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Apical periodontitis is an inflammatory reaction of the periradicular tissues as a

consequence of multispecies microbial communities organized as biofilms within

the root canal system. Periradicular tissue changes at the molecular level initiate

and orchestrate the inflammatory process and precede the presentation of clinical

symptoms. Inflammatory mediators have been studied at either the proteomic,

metabolomic, or transcriptomic levels. Analysis at the protein level is the most common

approach used to identify and quantify analytes from diseased periradicular tissues

during root canal treatment, since it is more representative of definitive and active

periradicular inflammatory mediator than its transcript expression level. In disease,

proteins expressed in an altered manner could be utilized as biomarkers. Biomarker

proteins in periradicular tissues have been qualitatively and quantitatively assessed

using antibodies (immunoassays and immunostaining) or mass spectrometry-based

approaches. Herein, we aim to provide a comprehensive understanding of biomarker

proteins identified in clinical studies investigating periradicular lesions and pulp tissue

associated with apical periodontitis using proteomics. The high throughput mass

spectrometry-based proteomics has the potential to improve the current methods of

monitoring inflammation while distinguishing between progressive, stable, and healing

lesions for the identification of new diagnostic and therapeutic targets. Thismethodwould

provide more objective tools to (a) discover biomarkers related to biological processes

for better clinical case selection, and (b) determine tissue response to novel therapeutic

interventions for more predictable outcomes in endodontic treatment.

Keywords: apical periodontitis, inflammatory mediators, biomarkers, proteomics, mass spectrometry

INTRODUCTION

Apical periodontitis is an inflammation occurring as a consequence of endodontic infections
caused by multispecies microbial communities organized as biofilms within the root canal system
(1). Once inflammation is initiated, molecular changes orchestrate the inflammatory process
and precede the presentation of clinical symptoms. From a clinical perspective, the ability to
distinguish between a progressive lesion and a stable lesion that is undergoing regression and
healing is critical to determine the appropriate treatment approach (2). Increased pathogenicity
of the intracanal microbiota and complex host response results in increased inflammatory and
oxidative damage (3, 4). Several studies have reported changes in the expression of proteins,
metalloproteinases, and inflammatory cytokines related to endodontic clinical symptoms (5–8).
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The degree of periradicular bone destruction has been linked
to the concentrations of inflammatory mediators present
within periradicular lesions (9). Thus, studying the levels of
inflammatory mediators and protein expression profiles within
periradicular lesions would shed new light on the disease process.

A biomarker is defined as a characteristic that is objectively
measured and evaluated as an indicator of normal biological
processes, pathogenic processes, or pharmacologic responses to
a therapeutic intervention (10). Evaluation of the biomarkers
associated with apical periodontitis is crucial for understanding
the pathogenesis, diagnosis and development of therapeutic
strategies (11). The inflammatory profile of periradicular lesions
is highly dynamic with various inflammatory cells, their
mediators, and effector molecules being involved in the disease
process (12). Hence, defining a single or few biomarkers for apical
periodontitis is a challenging task due to the complex interplay
of several parameters which affect the state and progression of
the disease.

Periradicular inflammatory markers have been studied at
either the proteomic, metabolomic, or transcriptomic level
(13). Transcriptomic-based assay techniques utilize transcribed
mRNA sequences as biomarkers whereas proteomics identifies
the actual secreted protein/metabolite (14). A strong correlation
is anticipated when mRNA is translated into its respective
protein, and consequently, both can be used to quantify the
presence of a specific mediator. However, in human cells, a
weak correlation between concentrations of protein and its
respectivemRNA expression has been observed (14), which could
be attributed to various post-transcriptional modifications or
translational mechanisms. During highly dynamic phases of cell
activity, such as cellular differentiation or cellular stress response
to specific microenvironmental stimuli, post-transcriptional
processes may lead to higher deviations from an ideal correlation
(15). In this case, proteomic analysis which involves studying
the whole set of proteins expressed by cell/tissue/organism in a
particular environment during a specific stage of the cell cycle
would provide a better idea of the actually produced proteins.

Studying molecular biomarkers at the protein level is crucial
since proteins are the direct biofunctional effector molecules
in living organisms (16). Proteins biosynthesis is critical for
cell and tissue signaling, development, homeostasis as well as
structural stability (17). In dentistry, proteomics-based methods
have been used to study various oral tissues/samples such
as saliva (18–20), acquired pellicle (21), gingival crevicular
fluid (22), dentin (23, 24), pulp tissue (25), and dental stem
cells (26, 27). Currently, proteomic analysis of the tissues
represents a powerful and unbiased approach to identify
important differentially expressed proteins within diseased tissue
in comparison to their normal counterparts (28). Proteins could
also serve as prognostic markers and therapeutic targets, for
example, antioxidant enzymes and heat shock protein 27 (29, 30).
Therefore, researchers have conducted proteomics-based studies
to investigate oral diseases including caries (31), gingivitis (32),
periodontitis (33), pulp and periradicular diseases (34), as well as
oral cancer (35).

Proteomics has been applied in endodontics to identify the
bacterial proteins associated with apical periodontitis, for a

better understanding of the pathogenicity and virulence factors
of bacterial community (36–38). In addition to the analysis of
bacterial proteins, studying proteomics provide relevant data
on the host’s response in specific clinical conditions, allowing
a broad insight into the host response in homeostasis and in
apical periodontitis, through qualitative and quantitative analysis
of protein expression (39). Within this context, herein we focus
on reviewing endodontic literature investigating human protein
expression in different pathological conditions and healing of
periradicular tissue using proteomics-based approach, and how
these tools can improve knowledge in the diagnosis, intervention,
and prognosis of endodontic treatment.

PROTEIN DETECTION APPROACHES

Biomarkers for different pathological states and healing have
been investigated at the protein level using antibody-based assays
and antibody-free protein detection using mass spectrometry
(MS)-based techniques (or proteomics) (Figure 1) (5, 7, 13,
37–40). Specific techniques and protocols using antibodies
for the detection of particular proteins, or their modified
forms, have been applied to assess various inflammatory
mediators in periradicular lesions (7, 41). The antibody-
based techniques, such as western blot, immunohistochemistry
assay, or enzyme-linked immunosorbent assay (ELISA), are
very sensitive; however, they have limitations such as cross-
reactivity, long development time, and high variability (42). MS-
based proteomics has rapidly become the analytical method of
choice for the identification and characterization of proteins.
Quantification of proteins in MS-based proteomics can be
carried out using label-based or label-free strategies (43). Label-
based quantitation methods utilize stable-isotope labels which
are incorporated within the peptides, introducing a known
mass difference within the experimental conditions. In contrast,
label-free proteomics quantitates both relative and absolute
protein quantity by directly utilizing a peptide’s intensity or
inferring quantity indirectly from spectral counting of peptides
(44). MS-based antibody-free protein detection methods offer
multiple advantages such as the ability to determine the
sequence of a protein or peptide, providing higher throughput
than antibody-based assays, accurate quantification, high level
of specificity, ability to discriminate between isoforms while
avoiding interference caused by cross-reactivity of antibodies,
while identifying and quantifying proteins for which no antibody
exists (45–47).

Technological advances in MS-based proteomics have
enabled the large-scale detection and quantitation of proteins,
including measurement of properties such as their abundance,
isoform expression, turnover rate, subcellular localization,
post-translational modifications, and interactions (48). Protein
expression profiling is defined as identifying the proteins
expressed in a particular tissue, under specific conditions and
at a particular time, typically compared to protein expression
in reference samples (49). Analysis of differentially expressed
proteins allows a better understanding of the overall physiologic
profile of biological systems (cells and tissues) under a given
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FIGURE 1 | Methods applied in endodontic literature to detect biomarkers at the protein level.

condition (50). Different proteomics-based strategies are
summarized in Figure 2. The bottom-up approach involves
proteolysis of proteins into short peptides (8–30 amino acids)
using a proteolytic enzyme (mostly trypsin due to its efficiency
and specificity of cleavage), and MS/MS fragmentation to
determine the peptide sequences (51). In top-down technique,
the intact protein is introduced into the mass spectrometer to
measure its intact and fragment ions masses (52). This approach
enables 100% sequence coverage and full characterization of
proteoforms, the specific molecular form of the protein resulting
from combinations of genetic variation, alternative splicing, and
post-translational modifications (53).

Several techniques have been applied to extract and separate
proteins including the 2 commonly usedmethods, 2-dimensional
electrophoresis (2-DE) and liquid chromatography (LC) (54).
In 2-DE, separation of proteins is based on two principles;
first, isoelectric points, then; two-dimensional sodium dodecyl
sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) to
separate proteins according to the molecular weights of these
proteins (55). Whereas in LC, a solution containing protein
is introduced to flow through a column containing various
substances under the action of external force (56). The different
interactions between different proteins and chromatographic
column materials, result in differences in the retention time
of various proteins in the chromatographic column which in
turn allows the separation and purification of different proteins
according to their retention time. For data interpretation,
dedicated search engines that rely on a “protein sequence
database” are explored to compare experimental MS/MS spectra
to theoretical peptide fragmentation patterns and identify the
best match to interpret acquired data (51). Bioinformatics tools
applied to analyze the identified proteins would facilitate the
mechanistic understanding of the involved biological processes
(57). The next two sections review the proteomics-based studies
investigating apical periodontitis in endodontic literature.
According to the sampled tissue site, the protein expression

profiles of the periradicular lesion itself and the pulp tissue
associated with periradicular lesions are discussed.

PROTEOMIC PROFILE OF
PERIRADICULAR LESIONS

Proteomic analysis of tissues involved in apical periodontitis
represents a powerful strategy to detect differentially expressed
proteins with significant role in the biological pathways involved
in lesion progression or resolution. Clinical studies in endodontic
literature investigating the proteomic profile of pulp and/or
periradicular lesions in different conditions, using MS (2,
37–39, 58–61), are summarized in Supplementary Table 1.
The main findings of studies assessing protein expression in
periradicular lesions are presented in Figure 3. The identification
of human proteins expressed in endodontic infections was
addressed for the first time by Provenzano et al. in samples
collected from teeth with asymptomatic apical periodontitis
and acute apical abscesses, describing the host response and
potential biomarkers in the activity of endodontic diseases (37).
Subsequent studies qualitatively analyzed samples from post-
treatment apical periodontitis and acute apical abscesses (38, 39,
58). Proteins were identified more frequently in samples from
periapical abscesses compared to samples from asymptomatic
teeth (37), due to the acute nature of host response in abscesses
and the associated high killing rate of host cells and bacteria
which would generate more proteins, including cytoplasmic
proteins (37). Irrigating the canals with chlorohexidine reduced
the number of identified proteins substantially in post-
treatment samples, whereas NaOCl irrigation increased the
number of proteins, which could be attributed to the tissue
dissolving ability of NaOCl and its high destructive effects on
cells, releasing cytoplasmic proteins to the environment (37).
Identified proteins were mostly involved in cellular processes
and metabolism followed by proteins related to the immune
system. Proteins were involved in tissue destruction and different
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FIGURE 2 | Schematic representing proteomic-based strategies: bottom-up vs. top-down vs. middle-down. In bottom-up approach, a protein is typically digested

with an enzyme (i.e., trypsin) into many small peptides either in gel or in solution. The recovered peptides will be detected by mass spectrometer and a specific

peptide can be isolated and fragmented by MS/MS to identify the protein from the database. Whereas in top-down method, the whole protein is analyzed directly in

the mass spectrometer without digestion. The middle-down strategy analyzes larger peptides resulting from limited digestion or more selective proteases. One or

more protein or peptide fractionation techniques can be applied prior to MS analysis and database searching. Modified and adapted from (16, 51). Schematic created

with BioRender.com.

mechanisms against infection as well as protection against
tissue damage. These included immune-related proteins such
as, immunoglobulins, alarmins, defensins, complement proteins,
heat shock proteins, protease inhibitors, and circulatory proteins,
as well as cytoskeletal proteins.

Immune-related proteins have been consistently detected in
apical periodontitis. A study conducted by Alfenas et al. analyzed
the exoproteome, a set of extracellular proteins including those
that are secreted via specific pathways. In this investigation
fluids (pus) sampled from acute periapical abscesses were
analyzed for host proteins (39). Multiple proteins associated
with the immune defense against bacteria were found in
pus samples, indicating an active protective response against
invading bacteria. Several proteins related to polymorphonuclear
neutrophils (PMNs), macrophages and their mediators were
identified. PMNs play an important role in the innate immune
response to bacterial infection and in abscess formation.
PMNs kill bacteria intracellularly after engulfing them or
extracellularly upon activation and further cell lysis by forming

neutrophil extracellular traps (NETs). NETs are large complexes
of DNA molecules associated with nucleic and cytoplasmic
proteins, including histones, elastase, myeloperoxidase (MPO),
and lactoferrin (62); all of which were detected in sampled
tissues included in the study (acute periapical abscess) (39). NETs
play a significant role in the innate immune response against
a wide range of gram-positive and gram-negative bacteria via
degradation of their virulence factors and killing (63). Further,
NETs contain up to 20 different inflammatory mediators and
effector molecules, such as cathepsin G (CTSG) and elastase.
CTSG is one of the key proteolytic effector molecules responsible
for direct tissue degradation and pro-inflammatory signaling. In
addition to PMNs involvement in microbial killing, they release
factors, such as MPO, elastase, and gelatinase, which may cause
damage to the adjacent tissues and contribute to the abscess
pathogenesis (64). These factors were also detected in this study.
Similarly, a study that analyzed the correlation between brain
abscess volume and extracellular protein levels, demonstrated
that MPO, aminopeptidase N, azurocidin, lactotransferrin,
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FIGURE 3 | Schematic representing different proteins expression and interactions in apical periodontitis. DAMPs, danger associated molecular patterns; DC, dendritic

cell; Mϕ, macrophage; NET, neutrophil extracellular traps; OC, osteoclast; PAMPs, pathogen associated molecular patterns; SERPINB1, Serpin Family B Member 1.

Schematic created with BioRender.com.

cathelicidin, CTSG, neutrophil collagenase, and resistin, which
could be related to neutrophils or macrophages, were among
proteins with correlation coefficients > 0.5 (65).

Other immunity-related proteins including protease
inhibitors have been identified in both asymptomatic apical
periodontitis and abscess samples (37). SERPINB1 (Serpin
Family B Member 1 or leukocyte elastase inhibitor), a potent
inhibitor of neutrophil serine proteases (elastase and CTSG),
was expressed in higher levels in apical periodontitis, with
significantly more up-regulation in stable lesions than in
progressive lesions (2). These findings were validated using

quantitative PCR. SERPINB1 plays a vital role in tissue
protection against neutrophil-induced damage, maintaining
PMNs survival by antagonizing intracellular CTSG activity (66).
SERPINB1 was exclusively expressed in the epithelium and in
infiltrating PMNs present in the granulation tissue, suggesting a
protective role in inhibiting the cathepsin G-mediated apoptosis
of neutrophils and epithelial cells to limit the damage derived
from the diffuse and uncontrolled secretion of neutrophil
elastase and CTSG (2). Moreover, SERPINB1 was negatively
correlated with multiple biomarkers of acute inflammation
including CXCR1, matrix metalloproteinase (MMP)-8, MPO,
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and CTSG (2). The strongest negative correlation was noted
for CTSG, indicative of a direct regulatory link between the
SERPINB1 expression and the inhibition of the CTSG expression
(67). The up-regulation of SERPINB1 might regulate and reduce
the destructive potential of NET release, inhibiting the direct
degradation of the tissue and helping to stabilize the lesion (68).
Overexpression of another serpin family member (SERPINE1)
has been previously reported in inactive apical periodontitis
(69). SERPINE1 is involved in the acute phase response to
infections, inflammatory reactions, and protection of the tissues
against proteolytic enzymes (70). Additionally, it is involved in
essential healing processes; promotes adhesion, cell migration,
and collagen deposition (69). This further reinforces the evidence
for the role of this protein family in the pathogenesis as well as
successful repair of periradicular disease.

Alarmins are multifunctional immune-activating
protein/peptides that act as danger signals and together
with pathogen-associated molecular patterns (PAMPs), are
considered damage-associated molecular patterns (DAMPs)
(71). They are involved in the defense response to bacterial
infection as well as lipopolysaccharide, chemokines, and chronic
inflammation. They are expressed by PMNs, macrophages, and
dendritic cells and released to the extracellular milieu after
infection or tissue damage (72). They interact with receptors
expressed by host defense cells to stimulate the initiation of
innate and adaptive immune responses, triggering inflammation,
which allow them to be used as markers of destructive tissue
processes (73). S100 proteins (alarmins) have been detected
in cases of asymptomatic primary apical periodontitis (37),
post-treatment apical periodontitis (38), and for the first time
in abscesses (39). S100 proteins exhibit antimicrobial properties
through the process of metal limitation (74) and have been
reported as potential candidate biomarkers for diagnosis and a
predictor of therapeutic responses to inflammation-associated
diseases (75).

Heat shock proteins (HSPs), also referred to as molecular
chaperones, are known to play a protective role for cells under
stress conditions, including infection and inflammation (76).
HSPs have been identified in acute periradicular abscesses
(39). Interactions between host cells and microbial factors
in periradicular lesions result in substantial stress of the
involved host cells, which cause damage to cellular proteins
and adverse effects on cellular metabolism and lead to the
induction of HSPs production. HSPs can stabilize new proteins
to fold correctly and help refold proteins damaged by the
stress (76). They have been suggested to participate in the
pathogenesis of apical periodontitis and influence the prognosis
of root canal treatment (77). HSP27 has been found to be
3.79-fold up-regulated in apical periodontitis with significantly
higher expression in inactive lesions, implicating a potential
role for this molecule in regulating lesion progression (41).
HSP27 can modulate neutrophil chemotaxis and activity (78),
which could account for the local immune regulation of
apical periodontitis. It has an important role in protecting the
cells during thermal, oxidative, and chemical stress providing
antioxidant and anti-apoptotic functions (30). Additionally,
HSP27 suppresses cytokine expression, inhibits neutrophil

infiltration, and promotes cell proliferation contributing to the
acceleration of wound healing (79).

Defensins are low-molecular-weight cysteine-rich cation
proteins with antimicrobial activity. They are primarily involved
in innate immunity against pathogens and have been identified
in pus sampled from periapical abscesses (37, 39). They are
released by neutrophils and macrophages into the extracellular
environment during the infection process. Defensins have broad
activity spectrum; kill gram-positive and gram-negative bacteria,
mycobacteria, fungi, and viruses (80). These antimicrobial
peptides may promote the expression of proinflammatory
cytokines (81). Another group of proteins involved in the host
antibacterial response; neutrophil gelatinase-associated lipocalin,
lactoferrin, and transferrin, were also identified in periapical
abscesses (39). They exert their antibacterial action through
sequestration of iron, which is essential for the growth and
virulence of many pathogens, at the site of infection (82).
Iron-sequestrating proteins not only deprive bacteria of this
essential factor but also some of them, transferrin and lactoferrin,
have been suggested to suppress the formation of bacterial
biofilms (83).

Circulatory proteins, such as hemoglobin and albumin, as
well as components of the complement system, were abundant
in samples collected from abscesses, as anticipated since blood
components were involved in purulent exudates (39). The
complement system is a network of interacting soluble and cell
surface-associated molecules that play a key role in both innate
and adaptive immune responses to infection (84). It is involved in
chemotaxis, opsonization, and lysis of pathogens via formation of
a membrane attack complex. The expression of these proteins has
been reported to be elevated during periodontal inflammation
(85). Complement (C3) has been suggested as a therapeutic
target in periodontitis, its inhibition would block the generation
of downstream effector molecules regardless of the initiation
mechanism of complement activation (86).

Cytoskeleton proteins have been shown to be downregulated
in apical periodontitis, which might reflect the tissue destruction
resulting from the chronic inflammatory process. Actin, a
protein involved in the cytoskeleton structure, participates in the
generation of forces and cell adhesion, stabilizes the cell, and
determines the shape of the plasma membrane, cell migration,
and membrane trafficking (87). Actin cytoskeletal regulation has
also been demonstrated to impact the function of immune cells
including mast cells, dendritic cells, PMNs, and macrophages
(88). Structural proteins were quantitatively more expressed in
asymptomatic compared to symptomatic apical periodontitis,
including 8 types of actins and 2 types of profilins (61),
which might suggest higher cytoskeletal structure injury in
symptomatic lesions.

Proteins involved in the adaptive immune response were
detected in abscess and post-treatment apical periodontitis such
as immunoglobulins and proteins related to T-cell and B-cell
activation (38, 39). Immunoglobulins play important roles in
the defense against pathogens, including neutralization and
clearance of virulence factors, opsonization, and activation
of the classical pathway of the complement system (89).
Immunoglobulins (mainly IgG) specific against many bacterial

Frontiers in Dental Medicine | www.frontiersin.org 6 February 2022 | Volume 3 | Article 814603

https://www.frontiersin.org/journals/dental-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/dental-medicine#articles


Hussein and Kishen Proteomics in Apical Periodontitis

FIGURE 4 | Schematic representing different proteins expression and interactions in inflamed pulp and necrotic pulp associated with apical periodontitis (AP).

Schematic created with BioRender.com.

species associated with endodontic infections have been
previously reported in apical periodontitis lesions (90). Antigen-
antibody immune complexes have been reported to be three-fold
more abundant in patients with apical abscesses compared to
healthy subjects (91). Receptors involved in the regulation of T
cells, such as CTLA4 (Cytotoxic T-lymphocyte protein 4), and
T-LAK cell originated protein kinase (Lymphokine-activated
killer T-cell originated protein kinase), detected in abscess are
involved in the activation of lymphoid cells (37).

Comparing symptomatic to asymptomatic apical
periodontitis, proteins related to bone remodeling activity
were exclusive to the symptomatic cases, including carbonic
anhydrase 2, carbonic anhydrase 12, and protein-tyrosine kinase
2-beta. On the other hand, carbonic anhydrase 1, demonstrated
higher expression in symptomatic apical periodontitis (61).
They inhibit the activity and differentiation of osteoprogenitor
cells while stimulating the differentiation and augmentation of
resorptive activity of osteoclasts (92). Conversely, proteins that
promote the differentiation of osteoblasts and organization of
the extracellular matrix, specifically collagen alpha-1 (I) chain
and collagen alpha-2 (I) chain, were exclusively detected in the
asymptomatic apical periodontitis (61). Osteoclastic activity
in periapical lesions has been correlated with the expression
of semaphorin 7A (Sema7a) (93), a membrane-associated
glycophosphatidylinositol-linked protein, which is involved in
the regulation of bone homeostasis, showing high expression

during osteoclastic fusion (94). Sema7a plays a critical role
during the effector phase of inflammatory immune responses;
stimulates pro-inflammatory cytokines, activates monocytes,
modulates T-cell function, and regulates chemokine expression,
macrophage recruitment, as well as leukocyte trafficking (95–98).
Upregulation of Sema7a in symptomatic apical periodontitis
and its colocalization with MMP-1 and MMP-3 in vascular
vessels and extracellular matrix indicate its involvement in the
tissue destruction and infiltration of immune cells in periapical
lesions (99).

PROTEOMIC PROFILE OF PULP TISSUE
ASSOCIATED WITH PERIRADICULAR
LESIONS

Dental pulp is a highly vascularized and richly innervated
connective tissue. It has relatively low compliance since it is
enclosed in hard dentin tissue (100). Exposure of pulp tissue to
non-microbial (traumatic, mechanical, or chemical) or microbial
insults, triggers an inflammatory process that varies according
to the stimulant type and intensity. As pulp disease progresses,
innate effector cells and cells of adaptive immune response alter
the physiology of the dental pulp attempting to remove the
invading agents. The immune cells recruited within the pulp
contribute to the release of solublemolecules ormediators aiming
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to control bacterial infection. However, they can cause significant
collateral host tissue damage. When irritation persists, pulp
inflammation will progress leading eventually to pulp necrosis.
In the process, bacterial colonization of the root canal system and
subsequent neuro-vascular and immunological response would
trigger the development of periradicular pathosis (101, 102).

Degradative enzymes, such as matrixins or MMPs necessary
for the immune cell migration through the tissue matrix, cause
degradative damage and the increased levels of reactive oxygen
species (ROS) utilized by immune cells for antimicrobial action
(103). ROS, including superoxide anions, hydrogen peroxide, and
hydroxyl radicals, can subsequently induce cytokine release by
activating the key inflammatory intracellular signaling pathways
regulated by the p38 MAPK and NF-κB proteins in several
immune and tissue structural cell types (104). ROS could cause
major metabolic, transcriptomic, and proteomic changes and
greatly challenge the cellular control over a healthy proteome
(i.e., proteastasis) (105).

A quantitative approach has been recently applied to describe
the proteomic changes in the progression of pulp pathogenesis.
This approach allows a more accurate interpretation of the host
inflammatory response by comparing the protein expression
of normal, inflamed, and necrotic pulp tissues (59, 61). The
main findings of studies assessing protein expression in inflamed
pulp and necrotic pulp associated with apical periodontitis are
presented in Figure 4. Necrotic pulp tissue associated with apical
periodontitis has been found to possess the highest number of
identified proteins compared to other pulp conditions (inflamed
and healthy pulps) (60). Proteins were mainly found in the
cytosol and were related to pulp response to stimuli, multicellular
organismal process, immune response functions, and stress
processes (60). Proteins exclusively detected in necrotic pulp
tissue associated with symptomatic apical periodontitis were
mainly related to the host’s response to viral infection, oxidative
stress and proteolytic enzymes, whereas proteins involved in the
acute phase of inflammation were more frequently identified in
comparison to asymptomatic lesions (61).

Necrotic pulp associated with chronic apical periodontitis
have demonstrated high level of immunity-related proteins,
such as immunoglobulins and protease inhibitors, involved in
antigen presentation, defense cell activation, and stress response
(59), suggesting that host cells react to root canal system
infections (37). Immunoglobulins may be related to the immune
response as they participate in reducing the diffusion of antigens
adherent to the dentinal tubules (106). Protease inhibitors such
alpha-2-macroglobulin and SERPINE1 were up-regulated in the
necrotic pulp associated with symptomatic apical periodontitis,
indicating their significant role in the pulp inflammatory
process (107). Alpha-2-macroglobulin (α2M) protects the body
against bacterial endotoxins, regulates apoptosis, and inhibits the
generation of hydrogen peroxide. It provides a superior action to
SERPINE1 in inhibiting proteases, being effective in inactivating
all protease groups (59, 61). The increase in its concentration
has been reported to be directly related to the severity of
inflammatory responses (107). Its high levels in symptomatic
cases might be attributed to the increased demand for protease
inactivation during the exacerbated host response (61). Further,

α2M has been suggested as a biomarker for the diagnosis and
prognosis of various diseases (108). Similarly, characterization of
the proteome of root canals in teeth with post-treatment apical
periodontitis demonstrated several proteins related to immune
system process. Histone-lysine Nmethyltransferase 2A, HLA-C
protein (fragment), gremlin-1, tumor necrosis factor receptor
superfamily member 8, immunoglobulin heavy constant gamma
1, proteoglycan 4, and proteins S100 are some examples (58).

Comparing necrotic and inflamed pulp tissues revealed
that larger number of proteins related to stress response
were identified in necrotic pulp indicating an ongoing host
response to fight invading microbes (109, 110). Stress-related
proteins could be due to cell death, besides regulation of
proliferation and autophagy (111). However, proteins related
to DNA replication and synthesis (histone, pyruvate kinase),
extracellular matrix organization (collagen α), cytoskeleton
organization (actin cytoplasmic, cofilin, profilin, tubulin-α), cell
death regulation (14-3-3 3 protein ζ1), and sensory innervation
(β-enolase) were detected in reduced abundance compared to
inflamed pulp (60). Actin, showed down-regulation of 4 of its
isoforms indicating that the degradation process of the pulp
tissue leads to the destruction of cytoskeleton and rupture of
actin microfilaments. Necrotic pulp tissue also showed down-
regulation of hemoglobin, when compared with inflamed pulp.
This is due to the changes in the microcirculation that led to
reduced pulp blood flow, followed by hypoxia and tissue necrosis
(112). Contrarily, serum albumin and albumin, which constitute
fluids and exudates that infiltrate the apical and lateral foramen
of the root canal, were among the up-regulated proteins in the
necrotic pulp.

CHALLENGES OF PROTEOMICS-BASED
STUDIES IN PULP AND PERIRADICULAR
DISEASES

High-throughput proteomic methods are powerful screening
tools that provide opportunity to understand the protein function
and interaction networks (113). In spite of their advantages, it is
important to consider some of the technical challenges associated
with sampling, processing, and analysis of proteomics data in
pulp as well as periradicular tissues. Human clinical samples that
could be obtained from a small environment like the root canal
or the periapical exudate may not provide sufficient biomass for
processing in proteomics assays. Thus, in multiple proteomics-
based studies, root canal samples had to be pooled to be properly
analyzed (37, 60). Pooling of samples in proteomics has been
reported as a valid and potentially valuable procedure, however
some issues related to the experimental design should be taken
into consideration. The issues of pooling approach include: the
protein expression of some proteins in individual samples does
not match their expression in the pool; the biological variance
between pools is reduced compared with that between individual
samples resulting in potential reduction in the statistical power;
and proteins evident in individual samples may not always be
detectable in pooled samples due to dilution effect (114, 115).
The number of proteins identified could be affected by multiple
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factors; some proteins expression levels may not be enough
for detection, while highly abundant peptides may mask the
detection of low-abundance peptides (16). Detection of less
abundant proteins could be unfeasible, because, unlike DNA,
proteins cannot be amplified (116). Additionally, the principle of
parsimony adopted by the software used in some studies reduces
the occurrence of redundant sequences (37). Different protein
normalizationmethods could be applied to account for variations
during proteomics workflows (117).

Analysis of the exoproteome also presents some limitations.
For instance, in the study conducted by Alfenas et al. several
cytoplasmic proteins were detected, although its objective was
to evaluate the exoproteome (39). This might be attributed to
rupture of cells during the inflammatory process in response
to infection and cells that recently died and released their
protein content in the environment (especially in abscesses and
in samples taken after treatment), which are still considered as
part of the exoproteome if these proteins are stable and remain
in abundance. Remnants of necrotic pulp tissue in the canal
could also interfere with the detection of exoproteome per se. A
few proteins of bacterial subcellular origin were also identified
while no intentional attempt was made to lyse the bacterial cells
present in the sample (37). This could be due to autolyzed cells
or cell lysis caused by vortexing with glass beads, which was
performed to dislocate bacteria from the paper points following
sample collection. Further, sample collection and processing
including cryopulverization could result in lysis of some cells,
while taking samples with paper points canals might not provide
a good representative sample of the root canal system (118).
Cryogenic grinding generates a more representative sample, yet
it is only feasible for specimens obtained by tooth extraction or
periradicular surgery (38).

Inferences about host responses should be interpreted with
caution (3), especially in investigations that did not include
healthy controls of root apexes and periradicular tissues. Further,
apical periodontitis is a complex and dynamic disease and at
a given time, different stages of disease process (pathological
changes) can be observed throughout the pulp. The coronal part
could be necrotic due to bacterial invasion, while the radicular
pulp might remain non-inflamed, thus proteins related to both
necrotic and inflamed pulp could be detected simultaneously.
Likewise, components of both innate and adaptive immune
responses have been found to coexist in abscesses because they
often occur as acute exacerbation of previously chronic apical
periodontitis lesions (38). Proteomic profiling of different pulp
and periradicular conditions revealed differential expression
of proteins that are considered constitutively produced and
ideally should be unchanged such as beta-actin, glyceraldehyde-
3 phosphate dehydrogenase, macroglobulin, actin cytoplasmic,
cofilin, tubulin-α and -β (59, 60). Therefore, validation
experiments using quantitative methods such as real time-PCR
and western blotting analysis should avoid considering such
genes/proteins as reference when analyzing samples related to
pulp or periradicular diseases (59). Additionally, many proteins
could be found only in one of validation assays, possibly due
to different aliquots used in each identification method, thus
influencing the detection of proteins in low abundance.

Numerous important proteins have been identified through
proteomic analyses of periradicular tissues, nevertheless, the
diversity of proteins involved in periradicular abscesses may still
have been underestimated and further studies are required for
validation. Applying rigid filters, such as the 1% false discovery
rate, and filtering of data generated from Proteome Discoverer
may have contributed to a limited but more reliable protein
identification (119, 120). Quantitative assessment of identified
proteins was only carried out in 2 studies (59, 61), while only
one attempt has been made to correlate the size of periradicular
lesions or clinical signs/symptoms to the expression levels of
detected proteins in which no significant correlations were found
(58). This might be attributed to the low number of samples
and also because only one endodontic disease condition (post-
treatment endodontic disease) was investigated (58). Studying
the correlation between the expression levels of key proteins
and clinical signs/symptoms could give an insight about what
determines the extent of tissue damage in apical periodontitis.
Hence, more studies are warranted to expand the protein
database in different endodontic conditions.

CONCLUSIONS AND FUTURE
PERSPECTIVES

Identification of biomarkers in host reaction to invading
pathogens and subsequent tissue injury is an asset to comprehend
the pathogenesis of periradicular diseases. Proteomic-based
techniques provide relevant data on host tissue response in
various pathological conditions, allowing a broad view of
the host’s physiology, and the involved biological processes
through qualitative and quantitative protein expression profiles.
Recently, more studies have been conducted to evaluate the
host proteins expressed in response to endodontic infection
to identify the biological networks and signaling pathways
involved in disease resolution or progression. The cell-specific
proteins detected in samples obtained from different pulp
and periradicular lesions evidenced the range of cells that
take part in the response to endodontic infection in which
components of both innate and adaptive immune responses
function together. Proteins associated with tissue destruction
coexist with those maintaining homeostasis, as mechanisms of
protection in apical periodontitis.

Qualitative analysis using bottom-up approach represents
the most frequent analytical proteomic technique in endodontic
studies (38, 39, 58). However, quantitative analysis would
enable more insight on the potential disease/healing biomarkers
and help in setting the threshold of differential protein
expression in comparison to normal tissues. Quantitative
data would also allow correlation analysis to be conducted
between immunological and microbiological markers.
Performing validation assays, which is essential to verify
the differentially expressed proteins obtained from proteomics
analysis, is lacking in most proteomics-based clinical studies in
endodontics. Future studies could include more validation
experiments using antibody-based targeted assays, or
antibody-free methods in order to confirm the proteomics

Frontiers in Dental Medicine | www.frontiersin.org 9 February 2022 | Volume 3 | Article 814603

https://www.frontiersin.org/journals/dental-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/dental-medicine#articles


Hussein and Kishen Proteomics in Apical Periodontitis

findings. Recent rapid advances in MS-based proteomics
technologies allow the usage of powerful targeted MS-
based methods such as selected reaction monitoring (SRM)
and parallel reaction monitoring (PRM) in the verification
process (121).

Comprehensive knowledge of protein biomarkers and
expression profiles in different endodontic conditions would
allow clinicians to inform prognosis and provide treatment
with more predictable outcomes. It could also provide
researchers with more objective tools to investigate the
biological processes involved in periradicular disease and
their response to novel therapeutic interventions, which has
the potential to help in developing therapeutics targeting
certain cells/mediators customized to the patient’s lesion
condition. Specific protein expression profiles of different
sampling sites should be taken into consideration while
designing diagnostic tools based on proteomic markers.
Establishing predictor markers to monitor patient response
to treatment would be another interesting venue for
further investigations.
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