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Dental erosion continues to be a significant global health concern affecting nearly
30% of adults worldwide. With increasing soft drink consumption predominantly
driving its prevalence, strategies for preventionandcontrol areoften implemented
when erosion is severe, or rates are high in the populace. While factors affecting
dental erosion such as pH on enamel have received much attention, the effect
of dietary acid concentration when factored out to a commercially available pH
has yet to be determined. Furthermore, understanding these effects on dentine,
which is known to be more susceptible to erosion than enamel can unravel
structure-property relationships between acid characteristics and hard tissue
types. This study aimed to develop structure-property relationships between
dietary acid concentration, and pH, on the nano-textural and nano-mechanical
properties of human enamel and dentine during short-term simulated drinking.
To achieve this, a novel sample preparation methodology and analysis approach
was developed by applying atomic force microscopy (AFM) in quantitative
imaging mode. This enabled simultaneous measurement of enamel and
dentine morphology and mechanical properties. Flow-cells were used to
simulate drinking, exposing polished and smear layer-free human enamel and
dentine to 30 s repeated cycles of unbuffered citric acid 6% (pH= 1.88) and 1%
(w/v) (pH= 2.55) and commercially available buffered pH= 3.8 states, for up to
180 s. The same 50 µm×50 µm area of specimen morphology was analysed
using in-house developed nanotextural analysis using the bearing area curve
(BAC) with a focus on roughness (Ra), normalised peak (PA) and valley areas (VA).
Mechanical properties were simultaneously measured for stiffness (N/m) after
each 30 s. While all studies agree pH is a major factor in the erosion of enamel,
here its dominance over the treatment time varied, with concentration
surpassing the importance of pH after initial acid contact. Conversely, dentine
erosion showed concentration-dependent changes in morpho-mechanical
properties only. These results not only highlight the dynamic process of erosion
but also how the interplay between acid characteristics and dental tissue type
impacts the progression of very early-stage erosion.
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Introduction

Dental erosion continues to be a significant global health

concern with up to 29% of young adults (18–35-year-olds)

exhibiting some erosion, of which 3% show severe erosion

(1–4). While the causes of erosion are multifactorial, the

consumption of fruit juices and carbonated soft drinks is

particularly significant due their acidic pH; this leads to

demineralisation of first the enamel, and eventually the

dentine (5). Many laboratory studies have been conducted

with the aim of better understanding the effect of acids on

these mineralised tissues, but these studies tend to focus

observations on either enamel (6–16) or dentine in isolation

(17–26), with very few focussing on erosion of both tissues

under the same conditions (27–32).

The application of remineralising agents such as fluoride in

toothpastes (33–35) and in water sources (36, 37) have provided

a moderate reduction in erosive wear in populations (38–40);

Government guidelines even provide public health (41) advice

on the condition and method of drinking, such as reducing

the temperature of erosive drinks, and encouraging the use of

straws (42). However, rates remain high. Identifying structure-

property relationships between dietary acid characteristics and

erosive wear has received much attention. The erosive severity

of dietary acids based on; pH (29, 43–45), titratable acidity

(44, 46), buffering capacity (15, 47), undissociated acid

concentration (48, 49), acid dissociation constants (50–52),

acid concentration (7), and phosphate/carbonate contents (45,

53) have highlighted their dynamic impact on dental erosion.

Reduction in acid pH and increases in acid concentration

have increased erosion on dental hard tissues (7, 15, 27, 29,

31, 44–46, 49–52) while improving buffering properties have

shown a significant reduction in erosive severity (43, 45, 47–

49, 54). While these studies have shown the impact of varying

solution properties on erosion studies have applied varying

degrees of erosive severity, experimental approaches, and have

not approached their research questions from a dietary

perspective. For example, the impact of drink properties such

as concentration and pH of those found in commercially

available products.

From the literature, four major problems in understanding

the effect of dietary acid erosion on dental hard tissues have

been identified. Firstly, as off-the-shelf products tend to have

various acid concentrations and pH (45, 53, 55), the effects of

pH and concentration on erosion are often convoluted. These

can be deconvoluted by analysing the effect of unbuffered and

buffered acids of similar concentrations. Secondly, a better

understanding can be achieved by focusing on the dental

erosion at the nanoscale, in combination with time-resolved,

in situ acid exposure, as very early changes can be detected,

sequentially, on the same area. Thirdly, traditional

measurements are based on roughness (13, 56–62),
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step-height changes (63–65) and hardness (54, 66–69), all of

which are limited by the detection method and do not

translate well for dentine compared to enamel (70). Utilising

more complex surface analysis methods designed for multi-

stratified surfaces can provide a more meaningful measure of

surface features, such as the bearing area curve analysis (71–

73). Finally, with enamel being the focus of dental erosion

studies as it is normally the first structure to be attacked by

acids, the morpho-mechanical analysis of dentine erosion has

received less attention. Most studies that have focused on

dentine erosion have approached experiments from an

endodontic perspective (74–78), in which root dentine

specimens are exposed to high concentrations of various acids

or chelates, revealing the extremes of eroded morphology to

enhance bonding procedures (79–81).

To overcome these problems, this study aimed to

deconvolute the effect of dietary acid pH and concentration

on human enamel and dentine erosion. This was conducted

to identify the effect of acid concentration when pH is

factored out to a typical, commercially available pH (pH =

3.8) (82), highlighting the impact of these 2 variables on

erosive severity. To understand this effect in greater detail,

novel advanced nanoscale techniques with complex textural

surface and mechanical analysis, combined with a simulated

drinking model during short-term repeated exposures have

been applied.
Methods

Sample preparation

Enamel and dentine specimens (n = 25 per dental tissue

type) were cut from healthy enamel and dentine taken from

40 erupted human 3rd molars in the occlusal plane, using a

water-cooled diamond saw (Skilldent, Skillbond UK), to

produce 0.5 mm3 sections. This was conducted in accordance

with local and national rules dictated by Newcastle University

Biomedicine Biobank, and fully anonymised in compliance

with the ethical and legal framework of the Human Tissue

Act (HTA) of 2004. Each section was embedded in polyester

resin (Sigma-Aldrich, UK) and was cut out using the water-

cooled diamond saw to produce 0.75 mm3 embedded sections

for polishing. Specimens were then polished perpendicular to

the buccal surface using 1,200 grit silicon carbide paper

(Norton, Northants, UK) to reach the embedded mineralised

surface. This was then followed by 1 µm, 0.3 µm and 0.05 µm

aluminium oxide solutions (BUEHLER®, Illinois, USA) in

sequence (BUEHLER® Metaserv Twin Polisher, Illinois, USA).

This enabled approximately 0.05 mm to be removed from the

initial enamel and dentine surface providing consistency in

section depth, allowing a 0.5 mm2 2-dimensional hard tissue

surface for acid exposure. Each section was then
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ultrasonicated (Langford Electronics Ltd, UK) in Chloramine-T

(1% w/v) (Sigma-Aldrich, UK) at 4°C and transferred to fresh

Chloramine-T (1% w/v) solutions and stored at 4°C before use.
Dietary acid solutions

Citric acid solutions of concentrations 1% (w/v) and 6% (w/v)

were produced by diluting citric acid (Sigma-Aldrich, UK) in

distilled water. The solution pH was measured using a pH meter

(Orion 4 Star, Thermo Electron Ltd, Massachusetts, USA) at

room temperature (22°C). Next these solutions were divided in

half and one half was buffered to pH= 3.8 by adding 1 M

NaOH (Sigma) to the solution. All acidic solutions were freshly

made on the day of analysis. The polished enamel and dentine

sections were then randomly divided into five study groups

containing five specimens each for each acid solution. Group 1

and 2 specimens were exposed to citric acid 6% (w/v) pH = 1.88

and citric acid 1% (w/v) pH = 2.55. Group 3 and 4 specimens

were exposed to citric acid 6% (w/v) and citric acid 1% (w/v)

both at pH = 3.8. Group 5 specimens were exposed to a control

solution consisting of Dulbecco’s phosphate-buffered saline

(PBS) (pH 7.20)(Lonza, BioWhittaker®).
In-vitro Simulated Drinking Model

Specimens were attached to a circular glass coverslip

(AGL46R13-1, Agar Scientific, Essex, UK) using 2-part

curable adhesive (Araldite Instant, Huntsman Advanced

Materials, UK) and placed individually into an AFM flow-cell

(JPK Instruments, Bruker, FR). 1 ml of PBS solution was

injected into the flow-cell for baseline analysis. 1 ml of dietary

acid solutions was then injected, left for 30 s, and then eluted

using a 1 ml syringe (Terumo HT-SLWC-0R2W 1 ml Syringe,

Tokyo, JP), washed twice with fresh PBS and further replaced

with PBS for analysis to stop the erosive process. This

continued, performing quantitative imaging analysis after each

30 s interval under PBS hydrated conditions until each

specimen experienced a total of 180 s acid exposure.
AFM imaging, textural and mechanical
analysis

AFM imaging and mechanical analysis were performed

using a Nanowizard 3 AFM (JPK Instruments, Bruker, FR),

operating in quantitative imaging mode (QI™), using gold

coated non-conductive silicon nitride cantilevers (NP-10,

Bruker, Camarillo CA, USA). AFM cantilever spring

constant calibration was performed using the in-built

software calibration procedure for all probes providing an

average spring constant of 0.204 ± 0.107 N/m. All
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quantitative images were obtained at a resolution of 256 ×

256 and scans were performed over the same 50 µm × 50 µm

areas after each acid exposure in PBS. Average roughness

(Ra) was measured using integrated JPK software. Bearing

area curves (BAC) were calculated by extracting two-

dimensional line traces at 12.5 µm, 25 µm and 37.5 µm in

both the x- and y-direction from each topographic image

and importing them into using in house developed Visual

Basic® code. From this code the BAC parameter peak area

(PA) (area occupied by material peaks) and valley area (VA)

(area occupied by material voids) were calculated within

defined regions each BAC (67). Stiffness (N/m) was extracted

from resulting force distance curves from each pixel in the

256 × 256 quantitative image using dedicated software (JPK

Data Processing Software).
Statistical analysis

Average roughness (Ra), peak area (PA), valley area (VA)

and stiffness were all found to be non-normally distributed, so

non-parametric statistics were used for analysis. Statistically

significant differences in all analysed parameters for each acid

sub-group and exposure time were conducted by Kruskal-

Wallis test (P < 0.001). A post-hoc Tukey’s test was used to

identify significant differences between acid pH,

concentration, any interaction between pH and concentration,

and the control specimens. Medians with interquartile ranges

were used to identify statistically significant differences at a

95% confidence level. As the specimens were derived from

different human donors there were some baseline variations

in the PA, VA and stiffness. Consequently, we normalised

these data to the value measured for each specimen before

they were exposed to an acid solution, t = 0 s.
Results

Typical topography images for enamel specimens treated

with each solution are shown in Figure 1, with the stiffness

maps for these enamel specimens in Figure 2. Likewise,

typical topography and stiffness images for dentine specimens

treated with each solution are shown in Figures 3, 4,

respectively. Quantitative roughness, normalised peak and

valley area and normalised stiffness data are plotted as a

function of exposure time with enamel shown in Figures 5A,

C,E,G and dentine shown in Figures 5B,D,F,H respectively.
Enamel erosion

For enamel specimens treated with PBS there were no

obvious changes in morphology over the 180 s of exposure
frontiersin.org
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FIGURE 1

Showing example topographic AFM imaging of human enamel exposed to all dietary solutions (top) throughout the exposure regime starting from
0 s (top) to 180 s (bottom) at 30 s intervals.
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while there are clear changes evident for all acid-treated samples

shown in Figure 1. When comparing the morphological changes

with respect to acid concentration and pH, surface changes

occur faster with enamel prisms becoming obvious sooner as

acid concentration increases, and pH of the solution decreases.

The solution pH significantly affected roughness at each

time point (P < 0.001) with the 6% pH = 1.88 solution

producing the greatest increase in roughness, significantly so

when compared to PBS treatment (P < 0.05), Figure 5A. Acid

concentration also significantly affected roughness, with the

6% solutions always producing greater roughening than the

1% solutions (P < 0.001) at either pH. There was significant

interaction between pH and concentration on the increase in

roughness due to exposure to the solutions (P < 0.001).

The PA and VA results further clarify the effect of acid pH

and concentration on enamel erosion, shown in Figures 5C,E.

Specimens treated with either citric acid 6% pH= 1.88 and 1%

pH= 2.55 showed a steep rise in PA up to 60 s, after which the

PA for the 6% pH= 1.88 plateaued while the 1% pH= 2.55

continued to rise, to a higher value, until 90 s of exposure. No

significant rise in PA was seen for the 1% pH= 3.8 treated

specimens, which corresponds to the lack of distinct prismatic

structure visible in the topography images shown in Figure 1.
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However, 6% pH= 3.8 citric acid-treated specimens showed a

different PA behaviour, with a rise in PA, corresponding with

the appearance of enamel prisms, seen after 90 s exposure.

Similar behaviour was seen for the VA data, with the 6% citric

acid pH= 1.88 producing the greatest increase in this parameter

up to 90 s, after which there was a decrease. For the 1% pH =

2.55 and the 6% pH = 3.8 acid treated specimens VA increased

over the full 180 s, while the 1% pH= 3.8 acid led to a plateau

in VA after 60 s of exposure. As PA and VA both show how

the enamel erosion results in the formation of peaks and

valleys within the prisms, by using these BAC-derived textural

parameters it is possible to elucidate the more complex

relationships in enamel erosion between acid concentration and

pH than using Ra alone.

Treatment with PBS resulted in no change in stiffness

shown in Figures 2, 5D (P > 0.05), while clear changes were

obvious when any of the acid solutions were used. The

stiffness images showed that the changes in stiffness were

associated with the appearance of the enamel prisms.

Treatment with citric acid 6% pH = 1.88 and 1% pH = 2.55

acid solutions led to a similar reduction in stiffness, with an

initial rapid decrease found after 30 s exposure, followed by a

much slower decrease for the remaining 180 s, shown in
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FIGURE 2

Showing example stiffness AFM mapping of human enamel exposed to all dietary solutions (top) throughout the exposure regime starting from 0 s
(top) to 180 s (bottom) at 30 s intervals.
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Figure 5G. Interestingly, a greater reduction in stiffness was

observed on specimens exposed to 1% buffered acid when

compared to 6% buffered acid.
Dentine erosion

Like that found for enamel there was no obvious effect on

the dentine specimens due to exposure to PBS, shown in

Figures 3, 4. While the specimen preparation method resulted

in exposed dentinal tubules, confirming we were not testing

enamel in the early time periods of this experiment, the

overall appearance and stiffness of the PBS-treated specimens

remained the same. In contrast, treating the dentine

specimens with any of the acidic solutions for 30 s led to

appreciable tubule widening compared to the baseline, t = 0 s,

images. After 30 s of exposure no clear differences in the

topography image was seen for any of the acid solution groups.

The tubular structure of the dentine surface made the

roughness measurement insensitive to any differences in

erosion due to either pH or concentration. In general, the

overall behaviour for each acid solution was the same with an

increase in Ra up to 90 s followed by a plateau, with no
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significant effect due to differences in pH (P > 0.05) or

concertation (P = 0.166).

No significant change in PA was measured for specimens

exposed to any of the acidic solutions, shown in Figure 5D.

VA analysis shown Figure 5F, showed that dentine exposed

to citric acid 6% pH = 1.88 and 1% pH = 2.55 exhibited the

greatest change while specimens exposed to the pH = 3.8 acids

showed a more progressive increase in normalised VA across

the treatment regime compared to pH = 1.88 and pH = 2.55

exposed specimens, also increasing with concentration. The

fact that roughness and PA were insensitive to the effects of

acid exposure while VA showed some differences in behaviour

highlights the difference in behaviour seen between enamel

and dentine. Acid exposure resulted in the exposure of the

enamel prisms which eroded more towards the prism centre

than the edge, certainly at early exposure times, meaning that

roughness data was composed of both material peaks and

valleys. Dentine eroded differently, with only tubule widening

seen, which corresponded to the roughness data only

comprising material valleys.

The change in dentine stiffness due to exposure to the

different acid solutions shown in Figure 5H, clearly

demonstrated that both pH and concentration were significant
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https://doi.org/10.3389/fdmed.2022.1040565
https://www.frontiersin.org/journals/dental-medicine
https://www.frontiersin.org/


FIGURE 3

Showing example topographic AFM imaging of human dentine exposed to all dietary solutions (top) throughout the exposure regime starting from
0 s (top) to 180 s (bottom) at 30 s intervals.
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factors. Treatment with the citric acid 1% pH = 3.8 solution

resulted in the lowest reduction in stiffness after 180 s, while

the 6% solution, at the same pH, caused significantly more

reduction in stiffness (P < 0.05) at times after 120 s of

exposure. Both citric acid 6% pH = 1.88 and 1% pH = 2.55

acid solutions, despite having different pHs, produced

identical behaviour in the stiffness, both producing

significantly more reduction in stiffness than either pH = 3.8

acid solution.
Discussion

Applying nanoscale textural and mechanical analysis

enabled the effect of dietary acid pH and concentration on

human enamel and dentine during short-term dietary acid

exposure to be explored. While all studies agree pH is a major

factor in the erosion of enamel (7, 29, 44, 45, 83–92), here its

dominance over the treatment time varied, with acid

concentration surpassing the importance of pH after initial

acid contact. Conversely, dentine erosion showed

concentration-dependent changes in morpho-mechanical

properties only. These results not only highlight the dynamic
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process of erosion, but how the interplay between acid

characteristics and dental tissue type impact the progression

of very early-stage erosion.

Dietary acids are predominantly carboxylic and once in

solution their dissociated ionic components play different

roles in the erosive process (29). Mineral destabilisation of

biological hydroxyapatite (bHAP) occurs through protonation

(H+) of carbonate and phosphate groups of the crystal lattice,

termed direct acid attack (93). This weakens the coordination

of the surrounding calcium ion (49, 94) where the anionic

component (R-COO−) subsequently adheres and decalcifies

bHAP by chelation (50, 94, 95) through the adhesion-

decalcification concept (93). For citric acid both mechanisms

of erosion are known to occur on separate territories of bHAP

at the Nernst layer (48, 49) i.e., the acid – enamel or dentine

interface, which is static, and diffusion controlled (94).

Additionally, undissociated acid (inactive acid) can diffuse

into bHAP, acting as a mobile carrier for dissociation in

enamel and dentine’s water content (93). Further direct acid

attack and chelation occur here in the subsurface as a high

concentration of dissociated ions at the mineralisation front

are maintained, termed subsurface erosion (48, 93). Buffering

dietary acids to match the typical pH of commercially
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FIGURE 4

Showing example stiffness AFM mapping of human dentine exposed to all dietary solutions (top) throughout the exposure regime starting from 0 s
(top) to 180 s (bottom) at 30 s intervals.
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available fruit juices (pH = 3.8) reduces phosphate and

carbonate group dissociation on the bHAP crystal lattice via

direct acid attack (49) creating a higher diffusion gradient for

subsurface erosion at the Nernst layer (49). As buffered citric

acid approaches its pKa value (96), subsurface erosion is

postulated to dominate the erosive activity.

Previous enamel erosion investigations have shown

concentration-dependent mineral loss (27, 97, 98) with before

and after dietary acid challenges showing increases in the

prevalence of key-hole structures (61, 99–101), roughness (53,

56, 58, 102, 103), BAC parameters (73, 103), and reduction in

mechanical properties (49, 69, 94, 104–106). Only one study

has monitored increases in roughness during consecutive

citric acid exposure of enamel on the same area using AFM

(61). The study used relatively long-term treatment times (90–

250 min) with no mechanical analysis or simulated drinking.

Profilometric studies into short-term dietary acid enamel

erosion have determined increases in BAC parameters (73),

although again, the effects of pH and concentration were not

deconvoluted.

Buffering dietary acids to a commercially relevant pH = 3.8

still enables dissolution of enamel surfaces (105) as it is far lower
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than the critical dissolution pH. For enamel, we propose

buffering dietary acids to pH = 3.8 while maintaining the

same concentration causes subsurface erosion to dominate the

erosive process, as opposed to pH-driven direct acid attack.

This is evident in pH = 3.8 acid exposed enamels delayed

increases in roughness, BAC derived normalised PA, VA, and

normalised stiffness reduction, compared to citric 6% pH =

1.88 and 1% pH = 2.55 acid exposed enamel, at the same

concentration, shown in Figures 1, 5A,C,E,G. Citric 6% pH =

1.88 and 1% pH = 2.55 acid exposed enamel erosion was

dominated by pH during initial exposure (30–90 s), causing

saturation at the Nernst layer thereafter (94). At later

exposure times (90–180 s) subsurface erosion dominates the

morpho-mechanical changes of enamel.

Most research into dentine erosion has been applied from

an endodontic perspective (74, 77, 107–111) using high

concentrations of citric (92, 97), phosphoric (97), nitric (112)

and lactic acids (92, 113), generating a rough surface to

enhance bonding procedures. Here, dentine exhibited a very

different trend in morpho-mechanical properties during

erosion compared to enamel. The effect of tissue structure,

organic components, ratio and microphase separation of the
frontiersin.org
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FIGURE 5

Showing median and interquartile ranges of n = 25 human enamel (left) and n= 25 dentine (right) exposed to all dietary solutions with (A,B) showing
roughness (nm), (C,D) normalised peak area, (E,F) normalised valley area and (G,H) normalised stiffness. A post-hoc Tukeys test was used to identify
statistically significant differences (P < 0.05).

Pattem et al. 10.3389/fdmed.2022.1040565
mineral phases (intratubular and peritubular dentine) must be

considered when comparing the erosive characteristics of

enamel and dentine. These structures have enabled them to

function for specific roles, with enamel providing a hard

surface for mastication (114) and dentine withstanding

compression (115). While both substrates can be regarded as
Frontiers in Dental Medicine 08
polymer reinforced composites, their degrees of mineral and

organic constituents vary according to their associated roles.

Historically, dentine has been regarded as more susceptible to

erosion than enamel, as dissolution of its mineral component

occurs at a higher pH (pH = 6.3 compared to enamel’s pH =

5.5) (116). Moreover, dentine’s carbonate content is greater in
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peritubular compared to intertubular dentine (117) increasing

its susceptibility to direct acid attack (92, 112). This is evident

by the immediate increase in observable tubule diameter and

quantitative valley area analysis for all acid exposed dentine

specimens shown in Figures 3, 5E respectively. After a certain

depth of mineral is removed by demineralisation, mineral loss

has been shown to significantly decrease (17, 19) and, in the

absences of a collagen matrix, the rate of dissolution is

markedly higher (17, 118). The surrounding liquid phase

protects the mineral components even further, as collagen

provides a buffering effect to increase the local pH (119, 120).

De-bound mineral is prevented from immediate removal,

increasing calcium and phosphate saturation at the Nernst-

layer (48). This protective effect of collagen, preventing

substantial erosion is a vital aspect in overall tooth protection

from acid erosion. Here, increased acid concentration was

found to remove peritubular dentine and cause exposure and

subsequent collapse of the extra cellular collagen matrix faster

than that of 1% citric acid solutions. This subsequently

limited the changes of roughness, BAC derived normalised PA

and VA and normalised stiffness measurements thereafter.

The collapse of the collagen matrix was found to play a

significant role in the prevention of further changes in

roughness and BAC derived parameters after the erosion of

peritubular dentine. While erosion of peritubular dentine

created significant changes in morphological parameters after

initial exposure treatment, plateaux’s were obtained after

complete peritubular dentine removal. Intertubular dentine

was postulated to protect any further demineralisation, as no

changes in roughness and BACs were obtained. This occurred

at a shorter exposure time for 6% citric acid exposed

specimens (30 s), while 1% acid exposed specimens exhibited

this at 60–90 s treatment in either pH = 2.55 or pH = 3.8

states. The stiffness of dentine erosion was shown to reflect a

similar trend to that of the morphological parameters.

Increased acid concentration exposed specimens yielded the

largest reductions in stiffness over the exposure time. Again,

the collapse of the collagen matrix was found to play a

significant role in the prevention of further changes in

stiffness after the erosion of peritubular dentine. This

occurred at 30 s for 6% acid exposed dentine, while 1%

exposed specimens plateaued at 60–90 s, previously un-

reported.

Fundamental differences in enamel and dentine’s mineral

phase (106, 121–125) and proteinaceous material (121, 122,

126–128) give rise to these qualitative and quantitative

differences in morphological and mechanical properties upon

demineralisation. While carbonate substitution exhibited by

bHAP increases the susceptibility of enamel to erosion

compared to HAP (50, 119, 129, 130), increased carbonate

substitution occurs in dentine compared to enamel (5%–6%

compared to 3% respectively) (119), making dentine even

more susceptible to erosion. Here, dietary acid pH i.e., direct
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acid attack dominated the erosive capacity of acids in very

early-stage erosion of enamel, while concentration i.e.,

subsurface erosion surpassed the importance of pH after this.

For dentine, we postulate the evolutionary role collagen plays

in enabling bulk compression compliance also plays an

effective and efficient role in protecting further morpho-

mechanical changes during low pH dietary acid erosion.

If dietary acid solutions were buffered to a far lower pH =

2.3 to match the pH of cola drinks (131), we would expect

pH driven direct acid attack to dominate the erosive process

far more compared to concentration-driven subsurface

erosion. This is due to the greater presence of dissociated H+

ions in solution for pH 2.3 dietary acid solutions and a

reduction in undissociated acid for diffusion and subsequent

dissociation into the subsurface. Enamel’s delayed reduction

in morpho-mechanical properties exposed to citric 6% pH =

3.8 solutions shown here would occur much faster in the

exposure regime for those exposed to pH = 2.3. For dentine,

we would expect concentration-driven subsurface erosion to

dominate the erosive process at later exposure times with pH

driven direct acid attack dominating the erosive process

during initial acid contact. This would erode peritubular

dentine almost instantly with the buffering properties of the

collagenous network taking longer to reduce direct acid attack.

AFM is a powerful tool to image and quantify morpho-

mechanical changes in dental hard and soft tissues subject to

dynamic processes such as erosion (61) and oral biofilm

development (132, 133). Operating in QI™ mode enabled

careful control of probe-surface contact force, allowing no

surface damage during imaging while simultaneously

measuring sample stiffness. While previous studies have

utilised this technique on dry dental specimens (134), here,

for the first time, it was used on PBS hydrated specimens,

after each acid exposure, using a simulated drinking model.

AFM cantilevers with low spring constants on relatively

hard tissues such as enamel and dentine were chosen to

minimise sample damage during analysis as it was expected

that eroded specimens would become increasingly softer after

each acid exposure. This meant that there was considerable

variability between sample stiffness values measured between

different specimens with different probes. Only once the data

were normalised to the initial median stiffness prior to acid

exposure did the overall trend become apparent. Since the

same nominal force was applied across all surfaces and

exposure times, enamel and dentine’s resistance to

deformation decreased during erosion, exhibited by the

normalised reduction shown in Figures 5G,H, characteristic

of surface softening.

This study has potential limitations. Improving the sample

size by applying a power analysis could enhance statistical

analysis between tissue type, dietary acid variables and

analysed parameters. Due to the limited number of intact

dental specimens that could be obtained for each specimen
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cohort n = 5 per group was sufficient. This enabled significant

differences in analysed parameters to be obtained. Future

investigators may wish to apply a power analysis in their

study with a ready supply of intact dental specimens. Other

limitations such as improving simulated drinking and the

in vitro model to more reflect that the oral environment could

be made. Utilising this novel platform investigators could

reduce dietary acid exposure times to reflect sipping and

apply artificial or pooled human saliva with varying mucin

types and concentrations. Moreover, other dental hard tissue

structures can be assessed such as prismatic or aprismatic

enamel, enamel-dentine junctions, mantle, globular, sclerotic,

primary, secondary, and tertiary dentine by sectioning at

different depths. The effect of diseases could also be assessed

enabling structure-property relationships to be developed on

varying types amelogenesis imperfecta e.g., hypocalcification,

hypoplasia, porphyria as well as fluorosis and celiac disease.

While pH and concentration were the only variables assessed

in this study, investigators may wish to understand the effect

of other dietary acid properties such as titratable acidity,

buffering capacity, undissociated acid concentration, acid

dissociation constants and phosphate/carbonate contents,

unravelling other structure-property relationships.

Future studies can now utilise this novel sample preparation

methodology and nano-scale analysis protocol to determine the

effect of other dietary acids on a variety of dental hard tissue

types. Including, utilising the novel platform to determine the

effect of agents to prevent, arrest or even remineralise eroded

tissue structures.
Conclusion

This investigation sought to uncover the effect dietary acid

concentration and pH play in the erosion of human enamel

and dentine during very early-stage exposure. By developing

novel approaches to sample preparation and simulated

drinking, simultaneous nano- textural and nano-mechanical

analysis of enamel and dentine were shown to exhibit very

different responses to dietary acid erosion. Interestingly, for

enamel, pH-driven direct acid attack was shown to dominate

the erosive capacity of acids during initial exposure, while

concentration-driven subsurface erosion was shown to

dominate thereafter. For dentine, concentration was shown to
Frontiers in Dental Medicine 10
dominate the erosive capacity of dietary acids. Moreover,

while dentine has a higher critical pH of bHAP dissolution

compared to enamel, here we have shown dentine to be less

susceptible to dietary acid erosion, due to the protective

effects of the collagen matrix.
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