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The treatment of chronic periodontitis is undergoing a transition from simple

plaque removal and replacement with substitute materials to regenerative therapy,

in which stem cells play an important role. Although stem cell-based periodontal

reconstruction has been widely explored, few clinical regeneration studies have been

reported. The inflammatory lesions under the impact of host factors such as local

microbial–host responses, may impede the regenerative properties of stem cells and

destroy their living microenvironment. Furthermore, systemic diseases, in particular

diabetes mellitus, synergistically shape the disordered host-bacterial responses and

exacerbate the dysfunction of resident periodontal ligament stem cells (PDLSCs),

which ultimately restrain the capacity of mesenchymal stromal cells (MSCs) to repair

the damaged periodontal tissue. Accordingly, precise regulation of an instructive

niche has become a promising approach to facilitate stem cell-based therapeutics

for ameliorating periodontitis and for periodontal tissue regeneration. This review

describes host limitations and coping strategies that influence resident or transplanted

stem cell-mediated periodontal regeneration, such as the management of local

microbial–host responses and rejuvenation of endogenous PDLSCs. More importantly,

we recommend that active treatments for systemic diseases would also assist in

recovering the limited stem cell function on the basis of amelioration of the inflammatory

periodontal microenvironment.

Keywords: chronic periodontitis, systemic diseases, mesenchymal stromal cells, regenerative medicine,

bacterial infections

INTRODUCTION

The oral cavity is a gateway for the external world and is closely linked to systemic immunity
and nutrient sensing, and the distinct symbiotic relationship between microbiota and oral tissues
renders the bacteria influential to oral health importantly. For example, periodontal homeostasis
is susceptible to overwhelmed bacteria–immune responses, which may dramatically call for the
construction of chronic infection (1, 2). Until now, chronic periodontitis is the primary cause of
tooth loss in adults. Once it occurs, the junctional epithelium migrates apically and transforms
into the pocket epithelium, accompanied by a massive inflammatory infiltration culminating with
impairment of bone homeostasis (3). Particularly, as oral bacteria and their components can
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enter the circulation through the ulcers within the periodontal
pockets, periodontitis affects the occurrence and development
of many systemic diseases, such as cardiovascular disease and
diabetes (4, 5). Reciprocally, the morbidity and progression
of periodontal inflammation are also affected by systemic
conditions (6, 7). Therefore, chronic periodontitis is an
important disease that is related to the whole body rather than
localized infection.

The previous pathogenic understanding of periodontitis has
prompted the mechanotherapy based on physically removing
the bacterial plaques within periodontal pockets, including
scaling and root planning, which can effectively prevent the
progression of periodontitis but fail to recover the destroyed
periodontal tissue (8). The subsequent introduction of guided
tissue regeneration and bone substitute materials ushered
in an era of periodontal regenerative therapies because of
their positive effects in providing space and fundamental
structure for nascent tissue regeneration, and the application
of growth factors accelerates this process (9, 10). However, the
inherent instability and delivery controllability of growth factors
make their effects still controversial. In addition, the present
regenerative periodontal therapies are usually conducted with
artificial materials in surgery, which remains challenging to
reduce surgical trauma and reconstruct the structural support
upon massive defects (11). Therefore, current treatments of
chronic periodontitis are still challenging in achieving functional
recovery of the periodontium.

Over the past decades, mesenchymal stromal cells (MSCs)
have journeyed from discovery to mechanistic studies and
periodontal regenerative applications. For example, several
studies reported the excellent capacity of transplanted
periodontal ligament stem cells (PDLSCs) or adipose-derived
stem cells (ADSCs) for repairing multiple periodontal lesions
in animal models (12–14). Interestingly, PDLSCs appear to
be better candidates for regenerative periodontal therapy
than other types of MSCs because of their easy accessibility
in the oral maxillofacial region (15). Furthermore, PDLSCs
exhibited preferable self-renewal capacity than bone marrow
MSCs and superior differentiation potential compared with
other orofacial MSCs like gingival MSCs under conditioned
medium (16, 17). Inspired by the excellent therapeutic potentials
of PDLSCs, several preclinical and clinical studies applying
PDLSCs for oral regeneration have been performed. However,
the results of a recent clinical trial using autologous PDLSCs
derived from the impacted tooth are not satisfactory, because
there is no significant advantage to restoring the defective
periodontium by transplanting PDLSCs, as the control group
(cell-free group) had comparable tissue reconstruction (18).
These observations appear to support the assumption that
the living environment might be the primary reason affecting
the regenerative process (19). Specifically, the endogenous
stem cells in animal models may shape a healthy stem cell
niche and possess a periodontal regenerative property but
are impaired in periodontitis patients, which may explain the
parallel mandibular defect regeneration in rabbits between the
autologous bone graft group and the ADSC-containing group
(20). Further, the artificial defects in animal models may not

suffer from some decisive pathogenic factors, such as prolonged
inflammatory stimuli and influences from systemic diseases (21).
Therefore, mitigating host factors and recreating a beneficial
microenvironment could be a promising approach for improving
stem cell-based periodontal regeneration. Here, we summarize
limitations from the host and coping strategies that influence
resident or transplanted stem cell-mediated periodontal
regeneration, such as the management of local microbial–host
responses and rejuvenation of endogenous PDLSCs. More
importantly, we recommend that active treatments for systemic
diseases would also assist in recovering the limited stem cell
function on the basis of amelioration of the inflammatory
periodontal microenvironment.

ORAL MICROBIAL INFECTION AND HOST
DEFENSES WITHIN PERIODONTAL
LESIONS

Whether involving transplanted or resident stem cells, an
instructive microenvironment is a prerequisite for their
function (22). The term “instructive microenvironment” within
defects refers to a precise regulation between multiple cells
and extracellular stimuli that provides inductive signaling to
tissue regeneration. A typical example is that stem cells from
human exfoliated deciduous teeth (SHED) can differentiate into
sensory neurons in rat dorsal root ganglia, and SHED-originated
aggregates can regenerate the functional pulp in the acellular
and protective space of the pulp cavity (23). Specifically, effective
root canal disinfection and the relatively closed space can allow
pulp regeneration to escape bacterial interference (24), while
the periodontal lesions in chronic periodontitis are usually
accompanied by an imbalance of the oral microbiome and
host immunity, which dramatically affects stem cell function
(25, 26). Host responses to the microbiome orchestrate an
inflammatory immunological niche, and we have summarized
the inflammatory alteration of immune cell subsets and abnormal
production of irritating cytokines, which significantly lead to
irreversible periodontal inflammation (2). For example, dysbiosis
in periodontitis triggers T helper (Th) 17 cells to produce
inflammatory cytokines, such as tumor necrosis factor (TNF)-α
and interleukin (IL)-1β, which promote osteoclastogenesis
and bone loss, and the Treg-mediated dysregulation of
immunological surveillance under dysbiotic background
promotes the above inflammatory cascade (Figure 1). However,
recent evidence on the differentiation of bone-damaging Th17
cells has rehabilitated their role in restricting periodontal
infection, although it is manifested as unacceptable tooth
loss (27). Of course, during periodontitis treatment, the
management of microbial–host responses is very important.
For example, the application of resolvin D2 in periodontitis
mice inhibits the adaptive immune responses mediated by
Th1 cells, promotes M2 polarization of macrophages, and
suppresses neutrophil accumulation and release of inflammatory
factors, which synergistically reduces periodontal bone loss (28).
Therefore, an instructive microenvironment is necessary, and
balancing the interaction between the oral microflora and host
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FIGURE 1 | Local factors that promote periodontal destruction. The adverse immunity and continuous stimulation of the dysbiotic microbiome reinforce each other

and create a hostile microenvironment for stem cell function. More importantly, the compensatory and decompensatory responses of resident P-PDLSCs are involved

in shaping the local microenvironment. Specifically, the increased proliferation of P-PDLSCs cannot offset osteogenesis disorder, which indirectly leads to bone

homeostasis imbalance. In addition, abnormal P-PDLSC immunoregulation increases Th17 cell differentiation. These IL-17-releasing cells trigger massive production

of inflammatory cytokines, such as TNF-α and IL-1β, which promote osteoclastogenesis and bone loss, and the Treg-mediated dysregulation of immunological

surveillance promotes the above inflammatory cascade.

defenses may be a promising approach in stem cell-mediated
periodontal regeneration.

THE DYSFUNCTIONAL ALTERATIONS OF
RESIDENT PDLSCS

Except for the inevitable pulp extirpation post-infection, resident
stem cells within other oral defects remain, whose functional
status is closely related to tissue restoration (29). It has been
suggested that transplanted stem cells may rejuvenate resident
stem cells by improving the surrounding microenvironment
in a paracrine or other manner, rather than facilitating tissue
regeneration directly (30). However, overwhelmed inflammation
leads to dysfunction in PDLSCs from periodontitis (P-PDLSCs),
especially the decreased osteogenesis and immunomodulation
capacities, and it is challenging for these defective cells to repair
the periodontitis-damaged tissue under dysbiotic background
(Figure 1). Specifically, the compensatory alterations in P-
PDLSC, observed as high proliferation and migration rates,
are considered a resistance response to the inflammation (31).
In addition, angiogenin and basic fibroblast growth factor are
expressed at higher levels in P-PDLSCs compared to healthy

PDLSCs, suggesting that P-PDLSCs retain stronger angiogenesis-
promoting capacity (32). However, the compensatory responses
of P-PDLSCs are often insufficient to counterbalance the
negative effects under continuous inflammatory stimulation, and
subsequently show functional impairments as a decompensation
functional phase. On the one hand, a functional study of
P-PDLSCs mentioned the correlation between their impaired
cell aggregates formation and osteogenesis disorder, which
may lead to the inevitable progressive loss of the periodontium
(33). Importantly, the lack of natural interaction between
the cells may decrease the developmental signal in tissue
recovery (23, 34). On the other hand, P-PDLSCs exhibit
diminished immunosuppressive capability (31, 35). Typically,
the P-PDLSC-induced imbalanced ratio of Th17 and Tregs
facilitates the aggravation of periodontitis, the alteration
thereof may be associated with the massive proinflammatory
cytokine release and affected immunological surveillance
(35). These studies suggest that resident P-PDLSC functional
impairments may contribute to restrained regeneration in
periodontitis, and the recruitment of resident stem cells
applying low-intensity pulsed ultrasound and plant extracts
such as resveratrol facilitated resident P-PDLSC functional
recovery and reduced bone resorption in animal models
(33, 36). Previously, we have reviewed affected intracellular
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TABLE 1 | Known molecular mechanisms underlying P-PDLSC dysfunction and targeted therapies to improve the impaired function of P-PDLSCs.

Intracellular molecular mechanisms Status in

P-PDLSCs

Effects on the function of

P-PDLSCs

Identified targets to

improve the impaired

function of P-PDLSCs

References

NF-κB signaling pathway Activation Decreased osteogenic property IκB ↑ (39–41)

Wnt signaling

pathway

Canonical Wnt pathway Activation Increased proliferation and decreased

osteogenic property

GSK-3β ↑ (42, 43)

Non-canonical Wnt pathway Inhibition Decreased osteogenic property NLK ↑ (42)

MAPK signaling

pathway

ERK pathway Inhibition Decreased osteogenic property MAPK phosphorylation ↑ (44)

JNK pathway Inhibition Decreased osteogenic property (44)

p38 MAPK pathway Inhibition Decreased proliferation and

osteogenic property

(38, 42, 44)

Epigenetic

regulation

Histone acetylation Decrease Decreased osteogenic property GCN5 ↑ (45, 46)

MORF ↑

Histone deacetylation Increase Decreased osteogenic property HDAC9 ↓ (47)

LncRNA LncRNA-POIR Decrease Decreased osteogenic property LncRNA-POIR ↑ (48)

miRNA miR-182 Increase Decreased osteogenic property miR-182 ↓ (48)

miR-17-5p Increased angiogenesis-promoting

property

miR-17-5p ↑ (49)

Autophagy pathway Activation Increased osteogenic and

angiogenesis-promoting properties,

avoidance or acceleration of

apoptosis

mTOR ↓ (32, 50)

↑, up-regulation; ↓, down-regulation.

signaling pathways and epigenetic regulation within P-PDLSCs,
including but being not limited to nuclear factor-kappa B
(NF-κB), Wnt, and mitogen-activated protein kinases (MAPK)
pathways, as key mediators of the functional disorders of
P-PDLSCs (2). For example, treatment with aspirin induces
the expression of general control non-repressed protein 5
(GCN5) in P-PDLSCs, which then upregulates the expression of
dickkopf-related protein 1 (DKK1) and inactivates the Wnt–β-
catenin pathway indirectly, ultimately enhancing the osteogenic
differentiation of P-PDLSCs (37). Similarly, the application
of erythropoietin could activate the p38 MAPK pathway in
P-PDLSCs and promote their bone formation property (38)
(Table 1). Taken together, it is still a hotspot and future
direction to restore impaired functional phenotypes of P-
PDLSCs through molecular targets combined with improving
the extracellular microenvironment, which has a promising
clinical perspective in realizing endogenous stem cell-mediated
periodontal regeneration.

WHAT IS THE ROLE OF SYSTEMIC
CONDITIONS WHEN STEM CELLS WORK?

As the important correlation between oral and general health
becomes more widely known, the positive role of systemic
diseases, such as diabetes, in hindering recovery from oral
defects has been recognized (51–53). Here, we summarize the
impact of some systemic factors, particularly high blood glucose,
on stem cell-mediated periodontal, including aggravating the
microbial–host responses and exacerbating the dysfunction of
resident stem cells (Figure 2).

Aggravating the Microbial–Host Responses
The remodeled oral microbiome and aggravated host adverse
immunity under systemic diseases have drawn much research
attention, which may hinder stem cell-based therapy. For
example, the pathogenicity of the oral microbiome under
diabetic conditions has been increased, as inoculating similar
bacteria into diabetic mice led to greater inflammation than
that in the control group (54). Further, elevated blood
glucose may alter the resident microbiome composition and
pathogenicity. Specifically, the bacteria from diabetic mice
induced more IL-17 production, which may be responsible for
the increased neutrophil infiltration and osteoclast formation
in germ-free mice (55). The theory that glucose influences
the oral microbiome composition may only hold under the
periodontitis background, as diabetic people and healthy controls
have similar salivary microbiomes (56). Generally, systemic
diseases that interfere with oral microbiome establishment are
common (53), e.g., reduced microbial diversity and a higher
proportion of pathogenic bacteria can be detected in patients
with periodontitis with systemic lupus erythematosus (57).
Further complicating this item, systemic diseases also aggravate
the host’s inappropriate immunity to oral bacteria (55, 57, 58).
Typically, the NF-κB signaling pathway in skeletal stem cells
from diabetic patients has activated aberrantly, which reduces
the expression of transforming growth factor-β (TGF-β1) and
inhibits M2 polarization of anti-inflammatory macrophages (59),
Additionally, high blood glucose can increase the expression
of bone-resorbing cytokines, such as receptor activator for NF-
κB ligand (RANKL), in periodontal fibroblasts and promote
osteoclastogenesis in alveolar bone (55, 58). In short, the
establishment of chronic periodontitis is a dynamic and holistic
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FIGURE 2 | The participatory role of diabetes in shaping the periodontal niche. The increased release of IL-17 in the oral microenvironment of patients with

diabetes-associated periodontitis caused by the readjusted proportion and increased pathogenicity of the oral microbiome forms positive feedback with the

disordered P-PDLSC immunomodulation, which intensifies the local inflammatory infiltration and osteoclastic activity. Besides, certain signaling pathways in stem cells

are abnormally activated in the background of hyperglycemia. For example, P-PDLSCs have more obvious osteogenic disorders under diabetic conditions, which may

be related to intracellular Wnt–β-catenin pathway activation. Another example is the aberrant NF-κB signaling activation in skeletal stem cells reducing the secretion of

the immunoregulatory factor TGF-β1 and increasing M1 inflammatory polarization. Therefore, systemic factors may synergistically deteriorate the local stem cell

niche-like microenvironment and influence periodontal recovery.

process, whereby distinct but disturbed host defenses are engaged
at different stages.

Therefore, local injection of anti-IL-17 antibody suppressed
the pathogenicity of oral bacteria under diabetes, manifested
as reduced neutrophil infiltration and bone resorption (55).
Further, active treatments for systemic diseases would also
assist periodontal regeneration based on the amelioration of
the inflammatory niche and maintenance of the instructive
environment. For example, metformin hypoglycemic therapy
and rheumatoid arthritis treatment restored the dynamic
balance of the oral microbiome, thereby relieving periodontitis
(56, 60). In addition, bindarit suppressed the persistently
elevated chemokine (C-C motif) ligand 2 in diabetes-associated
periodontitis, which decreased proinflammatory monocyte
recruitment and alleviated periodontitis (61).

Exacerbating the Dysfunction of Resident
PDLSCs
The impact of systemic diseases on resident stem cells has
been proposed for years. Recently, a study on P-PDLSCs under
diabetes (D-PDLSCs) has provided evidence of their impaired
osteogenic differentiation, while the underlying mechanism
may differ from that of simple P-PDLSCs (39). It appears
that high blood glucose readjusts the intracellular cascade

effects of NF-κB signaling in D-PDLSCs, as inhibiting the NF-
κB signaling increases the P-PDLSC osteogenesis, whereas it
does not upregulate D-PDLSC osteogenesis (2). Surprisingly,
suppressing Wnt–β-catenin signaling reversed the osteogenic
potential of D-PDLSCs, which is consistent with that of simple
P-PDLSCs (39, 48). However, inhibiting NF-κB signaling in
diabetic mice reduced osteoclast numbers and alveolar bone
loss (58). Hence, further studies can explore the balance of
Wnt–β-catenin and NF-κB signaling in D-PDLSCs to achieve
optimal periodontal recovery. Until now, few studies have
established the functional status and reparative role of resident
PDLSCs under systemic diseases, and more interventions are
still required for rejuvenating the resident PDLSCs and achieving
periodontal regeneration.

PERSPECTIVES ON CURRENT
STRATEGIES FOR STEM CELL-MEDIATED
PERIODONTITIS THERAPY

In the past 20 years, there has been considerable progress in
stem cell-mediated oral tissue reconstruction, and promoting
resident or transplanted stem cells has demonstrated therapeutic
prospects (62, 63). However, until now, only the pulp has been
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FIGURE 3 | Discovery and application of PDLSCs in vitro and in vivo. (A) Studies over the past decade have described the excellent therapeutic potential of PDLSCs,

including self-renewal, angiogenesis, immunomodulation, and multiple differentiation properties. (B) Some animal experiments based on PDLSCs transplantation have

been carried out and achieved satisfactory periodontal regeneration. (C) A clinical trial of PDLSC-mediated periodontitis treatments has been successfully conducted,

but the effects of repairing periodontium were not noticeable. These studies above may set an emerging direction to recruit and mobilize endogenous P-PDLSCs for

periodontal regeneration. N-PDLSCs, normal PDLSCs; P-PDLSCs, periodontitis-derived PDLSCs.

clinically regenerated, which may be due to the applied young
SHED aggregates and the natural shape of the pulp cavity,
while the results of a recent clinical trial using autologous
healthy PDLSCs derived from the impacted tooth are not
satisfactory (18, 23). Of note, pulpitis is a localized disease
that is rarely affected by persistent host factors, and the pulp
cavity confers physical protection for pulp regeneration (64).
Other than pulpitis, however, periodontal lesions lack protective
space for stem cell function and are closely linked to systemic
inflammation, which may partially explain the difficulty in
their regeneration. Accordingly, a reasonable breakthrough for
ensuring periodontal regeneration could be the improvement
of adverse effects from local or systemic factors. For example,
decreasing the pathogenicity of oral bacteria and suppressing
the recruitment of proinflammatory monocyte by using small
molecule drugs can alleviate diabetes-associated periodontitis
(55, 61). Furthermore, active treatments for systemic diseases,
such as diabetes and rheumatoid arthritis, would aid recovery

based on ameliorating the bacterial inflammatory responses and
stem cell status (56, 60). However, most strategies for intervening
microbial-host responses are based on mechanistic in vitro or
preclinical studies, which require further clinical verification,
presenting more challenges for future treatment.

The unsatisfactory outcomes in autologous healthy PDLSCs-
mediated periodontal regeneration may also attribute to the
functional condition of endogenous PDLSCs, as the endogenous
PDLSCs in animal models may possess the periodontal
regenerative property but are impaired in periodontitis patients.
Previous studies on PDLSCs from discovery to mechanistic
studies and regenerative applications may set an emerging
direction to recruit and mobilize endogenous P-PDLSCs for
periodontal regeneration (Figure 3). As current studies have
revealed themolecularmechanisms involved in the inflammatory
responses of P-PDLSCs, restoration and/or mobilization of P-
PDLSCs can be targetedly achieved by using small molecule
drugs, herbal extracts, and accessory extracellular vesicle (EV)
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FIGURE 4 | Coping strategies mitigating host factors for improving stem cell therapy. The application of biological products, including small molecular drugs, herbal

extracts, and accessory extracellular vesicle products, can effectively improve the extracellular environment and promote stem cell function, thus alleviating

periodontal defects in periodontitis. Significantly, active treatments for systemic diseases would also assist stem cell-mediated regeneration based on the amelioration

of the inflammatory niche and maintenance of the instructive environment.

products (2). However, it should be noted that precise delivery
of drugs to modulate PDLSCs in vivo remain as a major
challenge and a potential direction in this field. In this regard, as
programmed cell death protein 1 (PD1) represents a functional
surface marker of orofacial MSCs, targeted techniques such as
aptamers may serve as effective tools for precise modulation (65).
More importantly, the self-assemble SHED aggregates in pulp
regeneration may initiate the redevelopment process, implicating
the significance of natural signals inductive of tissue regeneration
(23, 66). Notably, induction between stem cell subsets may
evolve a natural condition for periodontal regeneration, as shown
by the improved expression of extracellular matrix and bone-
related genes and the regeneration of complex periodontium-like
structures in vivo when using composite cell sheets composed
of PDLSCs and jaw bone marrow MSCs (67). Therefore, the
activation of resident P-PDLSCs and prudent administration
of cellular interaction are necessary, but require multiple
considerations to ensure the natural process of stem cell-
mediated periodontal recovery, which is a lesson we should learn
from the clinical success of pulp regeneration.

CONCLUSIONS

Chronic periodontitis exerts a great influence on the patient’s life
quality and interpersonal communication. The current treatment
for periodontitis is moving toward the goal of functional
periodontal regeneration, in which MSCs play an integral role
in future therapy. Importantly, MSCs may shape a distinct
niche with surrounding extracellular matrix and cytokines, which
is related to stem cell fate. Therefore, the prerequisite for
stem cell therapy in chronic periodontitis is the adjustment
of local stem cell niche, which refers to the improvement

of the systemic condition and the abnormal bacterial-host
responses (Figure 4). Beyond that, continuous inflammation
in the periodontal tissue induces functional impairments of
endogenous P-PDLSCs, which contribute to the disturbed stem
cell niche and restrained regeneration in periodontitis. Therefore,
the functional condition of endogenous PDLSCs may be a
key approach in periodontal regeneration (Figure 4). Although
prompting endogenous stem cells to treat periodontitis has been
validated in animal models, it is difficult to precisely improve the
function of therapeutic stem cells and themutual induction of cell
subsets, and more in-depth research is still needed for functional
periodontal regeneration.
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