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Maxillofacial bone defects are common medical problems caused by congenital defects,

necrosis, trauma, tumor, inflammation, and fractures non-union. Maxillofacial bone

defects often need bone graft, which has many difficulties, such as limited autogenous

bone supply and donor site morbidity. Bone tissue engineering is a promising strategy

to overcome the above-mentioned problems. Osteoimmunology is the inter-discipline

that focuses on the relationship between the skeletal and immune systems. The

immune microenvironment plays a crucial role in bone healing, tissue repair and

regeneration in maxillofacial region. Recent studies have revealed the vital role of immune

microenvironment and bone homeostasis. In this study, we analyzed the complex

interaction between immune microenvironment and bone regeneration process in oral

and maxillofacial region, which will be important to improve the clinical outcome of the

bone injury treatment.
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Bone resorption and bone formation are largely regulated by a variety of immune responses under
normal and pathogenic conditions. Full understanding of the principles in bone homeostasis is
vital to treat patients with traumatic injuries, osteonecrosis, arthritis, bone infection, osteoporosis,
metabolic bone disease, tumors (1). Maxillofacial bone is a dynamic tissue andmaintains a constant
balance between bone loss and subsequent repair with participation of the immune system to a large
extent (2). Over the years, maxillofacial bone defects are difficult and challenging problems for
maxillofacial surgeons resulting from tumor, trauma, congenital defects, reconstructive surgery,
non-union of fractures, infection, or periodontal disease. Repair, reconstruction together with
regeneration in bone defects remain a challenge in the oral and maxillofacial region (3). Osteo-
immunology has opened the field that explored the complex cellular and molecular networks
involved in oral maxillofacial osteolytic diseases, explored the interaction between metabolism
of bone and immune response and provided background for the study of chronic inflammatory
disease associated with bone loss (4, 5). Periodontal health depends on the local balance among
immune cells, cytokines and mediators (6). Simultaneously, bone homeostasis is closely related
to immune cells and immune derived cytokines. The challenge is to require this homeostatic
equilibrium of the oral microbiome, the moderate inflammation and the adaptive alveolar bone
remodeling. The main purpose of this review is to explain the effect of osteo-immunology on
maxillofacial bone.
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THE ROLE OF IMMUNE CELLS IN BONE
REGENERATION

Bone homeostasis is a highly coordinated process responsible for
bone formation, bone repair and bone remodeling. In addition to
the traditional bone cells, immune cells containing neutrophils,
B cells, macrophages and T cells, were also implicated in
remodeling of bone (7). In osteolytic inflammatory diseases, such
as osteoarthritis of the temporomandibular joint, periodontal
disease, apical periodontitis and maxillofacial bone sarcomas,
inflammation leads to tissue destruction, especially bone loss by
the continuous release of osteoclastogenic mediators. Mandible
and maxilla are the only bones direct exposure to a microbial
contaminated environment, such as periodontal disease or
during and after surgical procedures, containing tooth extraction,
some resection of jawbone tumors and so on (7). The acute innate
immune response is crucial in the early stage of bone healing
after injury, which depends on immune cells and cytokines
(8, 9). Immune cells are essential in bone repair by sensing
the extracellular signals, eventually drive bone remodeling by
regulating osteogenesis or osteoclastogenesis (10). Therefore,
interaction between local stem cells and immune cells in the oral
microenvironment maymodify the regenerative process (11) (see
Figure 1).

Neutrophils
Neutrophils, which are a type of polymorphonuclear leukocytes,
are the most abundant immune cells in human peripheral
blood (12). Neutrophils are universally acknowledged as one
of the major participants in acute inflammation (13, 14).
Neutrophils often act as the front line of defense to be recruited
to an inflammatory site to fight off pathogens by eliminating
pathogens, cell debris as well as microorganisms (15, 16).
Neutrophils play a critical role in the acute inflammatory
response and wound healing, especially at the beginning of
hemostasis and inflammation (12). Neutrophils are also all
importantly influential in chronic inflammatory or aging-related
diseases, including periodontitis, diabetes and rheumatoid
arthritis (17). Furthermore, periodontitis is related to increased
risk of certain systemic diseases, such as atherosclerosis
and rheumatoid arthritis (18). Neutrophils are involved
in periodontal inflammatory responses. Neutrophils are
accumulated in periodontal tissues and also enriched in the
fluid of gingival crevice (19, 20). Neutrophils are increased in
the process of inflammation and are vital for periodontal tissue
homeostasis (21, 22). Neutrophils can secrete cytokines that
enhance the survival rate of B cells and plasma cells, which
is associated with periodontitis and has a causal relationship
with periodontal bone loss in mice (23). Neutrophils show
heterotypic adhesion to osteoblasts and regulate the function
of osteoblasts in osteoimmunological regulation of periodontal
diseases (24, 25). Neutrophils play an important part in the
pathogenesis of bisphosphonate-associated osteonecrosis of the
jaws and impaired normal wound healing (26).

Macrophage
Macrophages are cells of innate immunity that are present in
nearly all tissues, where they make a substantial contribution
to development, homeostasis and regeneration (27, 28). In
fracture healing, macrophages migrated into the fracture area
and had an impact on the long term outcome of bone repair
(29). Macrophages can not only remove the temporary fibrin
matrix, necrotic cells and damaged tissues via phagocytosis
at the fracture site but also recruit vascular progenitor cells
and mesenchymal stem cells (MSCs) from the bone marrow,
periosteum and circulation (30). Therefore, bone repair requires
a long-time regenerative response to achieve anatomical and
functional recovery of bone. Macrophages are essential for the
initiation of bone repair and also participate in the regulation of
bone regeneration during normal bone homeostasis (31). Bone
macrophages in vivo are close to osteoblasts, can regulate bone
formation, support fracture healing and play a variety of roles
in the potential role of osteocyte proliferation in bone biology
and the regulation of bone metastasis (27). Macrophages are
responsible for the homeostasis and functions of the alveolar
bone (32). Macrophages are only a few in periodontal tissues, but
they participate in the pathogenesis of periodontitis by initiating
or eliminating inflammation, mediating alveolar bone resorption
and localization (33–35). Therefore, the monocyte/macrophage
population in alveolar bone participates in the regulation
of MSCs and bone homeostasis, which promotes osteogenic
differentiation and inhibits adipogenic differentiation of MSCs
(36). Together, these results suggest that macrophages function
in regulating physiological bone formation and homeostasis.

Dendritic Cells
Dendritic cells are a special type of antigen-presenting cells
that can capture, process and present antigens to lymphocytes,
so as to initiate and regulate the adaptive immune response
(37, 38). Dendritic cells activate a protective antibody response,
thereby reduce bone loss (39). Immature dendritic cells
may directly participate in the regulation of osteoclasts and
lead to bone decline in histiocytosis, rheumatoid arthritis
or periodontitis (40, 41). Chemokines secreted by dendritic
cells can attract monocytes and neutrophils to sites of
inflammation, so as to enhance inflammation and stimulate
the expression of osteoclastogenetic factors (42). Dendritic cells
can transdifferentiate into osteoclasts and furthermore cause
bone resorption in patients with periodontal inflammation (43,
44). Dendritic cells can enhance periodontal bone loss by
upregulating Th17 or Th1 response (45). Results in dendritic
cells-deficient mice confirmed that dendritic cells deficiency
could contribute to bone necrosis after tooth extraction (46).
Dendritic cells are essential in initiation and regulation of
immune responses in the clinical case of oral cavity (46,
47). Previous studies reported insufficient innate immune
response and colonization of oral bacterial communities in
bisphosphonate-related osteonecrosis of the jaw (48). Dendritic
cells also play a major role in the oral mucosal barrier immunity
of the oral cavity and the gut mucosa (49).
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FIGURE 1 | Cytokines and immune cells are important factors in regulating bone resorption in bone homeostasis. Osteoclasts and osteoblasts differentiation and

activation are driven by immune cells, including B cells, T cells, dendritic cells, macrophages and neutrophils, and cytokines, containing TNF-a, IL-1, IL-6, IL-17 and

IFN-γ.

T Lymphocytes (T Cells)
T lymphocytes participate in host defense and control the
development of immune-mediated inflammatory disease (50).
According to the original concept of bone immunology, T cells
are critically involved in the mediation of inflammatory repose
guided bone loss. Activated T cells indirectly or directly regulate
bone health and bone remodeling by secreting various cytokines
and factors (50, 51). For example, activated T cells are primary
sources of receptor activator of TNF-α and nuclear factor-
κB ligand (RANKL) responsible for bone destruction observed
under pathological and inflammatory conditions (52). Activated
CD8+ and CD4+T cells secrete interleukin-1 (IL-1), tumor
necrosis factor (TNF-α), receptor activator of nuclear factor-κ B
ligand (RANKL), IL-6, and IL-17 to promote the formation of
osteoclast (53). FoxP3+ CD8+ T-lymphocytes produce CTLA-
4 and interferon-γ (IFN-γ) to suppress osteoclastogenesis while
produce RANKL to enhance osteoclastogenesis (54). However,
CD8+ T cells can produce Wnt10b to mediates activation of
Wnt signal while γδ T cells secrete IL-17A to accelerate bone
regeneration (55). Wnt signaling plays crucial roles in postnatal
bone formation. Wnt signaling can promote the commitment
of mesenchymal stem cells (MSCs) to osteoblastic lineage and
promotes differentiation and bone formation at the critical
steps of osteoblast differentiation (56). T lymphocytes and B
lymphocytes can result in the production of RANKL, which

causes osteoclasts to induce obvious alveolar bone resorption,
even tooth loss (57).

B Lymphocytes (B Cells)
B cells are an important branch of the adaptive immune
system and can also present antigens and secrete antibodies
and cytokines (58). Recent studies have disclosed a regulatory
effect of B cells, indicating that B cells affect osteoclasts by
producing cytokines (59, 60). It had been reported that B cells
can produce TGF-β, IL-6, OPG to inhibit osteoclast formation
(61). It is reported that several B cells in healthy gingiva may
have an important role to play in preventing bone loss caused by
inflammation of periodontium (62). However, B cells can express
TNF-α, IL-6, and RANKL to promote osteoclast formation
and osteoclastogenesis (60). B cells have been closely related
to periodontal homeostasis and disease (57). B cells express
RANKL for alveolar bone homeostasis in homogeneous gingival
tissue during periodontal disease (63, 64). B cells also play
a vital role in attachment loss and alveolar bone resorption
in periodontitis in mice, which may be due to activation of
B cells and the expression of RANKL in the gingiva (65).
Furthermore, B cells deficiency reduces alveolar bone resorption
during periodontitis (66). Furthermore, memory B lymphocytes
can lead to bone damage in rheumatoid arthritis (67). And
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FIGURE 2 | Cytokines regulation of bone resorption in periodontitis. The expression of cytokines in periodontitis increase bone resorption by osteoclasts, such as

TNF-a, IL-1β, IL-6, IL-17 and IFN-γ.

B lymphocytes in periodontitis may result in chronic systemic
inflammation (68).

THE ROLE OF IMMUNE CYTOKINES IN
BONE REGENERATION

Cytokines are intercellular regulators at systemic and local
level. Cytokines are derived from immunocompetent cells
such as monocytes and T lymphocytes. Chemokines manage
the location and migration of immune cells and are essential
in the function of the innate immune system. Chemokines
can also affect bone marrow to release innate immune cells
throughout development, homeostasis, and inflammation
(69). Periodontal tissue such as epithelial and endothelial
cells as well as fibroblasts are also involved in cytokine
formation during inflammatory responses (70, 71). Besides,
various cytokines are directly related to the occurrence of
osteoporosis in animal models and patients (72). Several
chemokines produced by osteophytic tumor cells can promote
osteoclasts-mediated bone resorption and promote the
osteoclast precursors recruitment and osteoclast precursors
differentiation (73).

Tumor Necrosis Factor Alpha (TNF-α)
TNF-α mainly secreted by monocytes, can stimulate the
activity of mature osteoclasts, and attract other monocytes
(74). Furthermore, TNF-α frequently appeared in the tumor
microenvironment and is mainly derived from tumor cells
and tumor-associated macrophages (75). Once cancer cells are
detained in bone, the bone stores diverse growth factors and
cytokines and thus provides an extremely fertile environment for
cell growth (76). Invasive tumor cells secrete TNF-α, interleukins
and chemokines and change the bone microenvironment, which
directly induce osteoclasts and/or promote RANKL expression
in osteoblasts and stromal stem cells (77). It was firstly
described that TNF-α inhibited bone formation in neonatal rat
calvarial organ cultures in 1987 (78). Recently, TNF-α plays a
critical role in the pathogenesis of inflammatory bone loss by
stimulating osteoclasts bone resorption and inhibiting osteoblast
bone formation (79, 80). Further studies showed the inhibitory
effects of TNF-α in recruitment of osteoblast progenitors, genes
expression produced by mature osteoblasts, and the active
influence in osteoblast apoptosis via nuclear factor kB (NF-
κB) pathway (81). In many chronic and inflammatory disease,
TNF-α plays a negative role in regulating bone homeostasis
(79, 82, 83). TNF-α was obviously upregulated in the process of
periodontitis (84), which is actively involved in the destruction

Frontiers in Dental Medicine | www.frontiersin.org 4 November 2021 | Volume 2 | Article 780973

https://www.frontiersin.org/journals/dental-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/dental-medicine#articles


Li et al. Immune Microenvironment and Bone Homeostasis

of periodontal tissues by regulating the activities of leukocytes,
osteoclasts (85). Furthermore, the expression levels of TNF-α
was closely associated with the severity of periodontitis (86) (see
Figure 2).

Interleukin-1 (IL-1)
IL-1 plays vital role in immune and inflammatory responses
(87). The systemic IL-1 has important roles in regulation of
basic metabolic rate, iron metabolism and bone remodeling
(88). IL-1 stimulates bone resorption by promoting osteoclast
activation (89, 90) and mediates osteoclatogenic effects of TNF-
α by up-regulating the expression of RANKL (91). IL-1 also has
a prominent role in the pathogenesis of periodontitis (85). The
IL-1 family contains two main members, IL-1α and IL-1β. IL-1α
promoted osteoclast differentiation by stimulating prostaglandin
E2 (92). IL-1α can also exert its biological effects on the alveolar
bone modeling process of tooth eruption by enhancing RANKL
and TNF-α expressions (93). Previous studies showed that IL-
1α is an inducer, which could up-regulate the expression of
matrix metalloproteinases (MMPs), such as MMP 13, 9, 7, 1,
and 3 in the process of infection or the formation of endodontic
and periodontal osteolytic lesions (94–96). IL-1β was detected
to inhibit osteogenetic and adipogenetic differentiation of MSCs
(97). As one of the important pro-inflammatory mediators, IL-
1β is increased in the early stage of fracture healing (98). IL-
1β affects alveolar bone resorption in ligature-induced chronic
periodontitis by enhancing osteoclastic differentiation (99) (see
Figure 2).

Interleukin-6 (IL-6)
IL-6 has been reported to influence osteoclastic differentiation
and bone resorption (100, 101). IL-6 exerts a significant
impact on immune responses and certain oncological conditions
(102). There are studies suggesting that IL-6 is a potential
biomarker for oral squamous cell carcinoma in oral cavity and
oropharynx (103). In bone, IL-6 is derived from osteoblasts
and acts as an important regulator of osteoclastic development
(104) and physiologically regulates bone metabolism (105).
A recent study indicates that IL-6 induced osteogenesis of
stem cells via signal transducer and activator of transcription
factor (106). Mounting evidences have demonstrated that IL-6
directly promotes the formation of osteoclast through a RANKL-
independent mechanism (101). It is recorded that IL-6 levels
in periimplantitis was significantly higher than that in healthy
subjects (107). Mice with IL-6 deficiency were also resistant to
periodontal bone damage (108). Oral squamous cell carcinoma
can not only produce IL-6 but also induce stromal cells to
produce IL-6, and provide a suitable microenvironment for
osteoclastogenesis (109). IL-6 is produced by oral cancer cells as a
precursor protein that induced osteoclastic bone resorption and
deficient bone formation through RANKL expression in stromal
cells (110). It has been found that IL-6 appears to be a regulator
of bone invasion and a direct critical driver of tumor growth and
metastasis by oral cancer (111).

Interleukin 17 (IL-17)
IL-17 participates in both acute and chronic inflammatory
responses, elicits similar host defense against extracellular
bacterial infections and is crucial in inflammatory conditions
including autoimmune diseases, cancer and metabolic disorders
(112). IL-17 can stimulate osteoclastic bone resorption, suppress
bone formation, and result in bone loss in osteoporosis
(113, 114). IL-17 accelerates bone loss by promoting pro-
osteoclastogenic cytokines accumulation containing TNF-α and
RANKL produced by osteoblastic cells (115). Low expression
of IL-17 inhibited the ability of bacteria in diabetic animals to
induce inflammation and promote alveolar bone absorption
in normal germ-free recipients (116). Interestingly, IL-17
expression is correlated with dendritic cells and increased in
patients with chronic periodontitis (45). IL-17 can stimulate
the synthesis of pro-inflammatory mediators including IL-
6 and RANKL or indirectly promote periodontal bone
loss (117). Rheumatoid arthritis is a systemic autoimmune
disease which regulates inflammatory cytokines expression
in the periodontal tissue, such as IL-1, TNF-α, IL-6, and
IL-17 (118–121).

Interferon-Gamma (IFN-γ)
IFN-γ is the essential pro-inflammatory cytokines which
is involved in the innate and adaptive immune responses
(122). Data identify IFN-γ as the major effector cytokine
driving pathogenesis in patients with immune-mediated bone
diseases, such as postmenopausal osteoporosis and rheumatoid
arthritis (53). IFN-γ plays dual effect in osteoclastogenesis.
Substantial evidence demonstrated that IFN-γ enhanced
bone resorption and led to bone loss under the pathological
conditions (123, 124). In contrast, IFN-γ was a key negative
regulator of osteoclastogenesis, and mediated the inhibition
by IL-2 (BIL-2) in vitro (61, 125). Additional studies revealed
that IFN-γ decreased serum calcium concentration and
osteoclastic resorption in nude mice (126). It is reported
that IFN-γ is effective in treating osteopetrosis by directly
suppressing osteoclast differentiation but indirectly promoting
bone resorption (127). Therefore, IFN-γ indirectly enhances
osteoclastic factors via stimulating immune responses,
otherwise, the lack of IFN-γ decreases alveolar bone loss in
mice (128).

CONCLUSION AND PROSPECT

Destruction of bone homeostasis caused by immune dysfunction
provides a clue to seek the therapeutic targets through
osteoimmunology. Over the past decade, osteoimmunology
plays a vital role in maintaining an adequate pool of cytokine
and circulating immune cells to protect bone homeostasis. It
provides a new inter-discipline to understand the relationship
between the immune and the skeletal systems. Thus, a better
understanding of the nexus between the immune and the skeletal
systems should be at heart of future research in the area.
Research in the field of osteoimmunology would pave path
for novel therapeutics for treating bone losses resulted from
different inflammation.
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