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Mesenchymal stem cells (MSCs) can differentiate into multiple cell lines, which makes

them an important source of cells for tissue engineering applications. They are defined

by the capability to renew themselves and maintain pluripotency. This ability is modulated

by the balance between complex cues from cellular microenvironment. Self-renewal and

differentiation abilities are regulated by particular microenvironmental signals. Oxygen

is considered to be an important part of cell microenvironment, which not only acts

as a metabolic substrate but also a signal molecule. It has been proved that MSCs

are hypoxic in the physiological environment. Signals from MSCs’ microenvironment or

niche which means the anatomical location of the MSCs, maintain the final properties

of MSCs. Physiological conditions like oxygen tension are deemed to be a significant

part of the mesenchymal stem cell niche, and have been proved to be involved in

modulating embryonic and adult MSCs. Non-coding RNAs (ncRNAs), which play a

key role in cell signal transduction, transcription and translation of genes, have been

widely concerned as epigenetic regulators in a great deal of tissues. With the rapid

development of bioinformatics analysis tools and high-throughput RNA sequencing

technology, more and more evidences show that ncRNAs play a key role in tissue

regeneration. It shows potential as a biomarker of MSC differentiation. In this paper, we

reviewed the physiological correlation of hypoxia as a unique environmental parameter

which is conducive to MSC expansion and maintenance, discussed the correlation

of tissue engineering, and summarized the influence of hypoxia related ncRNAs on

MSCs’ fate and regeneration. This review will provide reference for future research of

MSCs’ regeneration.
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INTRODUCTION

Hypoxia Microenvironment in Mesenchymal Stem Cells
Mesenchymal stem cells (MSCs) represent a subset of adult stem cells derived from the mesoderm
lineage. The identification standard established by the International Society for Cell Therapy (ISCT)
is to prove the positive expression characteristics of CD73, D90 and CD105, and lack of expression
of CD14, CD34, CD45, and human leukocyte antigen-DR (HLA-DR) (1, 2). As non-hematopoietic
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progenitor cells, MSCs can be obtained from a variety of
human tissues, which include bone marrow, adipose tissue,
skin and dental pulp, etc (3, 4). Multiple tissue cells derived
from the mesoderm and neuroectoderm can be differentiated by
MSCs, such as bone marrow stromal cells (BMSCs), fibroblasts,
osteoblasts, chondrocytes, adipocytes, and vascular endothelial
cells, even neurons and glial cells of the nervous system (5–7).

MSCs in vivo help maintain and regulate the homeostasis
of related organs, and the modification or transplantation of
MSCs seems to be the preferred treatment method in a variety
of pathological processes (8). Specifically, stem cells are life-long
reservoirs of several cell types, which have the characteristics
of fighting inflammation and other diseases. Hence, MSCs have
been used as the most practical stem cells in the treatment of
different systemic diseases (9).

Stem cells and their precursors exist in the stem cell niche
(10), which is a particular cell microenvironment. Several recent
literatures suggest in the stem cell niche, hypoxia environment
plays a key role for keeping the phenotype of precursor cells and
undifferentiated stem cells (11). Hypoxia helps stem cells to stay
in a quiescent status and has the necessary self-renewal rate. The
response of stem cells to hypoxia is one of the main mechanisms
for adapting to changes in the external and internal environment.
It has been observed for decades that stem cells can respond
immediately to hypoxia (12). Recent findings have shown that
hypoxia not only induces the proliferation of several stem cells in
vitro, but also participates in stem cells differentiation and survive
(13, 14).

Inflammation and malignant tumors all present hypoxic
environment, and bone reconstruction under physiological
condition is also strictly controlled by signaling pathways related
to hypoxia. The physiological bone reconstruction might be
caused by the hypoxic environment of the bone cell niche (15).
Studies in mice show that the lowest oxygen tension is 1.3 kPa
(10 mmHg; tissues lower than this level are commonly known
as hypoxic tissues) (16, 17). Mammalian adaptation to hypoxia
at the cellular and systemic levels is mainly provided by the
transcription regulator hypoxia inducible factor (HIF). HIFs are
heterodimeric transcription factors, including a α subunit (HIF-
1α, HIF-2α, HIF-3α) and a composition β subunit (HIF-β) which
is vital in inducing the response of cells to hypoxia (18, 19).
HIF1-α and HIF2-α are similar in structure (20). The stability of
these molecules is dominated by the oxygen availability through
the iron-dependent enzyme prolyl hydroxylase (PHDs) after
transcription (21).

Different oxygen pressure and hypoxia exposure time may
play important and different roles in cell development. Effects
of hypoxia on the influences of MSCs of literature were
shown in Table 1. Transcription factors and cytokines obviously
affect these processes. Studies have proved that factors which
regulate the behavior of stem cells and progenitor cells
have an important relation with HIFs. The HIFs act as a
molecular framework for hypoxia to control differentiation
and survival of cells (43). Hypoxia is by no means a
purely pathological state. Hypoxia often occurs under various
physiological conditions, especially when rapid tissue growth
lags behind the development of blood supply. First, it

is related to embryogenesis under 1-5% oxygen content.
However, this situation is not harmful to normal embryonic
development; moreover, it seems to be an indispensable
and completely “selected” one in the evolutionary process
of mammalian embryo formation. This may indicate that
under hypoxic conditions, all developing tissues have regular
relationships (10).

In some aspect, hypoxia is thought to be the better
environment for the maintenance and function of various stem
cell types (such as embryos, hematopoiesis, mesenchymal and
neurons). It promotes stem cells to remain at rest at the
necessary rate of self-renewal. There is a certain regulatory
mechanism to maintain hypoxic state in stem cell niche.
This microenvironment basically affects the proliferation and
differentiation ability of stem cells and protects cells against
the toxicity and mutagenicity of oxygen free radicals. The key
element of these mechanisms is HIF, a complex of hypoxia
inducible transcription factors (10).

Under hypoxia condition, HIF complexes can induce Notch
signaling by attaching to Notch receptors (44). Notch signal
plays a key role in the determination of cell survival. Notch
signal induced by HIF has been proved to be related to the
determination of stem cell fate. In relative studies, hypoxia and
HIFs have been shown to be involved in osteogenesis, cartilage
formation, angiogenesis, heart formation and the formation
of neural crest (34, 45–47). With the introduction of new
technologies into this field, the development of single cell RNA
sequencing, transcriptome sequencing and material technology,
recent researches have vividly described some epigenetic
changes, including hydroxy methylation, histone modification,
DNA methylation, organ like and three-dimensional structure
formation in early embryonic development, induced pluripotent
stem cells (iPSCs) and somatic reprogramming. The interaction
between hypoxia and epigenetics has potential application in
regenerative medicine (48). Hypoxia can affect the level of
epigenetic modification of cells. The coexistence of transcription
factors suggests that hypoxia may have a relation with epigenetics
in cell reprogramming regulation (48).

It is undeniable that HIF signaling and epigenetics are
involved in the events that lead to stem cell proliferation and
differentiation. The review may help deepen the understanding
of tissue regeneration microenvironment.

Non-coding RNAs
Non-coding RNAs (ncRNAs) are molecules that have no or
very low ability to code protein. In fact, although most human
genes can be transcribed into RNAs, some of the RNAs cannot
be translated into proteins (49). Recently, with the progress of
multidisciplinary methods and high-throughput technologies,
we begin to know more about ncRNAs and its’ signaling
network. Generally speaking, ncRNAs are found to be involved
in a variety of biological processes, regulating physiological and
developmental processes and even diseases.

Based on different regulatory effects, ncRNAs are generally
divided into two categories. Housekeeping ncRNAs are widely
expressed in cells and mainly modulate the general function
of cells. Although regulatory ncRNAs are generally regarded
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TABLE 1 | Effects of Hypoxia on the influences of MSCs.

MSCs types Oxygen concentration Influences References

Human bone marrow-derived 1% Induce migration and angiogenesis (22)

Human dental pulp 1% Enhance the angiogenic potential (23)

Human bone marrow-derived 5% Enhance clonogenicity but impair differentiation (24)

Human bone marrow-derived 2% Induce osteogenic differentiation (25)

Human bone marrow-derived 3% Inhibit osteogenic differentiation and enhances stemness (26)

Rat bone marrow-derived 1% Regulate the osteogenesisin a time-dependent manner (27)

Human dental pulp 1% Accelerate bone healing (28)

Human bone marrow-derived 1% Induction of adipocyte-like phenotype (29)

Human bone marrow-derived 2% Enhance proliferation and tissue formation (30)

Placental-derived 5% Promote osteogenesis (31)

Human bone marrow-derived 1% Reduce proliferation and differentiation (32)

Human urine/dental pulp/amniotic fluid 5% Enhance cell proliferation rate, retention of stem cell

properties, inhibition of senescence, and increased

differentiation ability

(33)

Human bone marrow-derived 1% Enhance chondrogenesis (34)

Rat bone marrow-derived 5% Enhance osteochondrogenesis (35)

Human dental pulp 5% Promote mineralization (36)

Murine bone marrow 1% Promote the progression of the chondrocyte lineage (37)

Human apical papilla 1% Promotes osteogenic and neurogenic lineages (38)

Human periodontal ligament 2% Induce osteogenesis and angiogenesis (39)

Human bone marrow-derived 1% Increase chemotaxis migration (40)

Human bone marrow-derived 2% Reduce osteogenic differentiation (41)

Human periodontal ligament 2% Enhance osteogenic differentiation (42)

as significant RNA molecules, they play a regulatory role
in gene expression at the epigenetic, transcription and post-
transcriptional levels (50–52).

According to the average size of regulatory ncRNAs, they
can be farther divided into small ncRNAs containing <200 nt
transcripts and long non-coding RNAs (lncRNAs) larger than
200 nt. Most of small RNAs can be divided into small interfering
RNAs (siRNAs), microRNAs (miRNAs) and piwi-interacting
RNAs (piRNAs). However, a number of variable-length non-
coding RNAsmay belong to both categories, like enhancer RNAs,
circular RNAs (circRNAs) and promoter-related transcripts (53).

MiRNAs are endogenous, single-strand small ncRNAs and
consist of 20-25 nucleotides. With a complex enzymatic
pathway, they are usually synthesized from larger RNAs
transcripts. MiRNAs can be transcribed into pri-miRNAs by
RNA polymerase II or III, or processed from ncRNAs, or
processed from introns of protein-coding genes (miRtrons) (54).
As the largest type of small non-coding RNAs produced by
the transcribed hairpin loop structure (55, 56). miRNAs could
modulate gene expression in and outside nucleus with different
biological mechanisms, and silence gene after transcription
(56). As a key participant in the complex interaction between
different RNAs species, miRNAs have been widely concerned by
researchers in recent years.

LncRNAs refer to transcripts with a length of more than 200
nt and no capabilities to code protein. According to their position
relative to genes that code protein, lncRNAs can be divided into

five subclasses (57): (1) promoter-related lncRNAs, (2) enhancer-
related lncRNAs, (3) natural antisense transcripts, (4) genome-
related (sense) lncRNAs and (5) long intergenic ncRNAs (58).
Based on their regulatory effects on DNA sequences, lncRNAs
can be subdivided into trans-lncRNAs (trans-acting lncRNAs)
and cis-lncRNAs (cis-acting lncRNAs), the former regulating
the expression of close-range genes (59). Some ncRNAs can be
farther processed to produce small ncRNAs, like miRNAs (60).

CircRNAs are endogenous circular RNAs with a covalent
closed loop structure. Although it has been discovered for many
years, circRNAs has recently received further attention with the
development of bioinformatics analysis and deep sequencing
(61). CircRNAs are mostly formed by the “reverse splicing” of
pre-mRNAs and are mainly found in the cytoplasm or exosomes
(62, 63). These circRNAs are more stable than linear RNAs
because they have a special form with a covalent ring instead
of linear form, which makes it hard for ribonuclease R to
degrade them (64). CircRNAs can be divided into four types:
ciRNAs, ecircRNAs, tricRNAs, EIciRNA, based on the pattern
of biogenesis and the source of the genome. The size range of
circRNAs is very wide, from 100 nt to more than 10,000 nt,
and most circRNA in mammals or plants are made of hundreds
of nucleotides (64, 65). Just like other regulatory non-coding
RNAs, circRNAs work in plenty of biological processes, like
modulating alternative RNA splicing or transcription (62), acting
a competitive role as endogenous RNA (ceRNAs) (66) or miRNA
sponges (67).
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Thanks to the rapid development of sequencing technology
and bioinformatics methods, in the past few decades, different
types of ncRNAs have been found, constructing a complicated
ncRNAs system. There is ample evidence that ncRNAs acts
an important biological role in regulating cellular mechanisms.
They may regulate cell behaviors of stem cells in their niche. In
addition, complex microenvironmental factors may also induce a
variety of ncRNAs to influence the fate of these cells.

Hypoxia Induced ncRNAs
Under hypoxia, more than 800 target genes related to different
signaling pathways such as apoptosis, proliferation, metabolism
and angiogenesis were activated. Hypoxia inducible factor-1
(HIF-1) plays an important role in hypoxia microenvironment
as a key mediator (68). HIF-1 complex transcriptionally activates
ncRNAs in response to hypoxia. Under normal circumstances,
PHDs and other proline hydroxylases hydroxylate the subunits
of HIF-1/2α. The von Hippel-Lindau (VHL) protein further
recognizes the hydroxylated HIF-1/2α as a target for subsequent
ubiquitination and proteasome degradation. Under hypoxic
conditions, HIF-1/2α cannot be hydroxylated and gradually
accumulates, nuclear translocation, and forms dimers with HIF-
β. It forms a transcription initiation complex with the recruited
CBP/p300 and binds to the promoter of the target gene to induce
target gene expression. Hypoxia can induce the expression of
ncRNAs. ncRNAs including miRNAs, lncRNAs or circRNAs are
involved in regulating cell proliferation, cycle and death and
other cell behaviors (Figure 1). Some of them can participate
in the regulation of HIFs (69). Such as, lncRNA H19 was
found highly expressed under hypoxia and may be involved
in regulating stem cell behaviors (70). LncRNA HIF-1α-AS2
facilitates the maintenance of stem cell-like cells in hypoxic niche
mesenchymal glioblastoma. The expression of ncRNAs in MSCs
was significantly altered under different hypoxia conditions
(71). For example, in 0.5% O2 stimulated BMSCs, 15 common
miRNAs (miR-22, miR-29b, miR-214, miR-140-3p, miR-17, miR-
24, miR-320a, miR-26a, miR-1233, miR-222, miR-193b, miR-
150, let-7F, let-7a, and miR-516a-5p) were significantly changed
(72). miR-210 is a major hypoxia-induced miRNA in most
cells (73). Dental pulp stem cells (DPSCs) showed stronger
proliferation and lower osteogenic/odontogenic differentiation
potential under hypoxia. Compared with normoxic group, 60
mRNAs (25 up-regulated, 35 down-regulated), 47 lncRNAs
(20 increased, 27 decreased) and 14 miRNAs (7 up-regulated,
7 down-regulated) were differentially expressed in DPSCs in
hypoxic group. After a bioinformatics analysis, 7 mRNAs of
GRPR, ERO1L, ANPEP, EPHX1, PGD, ANGPT1 and NQO1 and
5 lncRNAs of AF085958, AX750575, UC002CZN.2, RP3-413H6.2
and six twelve leukemia (STL) may be associated with each other.
twenty eight mRNAs including GYS1, PRKACB and NQO1 and
13 miRNAs including hsa-miR-3916 and hsa-miR-192-5p may
be correlated with each other and play roles (74). There were
102 differentially expressed circRNAs in BMSCs under hypoxia
(1% O2) pretreatment. Its function may mainly regulate cell
development, differentiation and regulation by affecting gene
stability. Transcriptional abnormalities are most prominent in
themitogen-activated protein kinase (MAPK) signaling pathway,

which may be the core pathway associated with hypoxia in
cells (75).

In the previous study of our group, it was found from high-
throughput data that a total of, 1046 mRNAs were differentially
expressed in periodontal ligament stem cells (PDLSCs) under
hypoxia (2% O2) and normoxia culture. Compared with
normoxia group, 516 mRNAs were up-regulated and 530 were
down-regulated under hypoxia. A total of 449 lncRNAs were
differentially expressed, of which 406 were increased and 43
decreased in the hypoxia group, and 53 circRNAs were found to
be differentially expressed in the hypoxia group, including 17 up-
regulated and 36 reduced. In addition, 15 miRNAs were found to
be differentially expressed in the hypoxia group, of which 6 were
increased and 9 were decreased.

Hypoxia Induced ncRNAs With a Role in
the Fate of MSCs
Studies have shown that BMSCs exhibit greater colony-forming
potential in hypoxia (35, 76), proliferate faster (77, 78), and better
maintain their undifferentiated properties in hypoxia (26, 30).
Hypoxia not only affected the differentiation of BMSCs, but
the migration ability and survival rate of MSCs in hypoxia
preconditioning group were significantly higher than those in
normoxia group (79, 80). In addition, HIF-1α-mediated SDF-
1 expression may be the molecular mechanism of this process
(40). In the studies of BMSCs, hypoxia induced senescence
of MSCs, possibly through changes in intestinal flora (81).
However, most studies have shown that hypoxia can inhibit the
senescence of BMSCs and help maintain their characteristics
(33, 82, 83). In vivo, transplanted MSCs pretreated with hypoxia
show higher survival and tissue protection, and microRNA-326
(miR-326) expression in hypoxic MSCs is significantly higher
than that in normoxic MSCs (83). Hypoxia pretreatment can
simulate physiological conditions, activate the adaptation process
of MSCs under physiological conditions, and improve the niche
of MSCs, which is conducive to the successful transplantation
of MSCs (84). It was found that hypoxic preconditioning
of BMSCs (85) and neural stem cells (NSCs) (86) enhances
nerve regeneration and promotes neurological recovery after
intracerebral hemorrhage.

As exhibited in Table 1, the results showed that the
proliferation and differentiation potential of odontogenic
MSCs were changed under hypoxia stimulation. However, the
results are uncertain due to differences in cell sources and
experimental conditions. Hypoxia has been reported to promote
the proliferation of odontogenic stem cells (36, 42, 87). Although
some scholars believe that the proliferation and survival of
odontogenic stem cells are not changed or inhibited under
hypoxia (38, 88). The proliferation of PDLSCs was enhanced
in 24 h under 2% O2 (39). It was also showed that under
different oxygen concentrations (21%, 5%, and 1% O2), the
proliferation ability of PDLSCs showed a trend of first increasing
and then decreasing under lower oxygen concentrations (89).
This indicates that for stem cell proliferation, short-term or
mild hypoxia may stimulate the adaptive response of cells and
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FIGURE 1 | Under normoxia, PHDs and other proline hydroxylases hydroxylate the subunits of HIF-1/2α. The VHL protein further recognizes the hydroxylated

HIF-1/2α as a target for subsequent ubiquitination and proteasome degradation. Under hypoxia, HIF-1/2α cannot be hydroxylated and gradually accumulates, nuclear

translocation, and forms dimers with HIF-β. It forms a transcription initiation complex with the recruited CBP/p300 and binds to the promoter of the target gene to

induce target gene expression. Hypoxia can induce the expression of ncRNAs. ncRNAs including miRNAs, lncRNAs, or circRNAs are involved in regulating cell

proliferation, cell cycle and cell death and other cell behaviors.

promote proliferation, while severe or long-term hypoxia may
lead to cell death.

Most studies have shown that hypoxia-induced ncRNAs
participate in the regulation of migration, proliferation,
apoptosis, aging and other survival abilities of different MSCs
(Table 2). miR-210 supports the survival of stem cells under
hypoxia (96). Ischemia-preconditioning (IP) can improve the
survival rate of MSCs under hypoxia, and increase the expression
of miR-210. Hypoxia-induced lncRNA H19 expression was
negatively correlated with cell injury. Further studies suggested
that H19 might activate the Wnt/β-catenin and PI3K/AKT
pathways by inhibiting the expression of miR-107, and alleviate
hypoxia-induced NSC cell damage (97).

It is reported that miR-326 expression is significantly
upregulated in hypoxic BMSCS, hypoxic preconditioning
upregulates miR-326/PTBP1/PI3K-mediated autophagy (84),
LncRNA-P21, HIF-1α, and CXCR4/7 expressions were increased
in hypoxic preconditioning induced BMSCs. The migration
and viability of MSCs was promoted by P21 under in vitro
hypoxic preconditioning (79). DNM3OS/miR-127-5p /GREM2

may be involved in hypoxic chondrocyte differentiation (95).
H19 enhanced the survival rate and angiogenesis potential of
BMSCs in vitro. It can directly up-regulate VEGFA expression by
inhibiting miR-199a-5p as a competitive endogenous RNA (90).

Hypoxia Induced ncRNAs Participating in
the Differentiation of MSCs
Hypoxia stimulation has significant effects on gene expression
and is therefore thought to play an important role in early
embryonic development, cell reprogramming and differentiation.
In general, stem cells show pluripotency and undifferentiated
maintenance state under hypoxia (98). Some studies have shown
that hypoxia enhances osteogenic/odontogenic differentiation of
odontogenic stem cells (28, 88, 99), while others have reported
contrary results (100). Moreover, under severe hypoxia (0.01%
O2) or hypoxia conditions, cell death has been reported to
occur (23).

Reduced differentiation of human BMSCs into adipocytes
and osteoblasts was found in hypoxic culture (32). However,
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TABLE 2 | Non-coding RNAs involved in regulating the fate and regeneration of MSCs under hypoxia.

ncRNAs Cell type Impact of hypoxia on

ncRNAs expression

Effects Mechanism References

LncRNA-H19/miR-

199a-5p

Human MSCs Up-regulated/down-

regulated

Improve survival and

angiogenic capacity.

VEGFA/miR-199a-5p

axis

(90)

miR-326 Human MSCs Up-regulated Delay senescence by

upregulating autophagy

PI3K/PTBP1 (84)

LincRNA-p21 Human MSCs Up-regulated Promote MSC

migration and survival

capacity

HIF-1α/CXCR4 and

CXCR7 pathway

(79)

miR-210 Human MSCs Up-regulated Increase survival rates HIF-1α/Akt/ERK

pathway

(91)

LncRNA-UCA1/miR-

873-5p

Human MSCs Up-regulated/down-

regulated

Antiapoptotic and

therapeutic effects

miR-873-5p/XIAP axis (92)

miRNA-21 Human MSCs Up-regulated Promote maxillofacial

bone regeneration

PTEN/PI3K/Akt/HIF-1α (93)

CircCDK8 PDLSCs Up-regulated Repress the osteogenic

differentiation

ER stress/autophagy (94)

LncRNA

DNM3OS/miR-127-5p

Rat MSCs Up-regulated/down-

regulated

Inhibit chondrogenic

differentiation

DNM3OS/miR-127-

5p/GREM2

axis

(95)

studies were shown that the differentiation ability of BMSCs is
reduced under hypoxia compared with normoxia, supporting
the idea that hypoxic condition promotes the undifferentiated
state of BMSCs (26, 101). In conclusion, oxygen tension is an
important factor affecting cell fate and regulating cell state. The
expressions of OCT-4 and REX-1 are increased in human MSCs
under chronic hypoxia (2% O2) and enhances colony forming
unit-fibroblast (CFU-F) capacity while preserving their ability to
differentiate into osteoblasts or adipogenic (76).

Hypoxia (3% O2) was also used to isolate marrow-isolated
adult multilineage inducible (MIAMI) cell populations from
pluripotent human bone marrow (102). Hypoxia affects the
differentiation characteristics of BMSCs, which may be related to
the physiological oxygen demand of differentiated cells. It was
found that hypoxia enhanced in vitro and in vivo osteogenic
potential of rat MSCs (35), while inhibited in vitro osteogenic
potential of MIAMI cells (26), and down-regulate osteogenic
genes in vitro (103). The angiogenic ability of mouse MSCs
was enhanced under 2% O2 (22), and the expression levels of
chondrogenic markers SOX-9, aggregative proteoglycan and Col
IIa were increased under 1% O2 (37). Hypoxia (1% O2) for 24 h
induced the formation of lipid droplets in human MSCs, but did
not up-regulate the expression of adipocyte genes (29).

Numerous studies have shown that miR-210 promotes
cell differentiation. Hypoxia-induced miR-210 may promote
osteoblast differentiation by inhibiting ACVR1B-Smad 2/3
and activating Smad 1/5/8 (104). Hypoxic-associated miR-
21 promotes angiogenesis of human umbilical cord blood
derived MSCs (UCBMSCs). miR-21 has been demonstrated
to promote osteogenesis and enhance osteogenic regeneration
of critical size defects through the PTEN/PI3K/Akt/HIF-1α
pathway (93). LncRNA UCA1 of MSCs derived exon plays
a protective role through miR-873-5P/XIAP axis in hypoxia
(92). CircCDK8 inhibits PDLSCs osteogenic differentiation by

triggering autophagy activation in hypoxic microenvironment
(94). The relevant ncRNAs involved in regulating the fate and
regeneration of MSCs under hypoxia were listed in Table 2.

DISCUSSIONS

One of the striking features of mammalian development and
of human physiological and pathological conditions is hypoxia-
mediated regulation of stem cell fate, or a decline in oxygen
utilization. Therefore, oxygen sensing is necessary because
it allows cells to instantly adapt to inadequate amounts of
potassium dihydrogen phosphate. HIF is the main regulatory
mechanism. In addition, there is increasing evidence that the
hypoxic microenvironment is the niche of most types of stem
cells, which may be beneficial for stem cell maintenance and
the continued replacement of dead or damaged cells in body
tissues (105).

The optimal oxygen concentration for stimulating
differentiation and survival of stem cells is uncertain and may
be influenced by other culture conditions (69). Physiologically
normoxic oxygen is considered hypoxic because there is a
conserved molecular reaction in the oxygen tension range of
2-9%. Molecular channels that may be involved include HIF,
oxygen ion channel, rapamycin target (mTOR) and endoplasmic
reticulum stress response (106–108). As important regulators
of stem cell dryness, Oct4 and Notch signals have also been
confirmed to be activated by hypoxia in a variety of stem cells
(109). Other studies have shown that different degrees of hypoxia
have different effects on the proliferation and differentiation
of stem cells, suggesting that the proliferation or stasis of
stem cells can be regulated by the oxygen concentration of
local ecological niche. For example, proliferation of ESCs is
inhibited and differentiation increases at oxygen concentrations
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as low as 1%, while pluripotency of ESCs is maintained
at 3%-5% oxygen tension without significant change in
proliferation (110).

Hypoxia and epigenetic interactions have potential
applications in regenerative medicine. It is reported
that reprogramming cells exist in many different types
of tissues and organs after hypoxia (111, 112). Studies
have shown that hypoxic environment may contribute
to or regulate the process of tissue regeneration.
Phenomena such as conditional ischemia caused by hypoxia
stimulation can provide attractive prospects for future
research (113–115).

As a key factor in determining the characteristics of
BMSCs, the microenvironmental niche could maintain and
regulate their function. Cell growth and differentiation
require a certain amount of oxygen. However, under
some physiological and pathological conditions, hypoxia is
common. Under extreme hypoxia, the oxygen concentration
can be reduced to <1% (116). Oxygen can produce ATP,
a product necessary for cell survival. Through oxidative
phosphorylation of mitochondria, cells maintain an adequate
supply of ATP. However, under hypoxia, cells promote
HIF activation or reduce gene transcription by sensing the
change of oxygen tension. Under the premise of insufficient
oxygen, the adaptive process is activated to improve cell
survival (117).

On the one hand, hypoxia preconditioning enhances
the osteogenic differentiation potential of BMSCs (31, 118),
which could promote bone regeneration (25) and adipogenic
differentiation (77). While short-term (48 h) hypoxic exposure
(1% O2) suggest decreased osteogenic differentiation after
transplantation of BMSCs to a hypoxic microenvironment
(103). It was showed that hypoxia reduces osteogenic
and adipogenic differentiation of MSCs by inhibiting
RUNX2 (41) and HIF-1α stabilization (24, 118, 119). It is
reported that early hypoxia can accelerate the osteogenesis
of BMSCs, however, prolonged hypoxia results in the
opposite trend (27). Nevertheless, it was shown that hypoxia
culture may not exert effect on the osteogenesis of BMSCs
(120, 121).

In view of the practical significance of hypoxia in the
development and differentiation stage of stem cells, the
outcome of stem cell fate and differentiation of research
has been underway for more than 20 years. However,
due to the differences of cell separation methods, research
parameters, growth factors, oxygen concentration and evaluation
experimental techniques, the differences between the research
results of the role of oxygen in stem cells are highlighted
(122). There are still a lot of unknown and exploratory areas
in the later research. With the development of transcriptomics
and bioinformatics, the behavior of stem cells focuses on
epigenetic regulation and modification, and hypoxia has an
effect on the epigenetic modification levels of cells. The
coexistence of transcription factors suggests the correlation
between hypoxia and cell reprogramming related epigenetics.
More and more studies have focused on the roles of lncRNAs,
circRNAs and miRNAs and their interactions in the regulation

of stem cell survival and regeneration under hypoxia. The
network could help us better interpret stem cell behavior
and provide direction for in vitro modification of stem cells
for transplantation.

MSCs can be collected from multiple parts of the oral
cavity, such as the dental papilla, dental pulp, periodontal
ligament, etc. These stem cells can be used as good tools for
bone regeneration and tooth tissue regeneration. Odontogenic
stem cells are hypoxic in vivo under both physiological and
pathological conditions. The average oxygen partial pressure in
the pulp of rat incisors is 23.2 mmHg, which is approximately
equivalent to 3-12% oxygen concentration (116, 123, 124).
In some relatively hypoxic tissues or pathological conditions,
oxygen concentration is lower, often less than 1% (116). The
pulp is wrapped by the hard dental tissue, and blood oxygen
can only reach the pulp cells through the narrow apical orifice,
lacking effective collateral circulation. When inflammation or
trauma occurs, the vascular nerve bundles of the pulp are easily
damaged, resulting in the state of ischemia and hypoxia of the
pulp (125). Under the condition of periodontal inflammation,
the deeper the periodontal pocket, the lower the oxygen content.
The research shows that the average oxygen partial pressure in
the deep periodontal pocket is only 1.8% O2 (126). Hypoxia is
a common phenomenon in both pathological and physiological
states. Currently, hypoxia-related ncRNAs (lncRNA STL, miR-
210, lncRNA H19, circRNA CDK8) have been thought to
be related to the fate of odontogenic stem cells through
different mechanisms. More differentiated ncRNAs induced
by hypoxia are worthy of further study and exploration as
potential targets.

In addition, oxygen, as a metabolic substrate, can
correspondingly reshape cell metabolism. HIF pathway, as
a transcription factor, participates in cell metabolism, making
it the main contributor to cell response during hypoxia,
energy crisis and metabolic disorder. In turn, HIF pathway
activity is regulated by various factors, including the supply
and utilization of O2 and key metabolic substrates (127–
129). Hypoxia induced HIF activity initiates a powerful
transcriptional program of more than 200 genes. Broadly
speaking, the purpose of these adaptations is to increase
oxygen delivery or reduce oxygen consumption to meet
metabolic needs and normalize local PO2. For example,
HIF induction triggers erythropoiesis [erythropoietin
(EPO)] and iron homeostasis [e.g., transferrin (TF)] to
increase circulating red blood cell (RBC) levels (130, 131).
The behavior and differentiation fate of MSCs are closely
related to metabolism. As an important substrate of cell
metabolism, hypoxia is involved in regulating the behavior
and fate of MSCs by affecting ncRNAs, which is worthy of
further exploration.

CONCLUSIONS

As the physiological environment of stem cells, hypoxia
also exists in the tumor microenvironment, inflammatory
microenvironment and temporary stimulation of some extreme
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organism conditions, which has the function of double-edged
sword. The effect of hypoxia on MSCs may be closely
related to the duration of treatment, oxygen concentration,
and cell state. There are also differences in regulatory
mechanisms among different cells. NcRNAs have played a
significant role in the modulation of hypoxia on MSCs.
Studies of ncRNAs and their interaction can promote or
reverse the effects of hypoxia microenvironment on MSCs, and
provide good conditions for better modified stem cells for in
vivo transplantation.
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