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Microbiome, alveolar bone, and
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the dots
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The oral microbiome (OM) is a diverse and dynamic collection of species,
separated from the alveolar bone by the oral mucosa. Pathogenic shifts in
the OM (dysbiosis) during periodontitis are associated with an inflammatory
response in the oral mucosa that drives alveolar bone resorption. The
alveolar bone is also affected by metabolic disorders such as osteoporosis.
Accumulating evidence has linked another microbial community, the gut
microbiome (GM), to systemic bone metabolism and osteoporosis.
Underlying this connection is the biological activity of metabolites,
byproducts of host and bacterial activity. Limited evidence also suggests that
metabolites in the oral cavity signal between the OM and immune system,
influencing both alveolar bone homeostasis and pathologic bone destruction
in periodontitis. While the oral cavity and gut are connected through the
gastrointestinal tract, dissimilar roles for known metabolites between these
two niches exemplify the difficulty in translating knowledge on gut-derived
metabolites and bone metabolism to the alveolar bone. Integrated
metabolomic, transcriptomic, and metagenomic approaches hold promise
for resolving these challenges and identifying novel metabolites that impact
alveolar bone health. Further interrogation through mechanistic testing in
pre-clinical models and carefully controlled clinical studies have the potential
to lead to the translation of these discoveries into meaningful therapies.
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Introduction

The human body is colonized by trillions of microbes (1). Recent advances,

including the Human Microbiome Project and the development of next-generation

sequencing technologies, have convincingly demonstrated that distinct microbial

communities colonize different body sites and interact with host cells to modulate

health and disease (2, 3). It is further established that maintenance of health requires

a state of homeostasis between the microbiome and immune system across different

body sites, also known as niches (4, 5). Two distinct niches, the gut and oral cavity,

are characterized by a complex relationship between the host and gut microbiome

(GM) and oral microbiome (OM), respectively (6, 7). Disturbances in these

homeostatic interactions drive dysbiosis and inflammation and are associated with
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several chronic diseases, including inflammatory bowel disease

(IBD), type 2 diabetes (T2D), obesity, metabolic syndrome,

osteoporosis, rheumatoid arthritis, Alzheimer’s disease,

periodontal disease, dental caries, and various cancers (8, 9).

The role of the OM in driving alveolar bone destruction is

well established (10), and the role for the GM in regulating

systemic bone health has become increasingly appreciated

(11, 12). Accordingly, the nature of the microbial-host

interrelationships that regulate bone metabolism in health and

disease are active areas of investigation.

The alveolar bone is the specialized portion of the mandible

and maxilla which houses, supports, and protects the root

structures of teeth (13). Formation and remodeling of alveolar

bone are shaped by local factors, such as the eruption of teeth

into the oral cavity and ongoing masticatory forces and

systemic regulation through hormonal and metabolic signaling

(14, 15). Distinct from other skeletal structures, alveolar bone

lies in close proximity to OM biofilms and undergoes

resorption during the course of periodontitis, a chronic and

widespread disease (16). The periodontitis-associated OM is

characterized by dysbiotic biofilms on tooth and root surfaces

containing several pathogenic species such as P. gingivalis,

Treponema denticola, Tannerella forsythia, and A.

actinomycetemcomitans (17). Concurrently, a heavy immune

cell infiltration is present in the gingiva, the oral mucosal

tissue surrounding the teeth, which drives osteoclast activity

in the underlying alveolar bone (18, 19). Diseases that affect

bone metabolism, such as osteoporosis, also affect alveolar

bone health (20). Thus, an interplay between OM, the

associated immune response, and local and systemic factors

affecting bone shape the pathogenesis of alveolar bone loss.
Metabolites, the currency of
bacterial-host crosstalk

Metabolites are the byproducts of microbial or host

metabolism specific to the environment, modulating health by

signaling to host cells and influencing bacterial community

interactions (21). Host amino acids (22) and byproducts from

glucose-related pathways (e.g., glycolysis and gluconeogenesis)

(23) and mitochondrial metabolism (e.g., tricarboxylic acid

cycle metabolites succinate, fumarate, and aconitate) (24) have

well-known roles in signaling within and between immune and

bone cell populations. Microbial metabolite production, best

characterized in the gut environment, is heavily driven by

dietary intake, with fermentation of complex carbohydrates and

proteins leading to production of short- and branched-chain

fatty acids, and metabolism of proteins and peptides producing

amines, phenols, and indoles from amino acids (25, 26).

Interactions between microbially-derived metabolites and host

cells are increasingly recognized as drivers of human health and

disease (21, 27). Extensive research in the gut has identified
Frontiers in Dental Medicine 02
roles for microbially derived metabolites, including secondary

bile acids, short-chain fatty acids (SCFAs), trimethylamine-N-

oxide (TMAO), polysaccharide A, 4-ethyl phenyl sulfate, and

catecholamines, in systemic diseases affecting bone (28–31). In

contrast, there is currently a narrower understanding of the

scope and nature of OM-derived metabolites and their role in

alveolar bone health (Figure 1).

The emerging field of metabolomics has enabled cataloging

of both well-known and novel metabolites using an array of

platforms and techniques (32). The number of metabolite

entries in the Human Metabolome Database, the most

comprehensive collection of human metabolites, has

burgeoned from 2,180 entries in 2007 to 217,920 annotated

metabolite entries and 1,581,537 unannotated entries (33).

These technological advances in unbiased metabolomics have

significant potential to (1) uncover the net biological activity

in the oral cavity, (2) expand our knowledge of the

pathogenesis of alveolar bone destruction beyond identifying

specific bacterial species, and (3) identify novel targets for

disease diagnosis, prognosis, and treatment.
Lessons learned from the gut
microbiome

The microbiome colonizing the human intestine, known as

the gut microbiome (GM), is the largest microbial niche in the

human body and comprises a complex ecosystem with

established roles in human health and disease (34). Initially

formed in utero or at birth, the GM rapidly develops between

ages 1–4 and continues to evolve in response to intrinsic and

environmental factors such as geographic location, gender,

diet, and antibiotic use (35). The intestinal mucosal

epithelium serves as the interface between the host and the

microbiome, controlling interactions through the coordinated

activities of mucus, epithelial cell junctions, immunoglobulin

A, antimicrobial peptides, and immune cells (36, 37).

Nutrients and metabolites also pass through this barrier to

interact with local cells or enter the circulation (38).

Bone remodeling and homeostasis are regulated by a

network of systemic hormones, including parathyroid

hormone (PTH), calcitonin, FGF23, 1,25-dihydroxyvitamin D3

(Vitamin D), and estrogen. The GM is considered an

endocrine organ (39) and animal models show that altering

or preventing GM development influences skeletal bone mass

and osteoclast activity (40–42). Gut microbes synthesize

vitamin K2 which stimulates osteoblast activity and is a

cofactor for post-translational modification of osteocalcin (12).

Disruption of the ecosystem with antibiotics inhibits vitamin

K2 synthesis and reduces bone quality (43). Enzymes secreted

by gut microbiota can metabolize or re-activate estrogen,

altering circulating or excreted levels (44). GM dysbiosis can

also mediate estrogen deficiency-related bone loss through
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FIGURE 1

A multitude of studies have explored the connections between the gut and/or oral microbiomes, the host immune system, and bone cells (i.e.,
osteoblasts, osteocytes, and osteoclasts). Recent work suggests that metabolites are key signaling factors in these pathways (represented by
black bidirectional arrows), acting directly or indirectly (i.e. via the immune system – gray dashed arrow) to influence pathologic bone disorders
like osteoporosis. A significant challenge is translating knowledge gained from studies of the gut and osteoporosis to the oral cavity to
understand if metabolites play similar or distinct roles in the metabolism of alveolar bone. Underlying this challenge are differences in mucosal
barrier structures, microbiome populations, and immune cells between the gut and oral mucosa. Figure created with BioRender.com.
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increases in mucosal permeability, immune cell numbers, and

inflammatory cytokines (45, 46).

The GM can enable serotonin production by

enterochromaffin cells (47) and deconjugate bile acid

compounds and further metabolize them to secondary bile

acids such as lithocholic and deoxycholic acid (48). Gut-

derived serotonin may inhibit bone formation (49) and

lithocholic acid can bind vitamin D receptor (VDR), leading

to inactivation of vitamin D and decreased intestinal calcium

absorption (50). Bile acids can also signal enteroendocrine

cells to release GLP-1 which promotes bone formation and

inhibits bone resorption (51). Hydrogen sulfide (H2S) is

produced by gastrointestinal cells and the GM (52). Loss of

H2S results in osteopenia in mice (53) and administration of

an H2S donating compound in ovariectomy-treated mice

improves bone formation (54).

Emerging evidence points to gut-derived short-chain fatty

acids (SCFAs) as modulators of systemic health and bone

maintenance [see reviews (11, 12, 55, 56)]. In brief, SCFAs,

including butyrate, propionate, and acetate, are primarily

produced by microbial fermentation of non-digestible

polysaccharides and are rapidly absorbed through the

intestinal mucosa, acting as a source of energy for both host

and microbiota (56). While SCFAs can directly suppress
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osteoclast activity and promote osteoblast differentiation

(57, 58), signaling between SCFA and endocrine organs or

immune cells may underlie the connection between GM and

bone. Gut microbial colonization or SCFA supplementation is

associated with the production of insulin-like growth factor 1

(IFG-1), an important hormone for skeletal growth and bone

mass maintenance (59). SCFAs, including butyrate, promote

proliferation and differentiation of regulatory T cells (Treg)

(60) which may reduce bone absorption by interfering with

osteoclast development and activity (61). Butyrate can increase

Treg numbers in the intestine and bone marrow which signals

to CD8+ T cells to produce WNT10b, a bone anabolic

signaling factor (62). Butyrate produced by GM may also

regulate PTH-mediated bone formation through signaling in

dendritic cells and Tregs (63).

Probiotics have been widely studied as a means to target

osteoporosis via manipulation of the GM (64). A clinical

study showed Lactobaciillus reuteri probiotics increased BMD

and elevated butyrylcarnitine, which can act as a pool and

transporter of butyrate (65). Prebiotics are non-digestible

oligosaccharides that are selectively fermented in the colon

and support the growth of specific bacterial species. Positive

results for prebiotics in animal models, including increased

calcium absorption and improved BMD and bone strength,
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have been primarily attributed to fermentation of prebiotics to

SCFAs by GM (66). Clinical trials have further indicated that

prebiotics can increase intestinal calcium absorption (67).

Altogether, the GM plays a critical role in regulating

systemic bone metabolism, in part, through production of

metabolites. GM-derived metabolites act both locally and

systemically on host cells to drive immune responses that

shape bone metabolism. Improved understanding of GM

metabolites and their role in shaping bone health have led to

development of therapeutic interventions, including probiotics

and prebiotics, suggesting that probing the connection

between the oral cavity and gut and identifying similar

pathways in the oral cavity has promise for improving

alveolar bone health.
The oral-gut-bone connection

Ingested saliva, food, and drink directly connect the OM

and GM (68, 69). Patients with conditions characterized by

GM inflammation and dysbiosis, such as inflammatory bowel

disease, have an altered OM, increased numbers of OM-

derived species in the gut, and higher rates of periodontitis

(70, 71). Studies in mice suggest that ingested OM bacteria

can reach the gut and induce an inflammatory immune

response (72), and immune cells exposed to OM can reach

the gut to interact with OM-derived gut microbes (73). Gut

colonization with specific bacterial species can also influence

T cell development in alveolar bone marrow and increase

alveolar bone osteoclast activity, further illustrating the

potential bidirectional mechanisms whereby microbial

populations in both gut and oral cavity can help disrupt or

maintain bone homeostasis (74).

Studies probing the oral-gut connection have shown that

administering oral P. gingivalis modifies the GM and alters

serum and gut metabolite profiles (75, 76), including

increasing gut lactic acid and reducing succinic acid and

butyrate levels (77). Additional evidence connecting GM,

metabolites, and alveolar bone has been provided by animal

studies of probiotic administration or diet alterations. In

ovariectomized rats, probiotics increased levels of butyrate-

producing GM and reduced osteoclast and Th17 cell numbers

while increasing Treg cells and minimizing maxillary bone

loss during ligature-induced periodontitis (78).

Transplantation of fecal contents from high fat diet (HFD)

obese mice altered host GM and gut and serum metabolite

compositions with little change in the OM while increasing

Th17 cells in submandibular and mesenteric lymph nodes and

aggravating alveolar bone loss in experimental periodontitis

(79). One metabolite of purine degradation, uric acid, was

increased in serum with HFD fecal transplant and induction

of periodontitis, and administration of allopurinol suppressed

alveolar bone destruction in uremic mice (79).
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Overall, these findings lend support to the concept that oral

health is connected to systemic health and highlight distinct

molecular pathways connecting the gut and oral microbiomes

and the immune system through metabolites. Whether such

mechanisms identified in mouse models can be translated to

meaningful interventions in humans is still unknown.

Nevertheless, such studies provide further motivation for

studying the role of metabolites in bone health and, in

particular, within the oral niche.
Oral metabolites and alveolar bone

The oral cavity is rich in byproducts of host and OM

metabolism (80). Saliva and gingival crevicular fluid (GCF)

show distinct profiles of metabolite compositions between

health and periodontitis (81–83) with clinical studies showing

specific associations between periodontitis and increased levels

of arachidonic acid, purine, pyrimidine, glutathione, and

amino acid metabolites (84–87). Accordingly, various

metabolites have been explored as predictors of gingival

inflammation or periodontitis (88) or as factors that regulate

the disruption or maintenance of the gingival epithelial

barrier (junctional epithelium) (89). However, clear evidence

is lacking for how specific metabolites or metabolic pathways

act to help maintain alveolar bone in oral health or aggravate

bone destruction during periodontitis.

Existing studies on oral metabolites and alveolar bone have

focused on butyrate, and contrary to the gut, have ascribed it a

pathogenic role in periodontitis (Figure 2). This distinction

may be due to several factors, including differences in butyrate

concentrations, mucosal tissue structure, and microbial

populations between GM and OM environments (90, 91).

Periodontitis-associated oral bacteria, P. gingivalis and F.

nucleatum, produce butyrate (92). Further, butyrate can

stimulate heme production which supports the growth of

periodontal pathogens like P. gingivalis (90). Butyrate

concentrations in periodontal pockets can reach up to 14 mM

(93) with levels correlating to periodontal disease severity (94)

and decreasing in GCF after periodontal treatment (95). While

butyrate levels may be similar or higher in the colon compared

to the oral cavity, a much lower concentration may actually

reach colonic epithelial cells after penetrating through the thick

colon mucous layer (96). A recent animal study found that

butyrate could disrupt the periodontal junctional epithelial

barrier (97). This finding, coupled with in vitro studies showing

a negative effect of butyrate on different oral cell types (90, 91),

and in particular, epithelial cells (98), suggests that differences

in the mucosal barrier anatomy between the gut and

periodontal tissues could account for some of the opposing

effects of butyrate on alveolar vs. other bone sites.

Conceivably, OM-derived butyrate and other SCFAs signal

to immune, epithelial, and stromal cells in periodontal tissues
frontiersin.org
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FIGURE 2

Graphical summary of evidence for butyrate’s role in periodontitis. Periodontitis-associated bacteria found within the OM (e.g., P. gingivalis and F.
nucleatum) produce butyrate, which in turn can support their growth. Clinical studies have shown an association between butyrate levels and
periodontitis and found that butyrate levels decrease after periodontal treatment. Experimental studies indicate butyrate may disrupt the
junctional epithelial barrier and can signal to immune and bone cells. However, the exact mechanisms connecting butyrate and its possible
biologic effects to periodontitis and alveolar bone are still unknown. Figure created with BioRender.com.
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which could then interact with osteoblasts and osteoclasts.

SCFAs appear to affect the ability of neutrophils to respond

to the periodontal pathogen A. actinomycetemcomitans (99).

Mice deficient in the SCFA receptor FFAR2 showed increased

alveolar bone loss and decreased maxillary bone density, with

the latter partially rescued by a high fiber diet (100). While

osteoclasts derived from FFAR2-deficient mice showed

increased in vitro differentiation, the only SCFA that could

inhibit this activity was butyrate, indicating that butyrate

acted independently of the FFAR2 receptor.

Clearly, further work is needed to identify how metabolites

beyond SCFAs affect alveolar bone and to better understand how

butyrate and other metabolites modulate alveolar bone metabolism

through the oral mucosal immune response to OM biofilms.

Additional questions inspired by the role of GM metabolites in

bone health may provide insight. Do metabolites produced in the

oral cavity act on the oral mucosal immune system similar to how

the GM indirectly influences bone health? Do differences or

similarities between the oral and gut niches underly the impact of

oral metabolites on the alveolar bone? Answers to these and other

questions, aided by advances in scientific techniques, may provide

new options for diagnosing, treating, or preventing periodontitis

and the associated loss of alveolar bone.
The path forward

The bulk of studies on periodontitis and alveolar bone thus

far continue to focus on OM characterization through either

16S or whole genome shotgun sequencing approaches and

interrogating the host immune response. Work investigating

the biologically active small compounds that determine the

net functional activity in the oral environment remains scarce.

However, such investigations are beginning to emerge,
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enabled by technological advances in metabolomics. Indeed,

recent studies have demonstrated that combining

metabolomics with transcriptomics, 16S DNA genomics, and

other unbiased techniques has potential for identifying new

molecular pathways and therapeutic targets for periodontitis

and alveolar bone loss (101–103).

In parallel, rigorous studies are required for determining the

mechanisms behind oral metabolites and alveolar bone. The

majority of existing studies on oral metabolites utilize in vitro

models of homogeneous cells and/or bacterial populations.

Such approaches have significant limitations in their ability to

recapitulate the complex environment of subgingival biofilms,

oral mucosal tissues, and underlying alveolar bone. Thus,

carefully controlled animal studies should be designed to

investigate the mechanisms behind host and bacterial

metabolites and alveolar bone health.

The translation of findings on known or novel oral

metabolites to effective therapies for maintaining alveolar

bone face specific challenges in study design and analysis.

Characterization and validation of possible targets for therapy

will entail clinical studies with rigorous study design, careful

cohort stratification, and inclusion and exclusion criteria to

ensure application and reproducibility. Data integration and

analysis with multi-omics approaches is challenging due to

heterogeneity in the data format from each -omics

technologies, discrepancies in annotation, and non-uniform

missing data from different data. Additionally, the

computational complexity and lack of standardization for

analytical and bioinformatic pipelines may hinder

reproducibility across studies. Thus, the introduction of

standardized protocols for clinical studies and computational

approaches, along with techniques to accommodate for data

heterogeneity and missing data, are critical for the success of

future work. With these tools in hand, an integrative multi-
frontiersin.org
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omics approach combining metabolomics, metagenomics,

transcriptomics, and other -omics techniques may be able to

resolve the interconnected roles of the OM and immune

response in alveolar bone health and disease.
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