylic acid; OXPHOS, oxygen phosphorylation; O2, oxygen.

expression of Yamanaka factors (Octamer-binding transcription
factor 4 (OCT4), SRY-box transcription factor 2 (SOX2),
Kruppel-like factor 4 (KLF4) and MYC proto-oncogene,
bHLH transcription factor (c-MYC)) (38). The upregulation
of glycolysis and inhibition of OXPHOS by transfection of
the Yamanaka factors strongly enhanced cellular pluripotency
and nuclear reprogramming (39). Several studies have reported
that the enhancement of glycolysis is crucial for metabolic
reprogramming. Honkoop et al. (40) revealed that metabolic
reprogramming by promoting glycolysis is involved in the heart
regeneration of zebrafish. Pieknell et al. (41) reported that the
overexpression of Lin-28 homolog A (LIN28A) promotes the
regenerative ability of human somatic stem cells by enhancing
glycolysis. Additionally, LIN28A supports mitochondrial health
in pluripotency, leading to efficient differentiation when the
metabolic preference shifts to OXPHOS (41). Hypoxia-inducible
factor 1 subunit alpha (HIF1α) is a transcription factor that
allows energy metabolism to shift toward glycolysis during
the reprogramming process (42). Consequently, metabolic
reprogramming has increasingly drawn attention to regenerative
strategies in various fields (34, 43). For example, the enhancement
of glycolysis mitigates cell death, resulting in improved efficacy
of heart repair (34). Pre-treatment with lactate stabilizes HIF1α
and upregulates metabolic regulators to promote metabolic
reprogramming in human diploid fibroblasts (44).

UNDERSTANDING ENERGY METABOLISM
IN PDL CELLS: A POSSIBLE STRATEGY
FOR PERIODONTAL REGENERATION

It is more apparent that energy metabolism is involved in the
osteogenic differentiation of PDL cells, although the studies

in this regard are still insufficient and inconclusive. For
example, several studies have reported controversial results for
the effects of HG on the differentiation of PDL cells (45–
47). The overexpression of LIN28A enhances the osteogenic
process and calcified nodule formation by increasing lactate
and ATP production and decreasing reactive oxygen species
production (30); furthermore, proteomic analysis of human
PDL cells has identified OXPHOS as the most significantly
upregulated pathway during their osteogenic differentiation (48).
Elucidation of the dynamic metabolic preference of PDL cells
during differentiation will presumably explain the discrepancy
among several studies on the energy metabolism of PDL cells.

Moreover, the importance of energy metabolism in PDL
cells has shed a light on cellular reprogramming induced by
the metabolic shifts. Reprogramming of human periodontal
fibroblasts has been widely used in generating iPSCs by
transfecting with the Yamanaka factors (49). Recently, Mao et
al. (50) reported that the supplementation of succinate leads
to a metabolic shift from OXPHOS to glycolysis by inducing
pseudohypoxia via HIF1α in human PDL cells, even in the
presence of oxygen. This pseudohypoxia condition promotes
osteoblast differentiation (50).

Metabolic reprogramming is a new field of periodontal
research. Thus, to date, the studies on these aspects are limited.
Further understanding of metabolic reprogramming may pave
the way for periodontal tissue regeneration.

DISCUSSION

In the current review, we summarize the two principal
pathways in cellular energy metabolism, namely glycolysis
and mitochondrial OXPHOS, with respect to osteoblast
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FIGURE 2 | The hypothesis of dynamic metabolic preferences during

osteogenic differentiation and reprogramming of PDL cells. OXPHOS is largely

used at the early stage of differentiation because osteogenic differentiation

requires tremendous energy. Undifferentiated PDL cells may alter their

metabolic profiles from glycolysis to OXPHOS toward their differentiation; the

osteogenic cells may do vice versa toward their reprogramming. PDL,

periodontal ligament; OXPHOS, oxygen phosphorylation.

differentiation and stem cell biology. Osteoblasts use glycolysis
and OXPHOS depending on their differentiation stage (24, 31),
whereas stem cells are highly dependent on glycolysis to
maintain stemness (40, 41). As osteogenic differentiation
requires tremendous energy, OXPHOS is generally used,
particularly at the early stage of their differentiation (26).
Additionally, osteoblasts have the ability to differentiate by
glycolysis even under hypoxia, such as in the bone marrow
cavity (51, 52). Lactate drives glycolysis through a positive
feedback loop in hypoxic osteoblasts (24). It is presumed that
by enhancing glycolysis, osteoblasts might obtain a certain
amount of energy for differentiation in a short time, as glycolysis
can produce energy rapidly. In contrast, the characteristics of
the metabolism in PDL cells remain inconsistent because the
roles of cellular metabolism during differentiation of PDL cells
remain to be elucidated (45–47). The findings in the energy
metabolism of osteogenic and stem cell biology suggest that
undifferentiated PDL cells alter their metabolic profiles from
glycolysis to OXPHOS toward their differentiation; however,
the metabolism may be affected by stages of differentiation,
aging, and oxygen availability, among other factors (Figure 2).
Owing to the unique microenvironment of PDL cells, compared
with the other osteogenic cells, and their heterogeneity, the
bioenergetic phenotypes in PDL cells need to be investigated by
exploring their characteristics in different osteogenic phenotypes
derived from multiple donors.

Moreover, further studies are required regarding the energy
metabolism of PDL cells, with respect to the type of additional
substrate that supports principal metabolic pathways used in
PDL cells. Although glucose is the main energy source, other
energy substrates are essential for osteoblast differentiation,
including fatty acids and amino acids, as they play important
roles in homeostasis and osteoblast differentiation as well as
glucose (53, 54). For instance, fatty acids are essential for
appropriate differentiation and serve as a substrate for ATP

production, whereas glutamine is involved in the commitment
to the osteoblast lineage. Various amino acids, including, but
not limited to, glutamine, are essential for the production
of cellular structures as well as the stability and fate of
pluripotent stem cells by supplying functional groups for
chromatin modification. Furthermore, some amino acids can
promote osteogenic differentiation (18, 33, 55). Multiple studies
have revealed that altered metabolism of these substrates affects
osteoblast differentiation in both negative and positive ways.
For example, by using the glutaminase (Gls) -floxed mice
crossed with the Paired-related homeobox 1 (Prx1) Cre mice
expressing Cre recombinase specifically throughout the limb
bud mesenchyme, the deletion of Gls in the mesenchymal
progenitor cells of limb bud impairs the osteogenic phenotype
and osteoblast differentiation (54). In addition, the inhibition of
fatty acid utilization negatively affects osteoblast differentiation
(53). Although several studies have reported the roles of amino
acids and lipids in differentiation of osteoblasts and stem cells,
little attention has been paid to their roles in differentiation
of PDL cells. Further studies in this aspect will be essential to
successfully stimulate periodontal regeneration because amino
acids or lipids can induce PDL cells to differentiate into
osteogenic cells by activating the TCA cycle and enhancing the
OXPHOS pathway (Figure 1).

Recently, new technologies have enabled us to monitor the
real-time alteration of cellular metabolism and analyze the
large-scale profiles of metabolites simultaneously in vitro or
ex vivo (56, 57). Ex vivo monitoring of stem cell metabolism
can be useful for selecting cells with stemness for periodontal
regenerative therapy using MSC transplantation. The application
of metabolic regulators shifting to glycolysis might encourage
the reprogramming of differentiated cells to the undifferentiated
stage, leading to potent periodontal regeneration. In the near
future, we will understand the entire scenario of energy
metabolic pathways at the single-cell level as well as monitor
cellular metabolic shifts in vivo. By applying these technologies
to periodontal regenerative therapies, we could presumably
examine the metabolism of PDL cells at the cellular level
before applying periodontal regenerative therapy. Based on
their metabolic preference, we could assess whether PDL cells
remaining at the operation sites have potential for the success
of regenerative therapies. This will allow us to predict the
efficacy of regeneration at a chairside. Furthermore, by utilizing
adjunctive substrates triggering the OXPHOS pathway, we could
potentially enhance neogenesis of cementum and alveolar bone.
Eventually, targeting the energy metabolism of PDL cells may be
a potential strategy for predicting and increasing the efficacy of
periodontal regeneration.

In conclusion, osteogenic progenitors, including PDL cells,
use glucose as the main source for energy production, and energy
metabolism is important for their osteogenic differentiation and
reprogramming. Metabolic preference depends on cell types,
substrate, and the oxygen environment. Thus, elucidation of a
holistic view of the metabolic profile of PDL cells at different
stages and manipulation of the differentiation of PDL cells will
help design an effective strategy for reliable regenerative therapies
for periodontal tissue.
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