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To achieve the desired outcome in tissue engineering regeneration, mesenchymal stem

cells need to undergo a series of biological processes, including differentiating into

the ideal target cells. The extracellular vesicle (EV) in the microenvironment contributes

toward determining the fate of the cells with epigenetic regulation, particularly from

noncoding RNA (ncRNA), and exerts transportation and protective effects on ncRNAs.

We focused on the components and functions of ncRNA (particularly microRNA) in

the EVs. The EVs modified by the ncRNA favor tissue regeneration and pose a

potential challenge.
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INTRODUCTION

Mesenchymal stem cell (MSC) therapy solves several problems related to the paracrine system, and
it is not known for its salutary or rescue effects (1). Transplantation relies on the proliferation,
self-renewal, and differentiation of the MSCs to achieve the regenerative goal, but it is limited
by donator and guidelines. Cell-free therapy is also known as cell homing, which depends on
the host cell under the given microenvironment to complete the task (2). The factors influencing
the results of cell transplantation therapy also affect the results of cell-free therapy, including
quality, reproducibility, and production potency (3). Extracellular vesicle (EV) from MSC (MSC-
EV), especially highly homologousMSC, could perform tissue regeneration and immunoregulation
function and help in avoiding the aforementioned problems (4). For example, bone marrow
mesenchymal stem cell (BMSC) exosome rescues radiation-related bone defects, which is similar to
MSC therapy (5). Exosome from dental pulp stem cells has been demonstrated to be a biomimetic
tool for pulp regeneration (6). MSC-originated exosome has been shown to promote nerve
regeneration in an animal model (7). The regulation of each step of regeneration by EVs is critical.
Researchers have explored the bioactive content of EVs and have focused on the key aspect of
noncoding RNA (ncRNA) (4). There seems to be some connection between EV and ncRNA. The
parent cell targets the recipient cell via EV cargo, such as ncRNA, and leads to a biological process
(8). Exosome from the MSC mainly inhibits immunity and attenuate injury by delivery miR-182
(9, 10). Release of exosome and microRNA (miRNA) is significant for BMSC function and bone
homeostasis and can be inhibited by the simultaneous demethylation of P2rX7 (11). Shuttling
cytosolic ncRNA, EVs perform epigenetic regulation as a special nano-communication system
(12). The transcriptional and post-transcriptional genetic modification provides a controllable,
manageable, and feasible avenue for regulating the differentiation of MSCs into lineage-specific
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Graphical Abstract | Extracellular vesicle (EV)-derived ncRNA leads to the differentiation of the mesenchymal stem cell (MSC).

cells. The innate immunomodulatory activity of the MSCs
is co-constructed by exosomal miRNA and the arresting
domain-containing protein of the micro vesicles (13). The
aforementioned crosstalk is useful for cell-free MSC therapy.

Extracellular vesicles (EVs) can be classified into three
types according to their biogenesis and partial-overlap size:
exosome [30–100 nm (14) or 30–130 nm], microvesicles
(100–1,000 nm), and apoptotic bodies (50–4,000 nm) (4).
Additionally, microvesicles are also called large size EVs (lEVs)
or microparticles (MPs), and they were believed to carry
cell organelles and bioactive molecules, such as ncRNA (15).
According to the originating cells, EVs can be classified into
tumor-derived extracellular (TEVs), outer membrane vesicles
(OMVs) from bacteria, plant extracellular vesicles, and so on (16–
18); furthermore, the exosomes can be distinguished into CD63,
CD9, CD81, and cavelion1 subpopulations according to their
immunological features of the membrane (19). The membrane
of the EVs protects the RNAs from low PH (20) and helps them
to resist nuclease activity (21). Because of the protective effect,
low immunogenicity, and stability of the membrane, EVs serves
as a potential carrier for nano-delivery treatments (22). The EVs
mainly contain protein, nucleic acid, and lipid and vary based
on origin and condition (12). miRNAs are prone to enrich in
exosomes comparing to other EV species (23). Furthermore, the
nucleotide sequence motif is the ticket for miRNA packaging into
exosomes of specific types of cells (24). The plasma concentration
of individual RNAs is another decisive factor (20). Blebbing from

the dying cells, the apoptotic body mainly carries tightly-packed
organelles, proteins, and mRNAs (25, 26). The apoptotic bodies
contain miRNA, and both can activate the immune response
and promote cell death (27). Along with other factors, EVs
regulate the biological behavior of the target cell, such as
differentiation (28). The exosome from MSC has a considerable
role in oral-facial bone regeneration (29). This article
summarizes the ncRNA cargo in the EV, the manner of ncRNA
packaging, and the concerted effects of EV and ncRNA on the
target cell.

ncRNA EXISTS IN EVS

Interest in This Field
There are several publications on EVs and ncRNA, especially
exosome and miRNA, and they are increasing exponentially.
For example, in 2020 alone, articles pertaining to the mentioned
keywords amount to 1,390. Hence, over the past years, the
topic has received immense attention, and researchers have
contributed to the development of exosome-based ncRNA
delivery and the biological behaviors of the recipient cells.
It was first reported in 2007 that “exosomal” regulation of
cell reprogramming is dependent on miRNA and mRNA
(30). The genetic information of the EVs resembles that
of the parent cell (12), and miRNA always serves as the
biologically active material in the EV for downstream
clarification (31).
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The Achievement in This Field
Many types of ncRNAs, including transfer RNA (tRNA), Y
RNA, ribosomal RNA (rRNA), PIWI-interacting RNA (piRNA),
circular RNA (circRNA), and unannotated RNAs are contained
in the exosomes (4, 32–34). It has been demonstrated that RNase
I generates extracellular Y RNA and tRNA (21), and that these
RNAs partially exist in the open extracellular space (35). A stress-
regulated vesicle as tiRNA (tRNA) signaling approach promotes
proliferation, protein translation, and differentiation (36). PIWI–
piRNA complexes silence the targets during transcription via
transporting by MSC-EVs (37, 38). The release of EVs is believed
to be the clearing mechanism of circRNA from the plasma (39),
while EV also protects circRNA to contain the equilibrium (40).
Long noncoding RNAs (lncRNAs) from exosomes could be a
biomarker for disease (41), and the lncRNA–miRNA–mRNA
network has been investigated in exosomes (42). Furthermore,
the network function can be described as follows: (1) function as
a sponge; (2) co-expression of ncRNAs; (3) reciprocal repression;
(4) role of miRNAs as negative regulators of lncRNAs (43);
(5) other unconventional miRNA functions (44). Despite the
continued emergence of new species, nowadays, most reports
are focused on miRNA and lncRNA and great progress has been
made (45).

EVs have the potential to aid in the diagnosis, research, and
application because of the packaging of the cytoplasmic contents
into natural lipid membranes and their shuttle through the
natural barrier (46). Remarkably, miRNA selectively captured
in the exosomes is partially dependent on the endosomal
sorting complex required for transport (ESCRT) (47, 48), which
is the classical exosome biogenesis mechanism. Furthermore,
other factors are also involved in miRNA packaging. These
include CD63, MHC1, CD47 (49), neutral sphingomyelinase 2
(nSMase2)-ceramide (47), miRNA associated protein of RNA-
induced silencing complex (RISC) component (50), RNA binding
protein(synergistical function), membrane transportation (51),
and motif-binding protein of RNA binding protein (52, 53).
The isolation manner also impacts the RNA cargoes via
lipoproteins (54). The ncRNA content of the EV is also
determined by the cytoplasmic level of the genes of the parent
cell (12).

Naturally occurring exosomes can be transported to
neighboring and remote sites via body fluids (55) and alter
multiple genes and signaling pathways in the target cells (56).
The exosomes modified by tissue engineering navigate the
targets by membrane protein modification (57) or the physics
method (58).

The miRNA expression undergoes striking changes based
on the cell-cell communication in a specific microenvironment
(59). This interaction is also named “exosome-shuttle miRNAs”
(60). Remarkably, interaction also exists between the extracellular
matrix and the exosome (61).

Methodology in This Field
Using the advanced methods of quantitative real-time
polymerase chain reaction, microarray, and sequencing
technology, genomic complexities and functions were gradually
revealed by biological experiments or bioinformatic analysis.

Databases, such as Exocarta, Vesiclepedia, and EVpedia, make
the above information publicly accessible and develop the
relevant software, thereby creating a convenient platform for
upstream and downstream investigations (62). Normally, the
comparison has always been set among the EVs of different
origins because EVs and their originating cells always play
similar roles in biological behavior. However, differential
expression also exists between the originating cells and their
exosomes (63, 64).

ORIGINATING CELLS CONTRIBUTE TO
EV-DERIVED ncRNAS

In the early stages of life, the epigenome has been determined
by both inherited and nutritional factors. Subsequently, the
environmental factors become involved, that is, external stimuli
(65). Cells present in the microenvironment experience various
physical, chemical, and biological changes, and they can adjust
themselves based on epigenetic regulation and delivery crosstalk
information, such as the release of content-reprogramed EVs
(66–68). Generally, MSCs from craniofacial tissues are roughly
divided into BMSC, dental MSC, and adipose stem cell
(ADSC) with potential for hard and soft tissue repair and
regeneration. Under specific conditions (origin, inflammation,
aging and apoptosis, physical stimulus, ncRNAmodification, and
differentiation), the cells differ in their ability to express EVs
(Table 1).

The Expression of ncRNA in MSC-Origin
EVs
Exosomes from ADSC promote neuronal survival by
transporting MALAT1 (69). Microvesicles from the same
parent cell promote both proliferation and migration by
delivering miR-210 (70). ADSC and BMSC share highly identical
small RNA profiles (mainly involving miRNA and snoRNA), and
so does the exosome. However, differential expression of tRNA
was observed, which could be explained by tissue origin and
stemness (33). The expression of piRNA in exosomes from stem
cells from apical papilla (SCAP) provides a novel insight into the
functions, such as biological regulation (38). miR-1470 is one of
the exosomal biomarkers of BMSCs for its high expression when
exosomes from fibroblast serve as the control (71). Equipped
with miR-92a-3p, miR-26a-5p, miR-23a-3p, miR-103a-3p, and
miR-181a-5p, exosome from neuronal stem cell has therapeutic
potential (78).

The Modification of Cells Triggers EV to
Transfer ncRNAs
Macrophage polarization changes the EV function in bone
repair/regeneration by adjusting enclosed miRNA (79).
Inflammation modifies the loading and quality of EVs by RNA
binding protein FMR1 and ESCRT pathway (80).

Aging leads to the change of exosome from BMSC,
which clarifies immune-associated miRNA profiles, and toll-like
receptor 4-regulating miR-21-5p is highly expressed in the pre-
pubertal group (81). Similarly, the upregulation of miR-128-3p
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TABLE 1 | A summary of several common ncRNA derived from extracellular vesicles (EVs) of mesenchymal stem cells (MSCs).

Noncoding RNA- target

gene

Target cell Parent cell and EV type Biological behavior

MALAT1- PKCδII (69) HT22 neuronal cells ADSC and exosome Survival and proliferation

miR-210-RUNX3 (70) human umbilical vein endothelial cells ADSC and microvesicle Proliferation, migration and invasion

miR-1470-c-Jun (71) CD4 + CD25 + FOXP3 + Tregs BMSC and exosome Differentiation

miR-128-3p-Smad5 (72) MSC aged MSC and exosome Inhibition of osteogenic differentiation

miR-31a-5p-SATB2 (73) BMSC BMSC from aged rats and exosome Osteoclastogenesis

miR-126-SPRED1 (74) human umbilical vein endothelial cell hypoxic human umbilical cord MSC and

exosome

Angiogenesis, proliferation and migration

miR-181c-TLR4 (75) macrophages human umbilical cord MSC and exosome Inflammation reverse

H19-miR-106-Angpt1 (76) /* BMSC and exosome Osteogenesis and angiogenesis

miR-122-5p, miR-25-3p,

and miR-142-5p 1 (77)

rat BMSCs Osteogenic differentiated human

periodontal ligament stem cell and

exosomes

Osteogenic differentiation

*This conclusion is derived from experiment in vivo.

1 This article does not involve downstream functional verification.

in the exosome of the BMSC of an aged mouse inhibits fracture
healing (72). miR-31a-5p from BMSC exosome of aged rats
promotes osteoclastic and attenuates osteoblastic differentiation,
which is similar behaviors when compared with its origin (73).
Staurosporine-treatment results in ribosomal RNA cleavage and
degradation (82).

Hypoxia preconditioning changes the content of miR-126
in the exosomes from MSCs and makes it fit for bone
fracture healing (74). Hypoxia also induces angiogenic miR-
135b to increase expression in exosomes (83). Mechanical strain
upregulates miR-181b-5p in the exosomes of osteocytes (84).

miRNA-modified originating cell leads to the same miRNA
increase in the exosome. In other words, transfection of miRNA
can promote the secretion of itself in the supernatant (4, 85).
For example, miR-181-5p modified adipose stem cell delivers
therapeutic EV to the damaged site and contributes to recovery
via activating autography (86). miR-181c-overexpressed MSC
exosome significantly reduces the burn origin inflammation (75).
Exogenous mimic or inhibitor has been reported to regulate the
downstream cell with more efficiency and less toxicity compared
with the conventional manner (87). Microvesicles from miR-
34a overexpressing BMSC carry three-fold higher miR-34a than
the control (88). Transfection of miR-20a makes BMSC-EV
favorable for alveolar bone-implant osteointegration via pro-
osteogenic effects (89). Similarly, osteogenic differentiation-
related to miR-375 can be capsulated by adipose stem cell
exosome and the exosome can induce BMSC osteogenic
commit (90).

During osteogenesis, BMSC releases lncH19-containing
exosomes which have been validated by observing the bone
microstructure of immunocompromised nude mice (76).
Osteogenic induction modifies the EV cargoes of PDLSC
with miR-122-5p as the top one by miRNA differential
expression analysis (77). Moreover, different cell types
possess distinct RNA profiles (91), and the miRNA in
adipose-derived exosomes is related to insulin-associated
metabolism (92).

EV-DERIVED ncRNA INDUCES
DIFFERENTIATION

The biogenesis of EVs is implicated in a series of biological
processes, including the differentiation of MSCs. Exchange of
EV ncRNA cargo is also important in achieving cell population
homeostasis between the progenitor cell and the differentiated
cell (93). RNase completely abolishes the biological effect of
exosome-like microvesicles, which indicates the participation of
RNA-like components (94, 95). EV reprograms MSCs and makes
them produce more specific EVs to disseminate miRNA and
mRNA (96).

EV-Derived ncRNA Induces Osteogenic
Differentiation
Exosomes carrying miR-122-5p negatively regulate SPRY2 to
initiate osteoblastic phenotypes (97). Radiation-induced gingival
fibroblasts highly express miR-23a in their exosomes, thereby
resulting in the osteogenic differentiation of BMSC (98). The
lncRNA RUNX2-AS inhibits the key osteogenic regulator—,
RNUX2, by the transportation of exosomes (99). miR-21/Smad7
axis detected by the exosome of BMSC is the mechanism of
negative osteogenesis in osteoporosis patients (100). After
21 days of osteogenic inducement, miR-101 is upregulated
in BMSC-derived exosomes, and the target demonstrates
osteogenic potential upon functional verification (101).
miR-335/VapB/Wnt/β-catenin axis promotes bone fracture
recovery and osteoblast differentiation, which is attributed to
BMSC-derived EVs (102). Osteogenic and odontogenic lineage
progression includes the epigenic involvement of RUNX2 and
BMP2 (103, 104). Furthermore, exosomal miR-135a enhances
the output of the dentin matrix via Wnt/β-catenin signaling
pathway and contributes to tooth development (105). NEAT1-
containing exosomes induce BMSC osteogenic commitment
by sponging miR-205-5p (106). MiR-223 decreased exosomes
promote differentiation into osteoblasts (107). Exosomes from
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BMSC promote osteoblast proliferation and differentiation by
releasing STAT1-targeting miR-935 (108).

EV-Derived ncRNA Induces Chondrogenic
Differentiation
Exosomal miR-92a-3p regulates chondrogenic development
by directly targeting Wnt5A and therefore holds therapeutic
potential in osteoarthritis (109). Chondrogenic differentiation
also makes the BMSC exosomes highly express 35 kinds of
miRNA, including miR-92a (110). Chondrocytes induce BMSC
chondrogenic differentiation via the delivery of miR-8485-
containing exosomes in a co-culture system (111). miR-95-5p is
overexpressed in the chondrocytes, and the chondrocytes in turn
produce chondrogenic exosomes, which can inhibit HDAC2/8
(112). Adipose stem cells deliver exosomal miR-145 and miR-221
to regenerate the cartilage and ameliorate osteoarthritis (113).

EV-Derived ncRNA Induces Angiogenic
Differentiation
Vascularization is considered the key factor for successful
transplantation and regeneration as vascular supply necessary
nutrition and oxygen. Stem cells from deciduous teeth (SHED)
aggregates secrete miR-26-enriched exosomes to forge a suitable
microenvironment for pulp regeneration (114). Serum exosomal
miR-1956 stimulates the angiogenic differentiation of adipose
stem cells by activating Notch-1 (115).

EV-Derived ncRNA Induces Neurogenic
Differentiation
miR-17-92 cluster-enriched MSC-exosomes augment neural
plasticity and functional recovery by regulating the cluster target
gene (116). Transferring exosomal miR-133b and miR-124-3p
regulates nerve outgrowth and neurological disease recovery and
reduces neuroinflammation (117, 118). miR-126-loaded MSC
exosomes may be a candidate for the treatment of neurological
injury, with excellent angiogenic and neurogenic potentials (119).
MSC exosomal miR-199a-3p/145-5p plays a critical role in
neuronal differentiation (120).

EV-Derived ncRNA Induces Adipogenic
Differentiation
Exosomal miR-92a-3p regulates C/EBPα at the post-
transcriptional level to block adipogenic differentiation of

adipose stem cells (121). Obesity and high-fat treatment break
the bone–fat equilibrium and downregulate the expression
of lnc H19 in the circulation and output of BMSC-origin
exosomes (122).

CHALLENGES AND PROSPECTS

Although organelles, cytokines, and lipids enrich EV constituents
(123), this review implicates ncRNA. To facilitate clinical
translation, high purity, low cost, and largescale exosome
isolation techniques need to be developed (124). 3D culture and
isolation by tangential flow filtration can potentially pave the
road from bench to bed (125). A specific aptamer for exosomal
application is also necessary since the exosomes significantly
enhance the osteoblastic differentiation of BMSC in vitro but not
in vivo (126).

Largescale studies on RNA according to the miRNA
nomenclature guidelines are also inadequate; so are the studies
on clusters and other EV-derived ncRNAs (excluding lncRNA
and miRNA). Moreover, the autocrine system is an issue worth
exploring (127).

It is hoped that EVs would be a better drug vehicle than
lipids since they can pass natural biological barriers (128, 129)
or exert functions with their anatomical apposition (130). They
are safe for use in the field of oncology and can be modified
using multiple methods (131). Moreover, “EV encapsulated RNA
drugs” combined with engineering modification is a powerful
cell-free gene therapy tool that holds considerable promise for
regenerative therapy in the future.
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