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Stem cells derived from dental tissues (DSCs) exhibit multipotent regenerative potential in

pioneering tissue engineering regimens. The multipotency of DSCs is critically regulated

by an intricate range of factors, of which the epigenetic influence is considered vital.

To gain a better understanding of how epigenetic alterations are involved in the DSC

fate determination, the present review overviews the current knowledge relating to

DSC epigenetic modifications, paying special attention to the landscape of epigenetic

modifying agents as well as the related signaling pathways in DSC regulation. In addition,

insights into the future opportunities of epigenetic targeted therapies mediated by

DSCs are discussed to hold promise for the novel therapeutic interventions in future

translational medicine.

Keywords: epigenetic regulation, stem cells derived from dental tissues (DSCs), cell differentiation, signaling

pathways, regenerative therapies

INTRODUCTION

Dental stem cells (DSCs), a subgroup of mesenchymal stem cells (MSCs), are isolated mainly
from dental pulp or periodontium-associated tissues. Current identified DSCs are dental pulp stem
cells (DPSCs) (1, 2), stem cells from human exfoliated deciduous teeth (SHED) (3), periodontal
ligament stem cells (PDLSCs) (4), dental follicle precursor cells (DFPCs) (5), stem cells from apical
papilla (SCAP) (6), gingival-derived MSCs (GMSCs) (7), and alveolar bone marrow-derived MSCs
(ABMSCs) (8, 9). In vitro identification demonstrated that DSCs positively expressed MSC-related
markers, including CD13, CD29, CD44, CD59, CD73, CD90, CD105, CD146, and STRO-1; while
negatively expressed hematopoietic markers, such as CD14, CD31, CD34, and CD45 (10–12).
The key pluripotency markers (Oct4, Sox2, and Nanog) that are involved in maintaining the
undifferentiated state were also expressed in DSCs with different levels (13). More importantly,
a recent study revealed that Oct4 was only expressed in the nuclei of DPSCs, suggesting a better
potential of DPSCs to differentiate into multi-lineage tissues (14). DSCs are easily accessible
with no ethical controversies. Compared with other MSCs, DSCs presented better proliferative
properties and odontogenic differentiation abilities, making them attractive candidates in the future
application of tissue regeneration (15, 16).

It is generally believed that MSCs prefer to present regenerative potential corresponding to their
origin in ectopic (17). In this regard, DSC-mediated oral and craniofacial regenerative therapies
have lead a way in decades. Wang et al. revealed that the PDLSC/PRF/ABMSC sheet composites
successfully regenerated periodontal ligament- and bone-like structures in nude mice (18). When
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SCAP and PDLSCs were co-transplanted into the alveolar bone
of mini-pigs, biological roots were formed (19). Expressing
neural and angiogenic markers, such as neurofilament, nestin,
vascular endothelial growth factor (VEGF), and angiogenin-1,
SCAP presented great neurogenic and angiogenic potential
(6, 20, 21). More importantly, clinical trials in recent years
have provided more convincing evidence that the implanted
DPSCs might induce functional dental pulp (22). Application
of DPSCs in deep intrabony defects significantly improved
clinical and radiographic parameters of periodontal regeneration
1 year after implantation (23). Nevertheless, despite the current
encouragements, to improve the regenerative efficiency of DSCs,
the underlying mechanisms that modulate DSC function are
needed to be critically explored.

Emerging evidence has indicated that DSC fate is of great
importance in directing their functions (11, 24). Potentiated to
osteogenesis, adipogenesis, chondrogenesis, neurogenesis, and
angiogenesis, DSCs may facilitate multiple tissue regeneration
(25). To take full advantage of DSCs, key regulators that
affect DSC fate should be critically discussed ahead of their
applications. Various factors were reported to be involved
in determining cell fate, of which epigenetic regulation has
been considered as a vital cue (26). Without gene editing,
epigenetic regulation plays a stable and heritable role in DSC
function (27, 28).

Epigenetic modifications are generally orchestrated by DNA
methylation, histone modifications, RNA modifications, and
non-coding RNAs (29). DNA methylation, one of the most
well-studied epigenetic modifications, is catalyzed by DNA
methyltransferases (DNMTs) (24). In CpG islands, the C5
position of cytosine can be methylated into 5-methylcytosine [5-
mC] by DNMTs, such as DNMT1, DNMT3A, and DNMT3B
(24). DNA methylation can also be reversed by enzymes of
the ten-eleven translocation (TET) family (e.g., TET1, TET2,
and TET3) (30).

Histone methyltransferases (HMTs) result in chromatin
compaction or relaxation (31). Histone 3 (H3) is the most
extensively modified histone. Histone 3 lysine 9 (H3K9) and
H3K27 are associated with specific and dynamic repression
of transcriptional regulation. By contrast, H3K4, H3K36, and
H3K79 facilitate target gene transcriptional activation (32).
Histone lysine demethylases (KDMs), removing methyl groups
from histones, mainly include the lysine-specific demethylase
1 (LSD1) and Jumonji C (JMJC) families (33). Histone
acetyltransferases (HATs) result in a more open chromatin
structure for transcription factor binding that induces gene
transcription (34). However, the effects of HATs can be
counteracted by histone deacetylases (HDACs), leading to
chromatin compaction and transcriptional repression (35).

Internal mRNA modifications, such as N6-methyladenosine
(m6A), N1-methyladenosine (m1A), 5-mC, and
5-hydroxymethylcytosine (5-hmC), are critical in the
maintenance of mRNA stability (36). As the most prevalent
internal RNA modification, m6A modification is catalyzed by
methyltransferases and reversed by demethylases (29). Abnormal
regulation that leads to an imbalance in m6A levels might result
in incompetent osteogenic differentiation of bone marrow MSCs

(BMMSCs) (37) and impaired odontogenic differentiation of
human DPSCs (38). Besides, micro-RNAs (miRNAs) (39), long
non-coding RNAs (lncRNAs), and circular RNAs (circRNAs)
(40) are critical components in epigenetic regulation mediated
by non-coding RNAs. Dysregulation of these non-coding RNAs
was found to have relevance with not only DSC fate but also their
potential to regulate tissue regeneration.

To better understand how these epigenetic alterations are
involved in DSC fate, the present review critically overviews
the epigenetic modifiers in the regulation of DSCs and the
relevant key pathways, providing a theoretical basis for the
future translation of DSCs in regenerative medicine. Insights into
the future perspectives are also provided for the identification
of novel epigenetic targeted regenerative therapies mediated
by DSCs.

EPIGENETIC MODULATIONS OF DSCS

DNA Methylation
It has been proved that DNA methylation profiles are
associated with the osteogenic potential of DSCs. Using the
HumanMethylation450 Beadchip, Ai et al. indicated that DPSCs,
DFPCs, and PDLSCs showed highly similar DNA methylation
patterns that were related to bone formation. Compared with
DPSCs and DFPCs, PDLSCs had higher transcription levels of
osteogenic-related factors indicating a better osteogenic capacity
in vitro and in vivo (41). Besides the regulation of osteogenic
differentiation, DNA methylation is also critical in modulating
the odontogenic differentiation of DSCs. TET1 knockdown
suppressed the proliferation and odontogenic differentiation
of DPSCs, suggesting TET1-dependent DNA demethylation
in dental tissue regeneration (42, 43). When DPSCs were
treated with lipopolysaccharide, DNMT1 was downregulated,
while the transcription of inflammatory cytokines was increased
(44). This study provided a new rationale to reveal the
molecular mechanisms of the inflamed dental pulp and was of
instructive significance in revealing the effect of DNMT1 on the
differentiation capacity of DPSCs in inflammatory conditions. It
has also been indicated that by inducing DNMT3A/DNMT3B,
the odontogenic differentiation of DPSCs was promoted,
providing a potential target for DPSC mediated odontogenic
regeneration (45). Taken together, DNA methylation is vital to
the regulation of osteogenic and odontoblastic differentiation of
DSCs, contributing to the regeneration of bone-related defects.

Histone Methylation
In addition to DNA methylation, histone modifications are
also responsible for DSC fate, of which KDMs are of
great importance. KDM3B enhanced the osteo-/odontogenic
differentiation potential of SCAP (46). KDM4B removed
H3K9me3 by binding with DLX promoters, leading to target
gene activation (47). Yang et al. indicated that KDM4B and
DLX5 regulated each other via a positive feedback loop in
SCAP. DLX5 enhanced the alkaline phosphatase (ALP) activity
and the expression of DSPP, DMP1, OPN, and OSX, inducing
osteogenic differentiation. In vivo studies on nude mice further
demonstrated that DLX5 promoted osteo-/dentinogenesis via
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upregulating KDM4B in SCAP (48). KDM5A inhibited the
odontogenic differentiation potentiality of DPSCs by removing
H3K4me3 from DMP1, DSPP, OSX, and OCN promoters (49).
KDM6A promoted osteoblastic differentiation of PDLSCs by
decreasing H3K27me3 on promoters of ALP, Runx2, and OPN,
suggesting a potential intervention for periodontal repair and
regeneration (50). KDM6B was dynamically expressed in the
bell stage of human tooth germs. KDM6B knockdown induced
H3K27me3, which repressed the transcriptional activity of
Wnt5A and ultimately suppressed odontogenic differentiation of
SCAP (51). In addition, inhibition of KDM6B also resulted in
a marked decrease of mineralization-related genes (ALP, BMP2,
BMP4, DLX2, OCN, and OPN) during odontogenic/osteogenic
differentiation of DPSCs (52).

Histone Acetylation
HATs and HDACs are also involved in DSC fate decisions.
The acetyltransferase GCN5 regulated DKK1 expression by
acetylation ofH3K9 andH3K14 at its promoter region. Inhibiting
the Wnt/β-catenin pathway through DKK1, GCN5 increased
the osteogenic differentiation of PDLSCs. In vivo injection
of aspirin that targeted GCN5 would rescue periodontitis of
rats by promoting osteogenic differentiation of PDLSCs (53).
By suppressing HDAC6, miR-22 would promote osteogenic
differentiation of PDLSCs (54). Similarly, HDAC9 and miR-
17 formed a loop of mutual inhibition during osteogenic
differentiation of PDLSCs (55). Zhang et al. also revealed that
PCAF knockdown resulted in critical repression of the osteogenic
differentiation of BMMSCs by reducing H3K9 acetylation of
BMP signaling (56), suggesting different osteogenic regulation of
DSCs and other MSCs. Tao et al. indicated that the coordinated
expression of p300 and HDAC3 was critical for odontoblast
differentiation of SCAP, providing new hints for restorative
dentistry (57). It was also reported that the expression levels of
SIRT7 and HDAC6 were decreased in stem cell aging models,
whereas SIRT7 overexpression rescued the miR-152-induced
senescence phenotype of DPSCs (58). Li et al. further suggested
that HDAC6 played an important role in PDLSC aging (59). The
aforementioned literature provided candidate targets to improve
the functional and therapeutic potential of DSCs.

Non-coding RNAs
It has been demonstrated that several miRNAs participated in
the regulation of osteogenic differentiation in DSCs, such as
miR-23a (60), miR-24-3p (61), miR-152-3p (62), miR-17 (63),
and miR-22 (54). miR-23a acted as a negative regulator during
osteogenesis of PDLSCs from patients with periodontitis by
inhibiting the phosphorylation of Smad1/5/ 9, key transcription
factors of the BMP pathway (60). In addition, miR-24-3p and
miR-152-3p suppressed the osteogenic differentiation of PDLSCs
(61, 62). On the contrary, miR-22 and miR-17 promoted the
osteogenic differentiation of PDLSCs (54, 63). The above findings
demonstrated miRNAs’ different effects on periodontal and
alveolar bone regeneration.

The expression profiles of circRNAs and lncRNAs have
revealed an extremely complex regulatory network (64). Specific

circRNAs are involved in the osteoblastic differentiation of DSCs
(65, 66). For instance, circRNA CDR1as inhibited miR-7 and
alleviated the negative regulatory effect of miR-7 on osteoblastic
differentiation (67). CircRNA124534 promoted the osteogenic
differentiation of DPSCs by inhibiting miR-496, suggesting
the functions and underlying mechanisms of circRNAs
in the osteogenic differentiation (68). Anti-differentiation
ncRNA (ANCR), a subclass of lncRNAs, can maintain the
undifferentiated stem cell state (69, 70). Furthermore, lncRNA–
miRNA–mRNA networks are also critical in osteogenesis. For
instance, overexpression of ANCR downregulated miR-758,
inhibiting the osteogenic differentiation of PDLSCs by reducing
ALP, RUNX2, and OSX (71). The osteogenesis impairment-
related lncRNA (lncRNA-POIR) competitively inhibited
miR-182 in PDLSCs, leading to de-repression of its target
gene FoxO1. FoxO1 increased bone formation of PDLSCs by
competing for β-catenin with TCF-4 (a transcriptional cofactor)
and inhibiting the canonical Wnt pathway (72). LncRNA
MEG3 inhibited osteogenic differentiation of DPSCs via miR-
543/RUNX2 regulatory network, which might contribute to the
precise regulation of DPSC differentiation (73).

KEY PATHWAYS REGULATED BY
EPIGENETIC MECHANISMS

Wnt Signaling Pathway
Wnt ligands bind to the Wnt receptors on the cell surfaces
or induce β-catenin release to bind TCF in the nucleus to
regulate downstream signaling (74). It has been proved that
the Wnt signaling pathway is involved in the regulation of
DSC stemness (75) and multipotency (76, 77). Through mass
spectroscopy, Uribe-Etxebarria et al. revealed that activation
of Wnt signaling induced epigenetic remodeling in DPSCs,
mainly by inducing DNA demethylation, histone acetylation, and
histone methylation (78). Moreover, SFRP1 (a Wnt antagonist)
inhibited the mineralization of PDLSCs through H3K4me3-
mediated regulation, maintaining the nonmineralized state of
PDLSCs (79). EZH2 depletion activated the Wnt/β-catenin
pathway led to the promotion of odontogenic differentiation
in DPSCs (80).

Notch Signaling Pathway
Notch receptors and ligands are highly conserved type I
transmembrane proteins. Once activated, Notch would release
the Notch intracellular domain (NICD), allowing its consequent
translocation to the nucleus and activating the expression
of Notch targets (81). When nuclear NICD is absent, a
repressor complex CSL/RBP-Jk will form in the nucleus by
recruiting ubiquitous corepressors and HATs, repressing Notch
targets (82). Activation of Notch enhanced the stemness and
potency of DPSCs, providing a novel approach in DPSC
related therapeutics (75). Notch signaling regulated by non-
coding RNAs is also critical in DSC fate decisions. miR-146a-
5p/Notch signaling played an important role in supporting
odontogenic and osteogenic differentiation of STRO-1+ DPSCs,
indicating that the application of DSCs may be facilitated by
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epigenetic modifications in regenerative medicine and tissue
engineering (83). miR-34a interacted with Notch signaling
and promoted both odontogenic and osteogenic differentiation
of SCAP (84).

BMP Signaling Pathway
Among the variety of signaling and transcription factors
involved in osteogenesis, BMP/Smads signaling is considered to
play a central role in controlling osteogenic differentiation.
Exploration of all known factors affecting osteogenic
differentiation and their interactions is of major importance
in the field of DSC-mediated regenerative medicine. In the
canonical BMP pathway, activated BMP phosphorylates the
transcription factors Smad1/5/8. The phosphorylated Smads
(pSmad1/5/8) form a heterodimeric complex with Smad4,
which is then translocated into the nucleus to activate the
expression of downstream osteogenic genes (85). At the
epigenetic level, circRNA CDR1as activated pSmad1/5/8
by inhibiting the miR-7 expression and further promoted
the osteogenesis of PDLSCs (67). Downregulation of miR-
24-3p or miR-21 promoted osteogenic differentiation of
PDLSCs by targeting Smad5 (61, 86). Under long-term BMP

stimulations, DFPCs significantly increased ALP activity and
mineralization (87).

AKT/mTOR Signaling Pathway
Phosphatidylinositide 3 kinases (PI3Ks), serine/threonine kinase
AKT (also known as protein kinase B), and mTOR (also known
as mechanistic TOR) are considered as core components of
the PI3K/AKT/mTOR signaling cascade, participating in the
regulation of DSC proliferation and differentiation. Under
physiological conditions, the receptor tyrosine kinase (RTK) is
activated by growth factors or cytokines and then phosphorylates
the tyrosine residue to recruit PI3Ks (88, 89). It has been
confirmed that the expression of vascular endothelial growth
factor (VEGF) is repressed by HDACs, especially HDAC4.
The VEGF/AKT/mTOR pathway promoted odontoblast
differentiation of DPSCs after treatment with LMK235, a
specific inhibitor of HDAC4 and HDAC5 (90). Additionally,
the phosphatase and tensin homolog (PTEN) exhibited higher
enrichment of DNA methylation and the repressive H3K9me2
in the promoter region of BMMSCs compared to DPSCs.
PTEN suppression activated the AKT pathway to promote

FIGURE 1 | Overview of the principal epigenetic modifiers in the regulation of dental stem cells (DSCs). DNA methylation: DNMT3A and DNMT3B modify

unmethylated double strands of DNA in DSCs, while TETs remove methyl groups from DNA. DNMT1 is responsible for the maintenance of methylation levels of DSCs.

Histone modifications: KDMs remove methyl groups from lysine mediated by LSD1, KDM4B, KDM5A, KDM6A, and KDM6B in DSCs. Histone acetylation (K9ac and

K14ac) is regulated by HATs (PCAF and GCN5) in DSCs. Non-coding RNAs: In the epigenetic regulation of DSC fate, non-coding RNAs are of great importance.

miR-17, miR-22, miR-34a, miR-146a-5p, and miR-720 promote DSC differentiation, while miR-21, miR-23a, miR-24-3p, miR-132 and miR-152-3p inhibit DSC

differentiation. LncRNAs and circRNAs act as competing endogenous RNAs for miRNAs, constituting a complex regulatory network. LncRNA-POIR, circRNA124534,

and circRNA CDR1as promote DSC differentiation. LncRNA MEG3 and ANCR inhibit DSC differentiation.
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TABLE 1 | Epigenetic modifiers in the regulation of DSCs.

Epigenetic

modifiers

Regulators Effects In differentiation and regeneration References

DNA methylation DNMT3A

DNMT3B

Methylation of Nanog promoter Promoted odontogenic differentiation of DPSCs (45)

DNA

demethylation

TET1 / Promoted odontogenic differentiation of DPSCs (42)

Histone

methylation

EZH2 Trimethylation of H3K27 Inhibited odontoblastic differentiation of DPSCs (80)

Histone

demethylation

KDM3B / Promoted osteogenic/odontogenic

differentiation of SCAP

(46)

KDM4B Demethylation of the H3K9me3 from DLX5

promoter

Promoted osteogenic/odontogenic

differentiation of SCAP

(48)

KDM5A Demethylation of the H3K4me3 from DMP1,

DSPP, OSX, and OCN promoters

Inhibited odontogenic differentiation of DPSCs (49)

KDM6A Demethylation of the H3K27me3 from ALP,

Runx2, and OPN promoters

Promoted osteoblastic differentiation of

PDLSCs

(50)

KDM6B Demethylation of the H3K27me3 from the

promoter

Promoted odontogenic differentiation of SCAP (51)

Promoted osteogenic/odontogenic

differentiation of DPSCs

(52)

Histone acetylation GCN5 Acetylation of H3K9 and H3K14 on DKK1

promoter

Promoted osteogenic differentiation of PDLSCs (53)

PCAF Acetylation of H3K9

on the promoter

Promoted osteogenic differentiation

of BMMSCs

(56)

P300 Acetylation of histone Promoted odontoblast differentiation of SCAP (57)

Histone

deacetylation

HDAC3 Deacetylation of histone Inhibited odontoblast differentiation of SCAP (57)

HDAC6 Deacetylation of Runx2 and OPN promoters Inhibited osteogenic differentiation of PDLSCs. (54)

Deacetylation of p27Kip1 Protected stemness of PDLSCs (59)

HDAC9 Deacetylation of miR-17-92a promoter Inhibited osteogenic differentiation of PDLSCs (55)

Non-coding RNAs miR-720 Inducing DNMT3A or DNMT3B Promoted odontogenic differentiation of DPSCs (45)

miR-153-3p Downregulation of KDM6A to increase the

H3K27me3 levels at the Runx2, OPN, and ALP

promoters

Inhibited osteogenic differentiation of PDLSCs (50)

miR-22

miR-17

/ Promoted osteogenic differentiation of PDLSCs (54)

(63)

miR-23a

miR-24-3p

miR-152-3p

/ Inhibited osteogenic differentiation of PDLSCs (60)

(61)

(62)

circRNA

CDR1as

circRNA CDR1as

/miR-7/GDF5 network

Promoted osteogenic differentiation of PDLSCs (67)

circRNA124534 circRNA124534/miR-496 Promoted osteogenic differentiation of DPSCs (68)

lncRNA

ANCR

/ Maintained the undifferentiated state (69)

(70)

lncRNA ANCR

/miR-758/mRNA network

Inhibited osteogenic differentiation of PDLSCs (71)

lncRNA-POIR lncRNA-POIR

/miR-182/FoxO1 network

Promoted osteogenic differentiation of PDLSCs (72)

lncRNA

MEG3

lncRNA MEG3

/miR-543/RUNX2 network

Inhibited osteogenic differentiation of DPSCs (73)

RNA modifications METTL3 mRNA methylation (m6A) Promoted osteogenic differentiation

of BMMSCs

(37)

Promoted odontogenic differentiation of DPSCs (38)

GCN5, general control non-repressed protein 5; PCAF, p300/CBP-associated factor; p27Kip1, cyclin-dependent kinase inhibitor p27; GDF5, growth differentiation factor 5; lncRNA

MEG3, lncRNA maternally expressed gene 3; METTL3, methyltransferase-like 3.
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adipogenesis and inhibit osteogenesis of DPSCs, suggesting a
differed differentiation potential of DPSCs and BMMSCs (91).

MAPK Signaling Pathway
The MAPK pathways consist of extracellular signal-related
kinases (ERK1/2), C-Jun N-terminal kinase (JNK), p38 MAPK,
and ERK5 (92, 93). Decreased phosphorylation of MAPK
mediated by circRNA CDR1as knockdown would lead to the
inhibited osteogenic differentiation of PDLSCs (67). While
lncRNA GAS5 enhanced the osteogenic differentiation of
PDLSCs via GDF5 and p38/JNK signaling pathway (94). These
findings provided the theoretical basis for understanding the
osteogenesis mechanism in PDLSCs.

NF-κB Signaling Pathway
NF-κB is a transcription factor that is ubiquitous in the
cytoplasm. It has pivotal roles in the regulation of inflammatory
response and osteogenic differentiation of DSCs (95–97). NF-κB
stays in an inactive state when it binds to the inhibitory protein
IκB. Once activated by the activators, NF-κB dissociates from IκB
and translocates into the nucleus to bind with the target genes
and enhance their expression (98). Martins et al. revealed that
NF-κB was involved in the epigenetic regulation of oral epithelial
cells, suggesting a potential mechanism of their roles in DSCs
(99). Activating NF-κB signaling by miR-132, the osteogenic
ability of PDLSCs was inhibited, suggesting a potential role of
NF-κB in future periodontal related therapy (95).

FUTURE PERSPECTIVES

Knowing the promising roles of epigenetic regulation in DSC
fate (Figure 1, Table 1), new insights into future opportunities
would provide promise for the identification of novel targets for
DSC-mediated regenerative therapies. DSCs may partially lose
their potential during long-term cell culture. In this context,
how to ensure stemness of DSCs in normal culture conditions
is critical to address. Diomede et al. revealed that 5-Aza (a
DNMT inhibitor) induced the direct conversion of GMSCs
into embryonic lineages. When treated with 5-Aza for 48 h,
GMSCs were organized as round 3D structures and expressed
markers related to three germ layers (100). Above findings
suggested a possible application of epigenetic regulation in
future translational medicine. It has further been demonstrated
that 5-Aza treatment is responsible for GMSC dedifferentiation
into embryonic lineages other than neural precursor cells after
prolonged expansion (101, 102), suggesting the potential role of
5-Aza in DSC stemness maintaining for future application.

The key to regenerativemedicine lies also in the differentiation
of stem cells into specific tissues. Inhibition of DNMTs
with RG108 increased the level of transcription factor Klf4,
enhancing the efficiency of odontoblastic differentiation of DSCs,
thus presenting great prospects in future application (103).
DPSCs exhibited higher osteogenic as well as lower adipogenic
potential compared with BMMSCs. As revealed by Shen et
al. the PTEN promoter of BMMSCs presented higher levels
of DNA methylation mediated by increased DNMT3B and
enrichment of the repressive H3K9me2 (91). Altering epigenetics
of PTEN that is responsible for inhibiting adipogenesis and

FIGURE 2 | Key pathways involved in the epigenetic regulation of DSC fate. The odontogenic and osteogenic differentiation of DSCs is mediated by the interaction of

critical signal pathways such as Wnt, Notch, BMP, AKT/mTOR, MAPK, and NF-κB.
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TABLE 2 | Key pathways regulated by epigenetic mechanisms.

Pathways Regulators Effects In differentiation and regeneration References

WNT signaling

pathway

WNT-3a Increasement of

DNA hypomethylation,

histone acetylation,

and histone trimethylation

Reversed osteogenic cell differentiation of

DPSCs

(78)

SFRP1 Inhibition H3K4me3

on RUNX2 and SP7 promoters

Inhibited mineralization of PDLSCs (79)

EZH2 Increasement of H3K27me3 on the β-catenin

promoter

Inhibited odontogenic differentiation in DPSCs (80)

Notch signaling

pathway

miR-34a Crosstalk with Notch pathway Promoted odontogenic and osteogenic

differentiation of SCAP

(84)

miR-146a-5p Partially suppression of

Notch pathway

Promoted odontogenic and osteogenic

differentiation of DPSCs

(83)

BMP signaling

pathway

circRNA CDR1as Activation of the pSmad1/5/8 by inhibiting

miR-7 expression

Promoted osteogenic differentiation of PDLSCs (67)

miR-23a Inhibition of protein levels and phosphorylation

of Smad1/5/9

Inhibited osteogenic differentiation of PDLSCs (60)

miR-24-3p

miR-21

Regulating Smad5 Inhibited osteogenic differentiation of PDLSCs (61)

(86)

AKT/mTOR

signaling pathway

HDAC4 and

HDAC5 inhibitor

(LMK 235)

Activation of VEGF expression to activate

AKT/mTOR pathway

Promoted odontoblast differentiation of DPSCs (90)

PTEN lower enrichment of DNA methylation and the

repressive H3K9me2 in the promoter region

Promoted osteogenesis of DPSCs (91)

(104)

MAPK signaling

pathway

circRNA CDR1as

knockdown or

miR-7

overexpression

Inhibition of p38 MAPK phosphorylation Inhibited osteogenic differentiation of PDLSCs (67)

lncRNA GAS5 Activation of p38/JNK pathways Promoted osteogenic differentiation of PDLSCs (94)

NF-κB signaling

pathway

miR-132 Activation of NF-κB pathway Inhibited osteogenic differentiation of PDLSCs (95)

SFRP1, secreted frizzled related protein 1; EZH2, enhancer of zeste homolog 2.

promoting osteogenesis (104), we may control the lineage
commitment of DSCs and facilitate their future translation.
In this regard, histone deacetylase inhibitors (HDACi) have
been critically studied. As a potent HDACi, trichostatin A
(TSA) promoted odontoblast differentiation of DPSCs at certain
concentrations (105). While at higher concentrations, TSA
significantly accelerated mineralization of DPSCs by promoting
DMP1 andDSPP expression (106). In rat models of periodontitis,
TSA treatment resulted in increased alveolar bone volume and
decreased inflammatory infiltration levels, suggesting HDACi
as potential candidates for the treatment of periodontal
disease (107).

CONCLUSIONS

Epigenetic modifications participate in the determination of DSC
fate by regulating various critical signal pathways (Figure 2,
Table 2). Summarizing the current state of knowledge regarding
epigenetic cues would substantially promote the clinical research
of DSCs to a new level. Moreover, deciphering the epigenetic

code of DSCs would provide potential targets for DSC-mediated
regenerative therapies, facilitating DSC applications from bench
to bedside.
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